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In this work we improve the runtime of recent classical algorithms for strong
simulation of quantum circuits composed of Clifford and T gates. The improve-
ment is obtained by establishing a new upper bound on the stabilizer rank of
m copies of the magic state |T) = \@71(\0> + €™/4|1)) in the limit of large m.
In particular, we show that |T)®™ can be exactly expressed as a superposition
of at most O(2%™) stabilizer states, where o < 0.3963, improving on the best
previously known bound o < 0.463. This furnishes, via known techniques,
a classical algorithm which approximates output probabilities of an n-qubit
‘Clifford 4+ T’ circuit U with m uses of the T gate to within a given inverse
polynomial relative error using a runtime poly(n,m)2%". We also provide im-
proved upper bounds on the stabilizer rank of symmetric product states [1)®™
more generally; as a consequence we obtain a strong simulation algorithm for
circuits consisting of Clifford gates and m instances of any (fixed) single-qubit
Z-rotation gate with runtime poly(n,m)2"/2. We suggest a method to further
improve the upper bounds by constructing linear codes with certain properties.

Recently proposed classical algorithms for simulating quantum circuits dominated by
Clifford gates [2, 3, 4, 5] have an exponential scaling only in the number of non-Clifford gates
in the circuit. Such algorithms are based on representing the output state |¥) = U|0™) of
an n-qubit circuit U as a superposition

k

W) =" cil @), (1)

=1

where {|®;)} are n-qubit stabilizer states, each of which requires only O(n?) classical bits to
store. Given such a representation we can compute an amplitude (x|U|0™) corresponding
to a given basis state € {0,1}" by computing a weighted sum of the k£ amplitudes
(x|®;), each of which can be computed in polynomial time via the stabilizer formalism.
It was shown in Ref. [4] that we can also approximate a measurement probability p(y) =
I1y) (Y|out|®)]|? for an output register containing w < n qubits and y € {0, 1}* to within a

A preliminary version of our results was reported in the first author’s Ph.D thesis [1].
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given inverse polynomial relative error using a runtime linear in k£ and polynomial in the
number of qubits. Simulations of this type are advantageous if a stabilizer decomposition
Eq. (1) can be found with k& < 2". The stabilizer rank x (V) is defined as the minimum
possible k over all decompositions of the form Eq. (1). Let us suppose that ¥ is the
output state of a circuit U composed of Clifford gates and at most m T gates. In this
case it is shown in Ref. [3] that x(¥) < x(T®™) where |T) = 2-1/2(]0) + €™/4[1)) is a
single-qubit magic state. In this way the stabilizer rank of magic states x(T®™) directly
relates to the complexity of computing high-precision (exact, or inverse polynomial relative
error) approximations of amplitudes and probabilities of Clifford+T circuits. Though it
is not our focus in this paper, we note that one may also consider a less stringent weak
simulation task where the goal is to approximately sample from the output distribution of
the quantum circuit to within a given inverse polynomial total variation distance. Ref. [4]
defines an approximate stabilizer rank and shows how it is similarly related to the runtime
of weak simulation.

Computing the stabilizer rank of a given n-qubit state appears to be intractable. The
main difficulty is that the number of stabilizer states grows as 2@(”2), and searching for
a decomposition of the form Eq. (1) by exhaustively considering k-tuples of n-qubit sta-
bilizer states is out of the question, even for very small n and k. As discussed above,
we are interested in upper bounding the stabilizer rank of magic states |T)®™ as this
captures the classical simulation cost for Clifford+T circuits with m T gates. The fact
that this is a product state has been exploited in previous work to bound its stabilizer
rank. Indeed, for any two states ¢i, ¢ we have the trivial sub-multiplicativity property
X(d1 ® ¢2) < x(d1)x(¢2). Previous works have upper bounded x(7®™) by constructing
low-rank decompositions of |T)®¢ for small ¢ and then using this sub-multiplicativity. For
example, the fact that |T)®2? can be decomposed in terms of two stabilizer states;

)57 = %(yom +il11)) + ei:4 (101) +[10)), 2)

implies x(T®™) = O(2"™/?). This bound was improved in Ref. [3] by constructing sta-
bilizer decompositions of |T)®¢ for ¢ < 6 using a heuristic simulated-annealing based
computer search. The best decomposition found in Ref. [3] uses 7 stabilizer states to
decompose |T)®% implying that x(T®%) < 7 and therefore x(T%™) < O(2°™) where
a = log,y(7)/6 < 0.468. The equality x(T%%) = 7 was conjectured to hold, suggesting that
further improvement requires low-rank decompositions of 7 or more copies of |T'). Ref. [6]
shows that y(7®12) < 47, which further reduces the upper bound on the exponent a to
roughly 0.463. Though it is not our focus in this work, we note that existing lower bounds
on the stabilizer rank of magic states are unsatisfying: the best known unconditional lower
bound is x(T®™) = Q(m) [7]. On the other hand this quantity must increase exponentially
with m unless #P-complete problems can be solved in sub-exponential time on a classical
computer (see, e.g., Refs. [8, 9, 10]).

In this paper, we describe a new method of constructing low-rank stabilizer decom-
positions of |T)®™ and obtain the improved upper bound x(7%™) < O(2*™) with o =
log,(3)/4 < 0.3963. Unlike previous works, our strategy does not involve bounding x (7%°)
for some small ¢ and then using sub-multiplicativity. Rather, we construct low-rank stabi-
lizer decompositions of the state |T)®™ by contracting certain entangled cat states in the
magic basis. Along the way, we establish that x(7%%) < 6, disproving the conjecture that
it is equal to 7. We generalize our upper bound to the other species of magic states (see
Fig. 1), as well as to other symmetric product states. Finally, we discuss a generalization
of our method which is based on a family of quantum states corresponding to linear codes.
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Figure 1: The stabilizer octahedron, whose vertices are the six single qubit stabilizer states. The two
types of magic states, |T), |F), correspond to the edges and faces of this octahedron, respectively [11].
It was conjectured in Ref. [3] that x(T®™) = x(F®™).

Magic cat states For each m > 1, define the m-qubit cat state in the magic basis
[catyn) = 27 V2(IT)®™ 4 [TH)*™), 3)

where |T+) = Z|T). Similar to the states |T)®™, the stabilizer rank of |cat,,) is non-
decreasing in m, i.e. x(cat,,) > x(caty,—1), which follows by noting that |cat,,_1)
((0] ® I)|caty,). Furthermore it is easy to see that the stabilizer rank of this magic cat
state is within a factor of 2 of the stabilizer rank of |T)®™. In particular, we have

x(T%™)

5 < X(catm) < x(T™) (4)

The upper bound follows because |cat,,) = \/5_1(1 + Z%™)|TY®™  where 2711 + Z&™)
is a stabilizer projector which does not increase the stabilizer rank. The lower bound in
Eq. (4) follows by using the fact that |T)(T'| = (I + A) for a single-qubit Clifford A, and
therefore |T)®™ = /2(|TWHT|®1)|cat,,) o |caty,)+(A®T)|cat,,) where the right-hand-side
has stabilizer rank of at most 2x(cat,,).

We shall take advantage of the fact that the stabilizer rank of the m-qubit magic cat
state is less than that of |T)®™ for small m. For m = 2,6 we find the following stabilizer
decompositions

lcaty) = 271/2(]0)¥2 + i[1)?),
lcate) = 273/2(J0)¥6 — i[1)¥6) + 2712374 | Eg) + i| K)), (5)
where we defined the stabilizer states?

|E,,) = 27 (m=1/2 Sz, |Ew)= [ CZjlEw).
ze€{0,1}™: 1<i<j<m

|z| even

From these decompositions we see that

x(catg) =1 and x(catg) < 3. (6)

"Namely A = e~ ""/*SX where X is the usual Pauli matrix and S = diag(1,1).

2A state is a stabilizer state if and only if its expansion in the computational basis is of the form

B i — x), where A is an affine subspace of Fy and [ : Fy — F3 and ¢ : F5 — Fy are
AN i) (1)1 here A i fiine sub fFy and [ : F§ — F> and ¢ : F§ — F
linear and quadratic functions, respectively [12, 13].

Accepted in {fuantum 2021-11-11, click title to verify. Published under CC-BY 4.0. 3



\catG |cat6 |cat6 |cat6 |cat6 |cat6

RIS

(caty|  (cate|  (cate| (caty|  (cats|

Figure 2: The chain used in the proof of Theorem 1. Here ¢ = 6 and the state after the contraction is
|cat26>.

The latter inequality already disproves the conjecture that x(T®%) = 7. Indeed, using
Eq. (4) we infer
X(T%°%) < 2x(catg) < 6. (7)

Following the strategy from Ref. [3] we may then use sub-multiplicativity of the stabilizer
rank to obtain x(7T®™) = O(2%™) with o = log,(6)/6 < 0.4308.

But we can do better by using Egs. (6) in a different way. Suppose we act with the
stabilizer state (cate| on one qubit from each tensor factor in |catg)|catg). The resulting
state is

(catale,7 |cate)|cats) o< |catip).

By expanding each state |catg) as a superposition of 3 stabilizer states and using the fact
that (cats| is a stabilizer state, we obtain a stabilizer decomposition of |catio) with only 9
terms. Combining this with Eq. (4) we infer x(7®!°) < 18 and therefore x(T®™) = O(2°™)
with a = log,(18)/10 < 0.417.

We can obtain further improvements by contracting many stabilizer |caty) states with
many copies of |catg) to construct stabilizer decompositions of larger magic cats |caty,). In
the limit of large m this gives the exponent o = log,(3)/4 < 0.3963. To see this, in Fig. 2
we start with a chain of length ¢ containing a |catg) state at each site, and we contract
nearest neighbours using (catg|. After the contraction the state of the remaining qubits
is (up to normalization) |catysi2). Therefore a stabilizer decomposition of |catyso) exists
using 3¢ stabilizer states. Using Eq. (4) we have

X(T®(4£+2))

5 < x(catyro) <3°  £>2.

Therefore one can decompose |T)®™ using O(2%™) stabilizer states, where a = logy(3)/4.
The above argument can be readily generalized to the other (Clifford-inequivalent)
single-qubit magic state |F) = cos(83)|0) + €7/*sin(B)[1) where cos(28) = %, 0<p<m

[11]. Defining |F*) = sin(8)|0) — '™/* cos(B)[1) and |cat,, (F)) = 27 1/2(|F)@™ 4 |F+)@m)
we find

[cata(F)) = 271/2(10)%2 +[1)?),

[cats (F)) = (2/3)lw) + *™/4(2/3) tba) — €™/4(2/3) i), (8)
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m 2134 |5 ]6 7 8
(T 23] <4 <6]|<6]| <12 <12
x(caty) |12 2 | 3 | 3 | <6 | <6

Table 1: Known values of the stabilizer rank of |T)®™ and |cat,,) for small m. The top row includes
the bounds from Refs. [3, 5] for m = 2,3,4,5,7 and the bound obtained from Eq. (7) for m = 6. The
upper bound on x(T®?®) follows from Eq. (4) and x(catg) < 6. Further details of this and the other
bounds listed in the bottom row are provided in the Appendix.

where [1;) are the stabilizer states
[1) = 271/2(|0)= — §]1)%9),
[he) =27 37 (=)Mol 2 a),

z€{0,1}6

[s) =27 37 (~L)FIEEDR)), 9)

z€{0,1}6

Therefore x(catz(F)) =1 and x(catg(F')) < 3, and so the above method used to construct
stabilizer decompositions of |T)®™ can be applied directly to |F)®™. We summarize the
preceding discussion in the following theorem.

Theorem 1. For |¢) € {|T),|F)} we have x(¢¥®™) = O(2™), where a = logy(3)/4 <
0.3963.

As we have already discussed, this provides the fastest currently known classical algo-
rithm for estimating amplitudes or output probabilities of Clifford+T circuits as a function
of the number of T gates. It is an interesting question whether or not Theorem 1 can be
used to accelerate classical algorithms for other computational problems which are less
directly tied to quantum computing?.

A natural question is whether the bound log,(3)/4 can be improved using our tech-
niques. As we show in the Appendix, the stabilizer rank of |catg) is exactly 3, so an
improvement using the above method requires the use of other cat states. In Table 1 we
list the known values of x(cat,,) for small m, none of which provide a better upper bound
than the one in Theorem 1. Ultimately it might be possible to improve the bound by
finding low rank decompositions of |cat,,) for larger m. Doing so may be slightly easier
than finding decompositions of |T)®™ since we always have y(cat,,) < x(T®™). Note that
the exponent « = log,(3)/4 in Theorem 1 is only attained asymptotically, i.e. in the limit
of an infinitely long chain.

Let us now apply a similar strategy to equatorial states, i.e. state of the form |Ry) =
271/2(10) + €?|1)). Defining |Ry) = Z|Rg) and [cat,,(Rg)) = 27Y2(|Rp)®™ + |RF)®™),
one finds the stabilizer decompositions

[catz(Rg)) =27/2(10)%% + ¥*[1)9%),
|Cat6(R9)> :275/2 [(1 o 64i0)|0>®6 + (661'9 - €2i0)|1>®6}
+€3% [cos 0| Eg) + i sin 0] Kg)] . (10)

3For example, Ref. [10] shows that if x(T®™) < 2%°™ where ap = 2.2451 - 10™° then one obtains a
classical algorithm for 3-SAT which outperforms existing methods.
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Figure 3: The chain used in the proof of Theorem 2. Here t = 2, { = 11, and the state after the
contraction is |cats4(Rp))-

In particular for 6 ¢ (7/4)Z we have x(cata(Rg)) = 2 and x(catg(Rg)) < 4. Unlike
the previous case the two-qubit cat state |cate(Rg)) is generally not a stabilizer state.
Nevertheless we prove the following theorem using a slightly different contraction of the
one-dimensional chain of six-qubit cat states.

Theorem 2. For every angle 0 we have x(Ry™) = O(2™/2).

Proof. We use a chain as in Fig. 3, where the length (that is, the number of upper/gray
circles) is given by ¢ = 5t + 1 for some ¢ € N (which is the number of lower/turquoise
circles). The state after the contraction is |catosi+6(Rg)). By decomposing each |catg(Rp))
in terms of 4 stabilizer states we obtain a decomposition of |catosi6(Rg)) using 454+
stabilizer states. Acting on the first qubit by |Rg)(Ry| gives the state |Ry)®(4+6) and
increases the number of stabilizer terms in the decomposition by at most a factor of four
(since |Rg)(Rp| can be written as sum of 4 Paulis). Hence X(R?(MHG)) < 21244 which
implies the statement. O

The stabilizer decompositions in Theorem 2 can be used to simulate quantum circuits
consisting of Clifford gates and Z-rotations by a fixed angle 6. Indeed, if U consists of
Clifford gates and m instances of a diagonal gate exp (i60Z/2) then one can write the
output state U|0%™) in the form

U)0)®" = 2m/2 (1 @ (0|°™) U'|0°™)| RS™), (11)

where U’ is an n+m-qubit Clifford circuit obtained by replacing each instance of exp (i0.7/2)
with an injection gadget that consumes an ancilla qubit initialized in the state |Ry) (see
for example, Section 2.3.1 of Ref. [5]). Using the stabilizer decomposition of |R)®™ from
Theorem 2, we obtain an expression for the output state of the circuit as a superposition
of at most O(2™/?) stabilizer states. We can then directly compute amplitudes (z|U]0")
using runtime O(2"/?poly(n,m)). We can also estimate marginal probabilities to within
an inverse polynomial relative error using the same asymptotic runtime via the “norm
estimation" technique described in Ref. [4].

It is in fact possible to extend the exponential scaling in Theorem 2 to arbitrary sym-
metric product states. This is a consequence of the following property of the symmetric
subspace of m qubits.

Lemma 1 (Theorem 7.5 in [14]). Let S(A) C C®? be the set of vectors with entries in
ACC. If|A| > m+1 then the set

{[0)¥™ « Jv) € S(A)}

spans the symmetric subspace of m qubits.

Accepted in (uantum 2021-11-11, click title to verify. Published under CC-BY 4.0. 6



In light of Theorem 2 the above lemma implies the following bound.

Theorem 3. For every single-qubit state |v) we have x(¢®™) = O ((m + 1)2m/2) .

Proof. Let A = {e?™s/m+1 . 5 = 0,...,m}. By Lemma 1, the set {|v)®™ : [v) € S(A)}
spans the symmetric subspace of m qubits. Since S(A) consists of m+1 distinct equatorial
states up to global phases and normalization, the state |¢))®™ can be written in terms of
m + 1 tensor powers of equatorial states;

m+1
[)E™ =Y il Rg,) S (12)
i=1
Combining this with Theorem 2 proves the statement. O

Magic code states We can extend the method described above by replacing the magic
cat state by a more general entangled state of the form

L) =272 %" |2), (13)
z€L
where |0) = |T),|1) = |T*), and L C FJ" is a linear space of dimension k. Note that |cat,,)
is recovered by taking L to be the m-bit repetition code. As with the cat states, every
|L) has stabilizer rank upper bounded by x(T®™), since |L) can be obtained from |T)&™
using only Pauli measurements and postselection

k
L) oc [T+ Z(w") )™,
=1

where Z(v) :== Z"' ® --- ® Z¥ and {v'} C FJ is any basis of L.
Theorem 4. Suppose there exist polynomials p and q and a constant v > 0 such that
Q27" /p(n)) < x(T®") < O(g(n)2™). (14)

Then for every linear code L C F5" of block length m and dimension k < m/2 we have

A

< loga(x(L))

- m—2k (15)

Proof. Let G € ngm be a generator matrix of L, that is, a binary matrix whose rows
span L. Up to re-ordering the qubits we may assume that G is in the form

G = [Ixxk | B,
for a binary matrix B of size k by (m — k). As L is spanned by the rows of G, the
constraints x € L,x1 = x9 = - -+ = x, = 0 are uniquely satisfied by x = 0. We infer that
((r1P* @ 1) L) o [T)®mF, (16)

which in turn implies x(T®™ %) < x(T®¥)x(L). Repeating the contraction in Eq. (16)
in parallel ¢ times gives y(T®{m=k)) < y(T®Hk)y(L®). Letting ¢ get large and using
Eq. (14) yields 2v¢m=k) < f(£)27%ky(L®Y), for some polynomial f(£). Taking the binary
log, rearranging, and using sub-multiplicativity of the stabilizer rank we get

A

_ logy(f(OX(L™)) _ logy(x(L)) | log,(£(0))
- Um—-2k)  — m-—2k O(m —2k)

The second term vanishes for large £ which completes the proof. ]

(17)
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The upper bound from Theorem 1 is recovered from Eq. (15) by setting L to be the six-
bit repetition code (so that |L) = |catg)). More generally, to use Eq. (15) we need an upper
bound on X(ﬁ) which is significantly better than the trivial upper bound X([A/) < gm—Fk,
The latter upper bound is obtained by noting

m—k

L) o (H (I+A(ui))> 10)°™, (18)
i=1

where {u'} is any basis of LT, and we define the Clifford operators A := e~*"/4SX and

Au) = A @ --- @ A%, (To see this, note that |[0)®™ o S |2), A|0) = |0), and

A1) = —[1)),

Theorem 4 requires k < m/2, which is somewhat restrictive. Relaxing this requirement
we can easily find magic code states with low stabilizer rank. For example, every Reed-
Muller code R, (of degree a on b variables) corresponds to a stabilizer state if the degree
is large enough. This is true since for any code L we can express \ﬁ) in the computational
basis as |L) o< Y ,epe €™#V/4[2), and if [b/(b — a — 1)] > 4 then |z[ = 0 mod 8 for all
x € R(f’b [15]. In this case we have |Rqp) o Zz€R¢b|x>, and hence it is a stabilizer state.
Another example is the magic code state associated with the 8-bit first order Reed-Muller
code. Since Ry 3 = Ri:3 and |z = 4 for all # € Ry 3 except the all-zero and all-one binary
strings, we have the stabilizer decomposition

|R13) o 2(10)%° +1)%%) = 37 |a), (19)

r€ER1 3

hence (R 3) = 2 (one can easily show that |R; 3) is not a stabilizer state).

In the preceding examples the code dimension k exceeds the threshold k& < m/2 required
by Theorem 4, and so one cannot obtain an upper bound on x (7®™) that way. We leave it as
an open question whether the bound in Theorem 1 can be improved using this formulation
in terms of linear codes, i.e. whether there exists a linear code L of block length m and
dimension k < m/2 such that logy(x(L))/(m — 2k) < log,(3)/4.
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Stabilizer rank of small magic cats

Here we provide further details of the claimed values of x(cat,,) listed in Table 1.

First let us consider the upper bounds. We have already shown x(caty) < 2 and

X(catg) < 3 in the main text. Using the fact that

we

(0], |caty,) o |caty,—1)

see that y(cat,,) > x(caty,—1) for all m. Therefore x(cats) < 3 as well. We have

x(cat3) < x(caty) < 2 due to the decomposition

lcats) = i|E) + (1 - Z) (0 —in")  where  [B)

1

z€{0,1}4:|z|even

2 /2
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Finally, we have x(cat7) < x(catg) < 6 which follows from
(catalas |caty)|cats) o |catg).

The left hand side is easily seen to have rank at most 6 since cats is a stabilizer state and
X(caty) < 2 and x(catg) < 3.

Next let us discuss the matching lower bounds for 2 < m < 6. Clearly there is nothing
to show for m = 2 since all nonzero states have stabilizer rank at least 1.

To establish the lower bounds for m = 3,...,6 it will be convenient to define the Pauli
spectrum [16] of an m-qubit state ¥ as the multiset

PS(¢) = {(Y|P|¢) : P € P}

where P,, is the set of m-qubit Pauli operators. Note that all elements of the Pauli
spectrum of a stabilizer state are either +1, —1,0. Moreover, we have PS(C|¢)) = PS(|¢))
for any Clifford unitary C.

To show that y(caty) > x(cat3) > 2 we need only show that cats is not a stabilizer
state. To see this we note that PS(cats) contains elements which are not +1,—1,0. In
particular, (cat3|X ® X ® I|cats) = 1/2 and therefore |cats) is not a stabilizer state.

In the remainder of this appendix we show that y(catg) > x(cat;) > 3. We use the
fact that rank-2 states can be brought into a canonical form using the following lemma.

Lemma 2. Let ¢1,¢s be two n-qubit stabilizer states. There exists a Clifford unitary C
such that
Clor) =10")  and  Clga) o [170°+"7*7), (20)

for some a € {0,1} and 0 < b < n.

Proof. Let D be a Clifford such that D|¢;) = |0") and consider the stabilizer state D|¢a).
Let H be the single-qubit Hadamard on qubit j € [n] and write H(y) =[]}, (H;)% for
any binary string y € {0,1}". Since D|¢p9) is a stabilizer state it can be written in the
so-called CH-form [5] as

Dléa) o ULH(r)]s) (1)

for some r,s € {0,1}" and some Clifford U, such that U.|0") = |0"). We can furthermore
find a permutation of the qubits P such that

PH(r)|s) = |z) ® H"|y)

for some binary strings = € {0,1}*~I"l y € {0, 1}/"].

First consider the case in which (¢1]|¢2) # 0. Then x = 0, and one can directly confirm
that C = (I ® Z(y))P(U.)" D satisfies Eq. (20) with a =0 and b =n — |r|.

Next suppose (¢1|p2) = 0. In this case x # 0 and therefore we may choose the
permutation P such that z = 12’ for some (n — |r| — 1)-bit string a’. We then choose
C = (V®Z(y))P(U.)!D where V is a product of CNOT gates controlled on the first bit
of = such that V|z) = |10 "=}, Again we can directly confirm Eq. (20) with a = 1 and
b=n—|r|— 1. O

Lemma 3. x(cats) > 2 .

Proof. Below we shall use the following fact about the Pauli spectrum of cats:

|(cats|P|cats)| € {0,1/4,1/2,1} forall P € Ps (22)
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Since there are Paulis for which |(cats|P|cats)| ¢ {0,+1}, we know that cats is not a
stabilizer state.

Suppose that cats can be expressed as a superposition of two stabilizer states. Then
by Lemma 2 there is a Clifford C such that

Clcats) o< [0™) 4 y|120°+"~~0)

for some a € {0,1}, 0 < b < n, and v € C. The fact that |cats) is not a stabilizer state
implies |y| > 0. We can furthermore assume that |y| < 1, if necessary by applying a
Clifford that permutes |0") and |1%0°+"~%~%) then dividing by |7|.

First let us suppose (to reach a contradiction) that cats can be written as a superpo-
sition of two orthogonal stabilizer states, i.e., the case a = 1. Note that

2° = |{P € P, : Plcats) = |cats)}/,

and therefore b = 1. Thus we may find a Clifford C such that

Clcats) = (10%) +4110+%)) (23)

L+ ]y?

Let us write v = re® with 0 < < 1 and 0 € [0,27). Now we see that

’(cat5|CTZlC|cat5> = Lo
1472
0)
te|CT X Cleats) | = %
(cats|CT1Cleats) V2(1 +72)
in(6)
t5]C1 X, YaCleats)| = |—-Sm0)_|,
(cats|CT X1 ¥Cleats) V2(1 +72)

Recall from Eq. (22) that each of these three Pauli expectation values must be in the set
{0,1/4,1/2,1}. Solving for r, § which satisfy this constraint we get

144 1—i —1—4 =141
7 6 { ? 9 ) }

V2T V2T V2T V2
For each of the four states Eq. (23) corresponding to the above choices of v we computed
the Pauli spectrum using a computer and compared with that of |cat;). We found that
these multisets were different (in particular, the number of Paulis with expected value
equal to zero is 710 for each of the four candidate states, but 782 for |cats)) and therefore
we conclude that cat; cannot be written as a superposition of two orthogonal stabilizer
states.

Next let us suppose (to reach a contradiction) that cats can be written as a superposi-

tion of two nonorthogonal stabilizer states, i.e., the case a = 0. Again we may take b =1,
SO

1
(1+ 712 + Re(y)/4)"/?

By a direct calculation we have

Cleats) = (10°) +~710+%)). (24)

rcos()
2

7““)549))‘1

‘(cat5|C’TZngC|cat5>’ = 9

(1+r2+
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and

‘(catg,]CTYgC]cat@’ = 1472+

e

Recall from Eq. (22) that both of these quantities must take values in {0,1/4,1/2,1}.
Enforcing this constraint and solving for 0 < r < 1 and 6 € [0,27) we find vy = re? must
satisfy

1
V€ {:l:lv _5}

Thus we have three candidate states Eq. (24) corresponding to the above three choices of
~. For each of them we computed the Pauli spectrum using a computer and compared
with that of |cats). We found that these multisets were different and therefore reach
a contradiction. We conclude that |cats) cannot be written as a superposition of two
stabilizer states. O
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