Tensor Monopoles in superconducting systems
Fachbereich Physik, Universität Konstanz, D-78457 Konstanz, Germany
Published: | 2021-12-07, volume 5, page 601 |
Eprint: | arXiv:2109.03135v3 |
Doi: | https://doi.org/10.22331/q-2021-12-07-601 |
Citation: | Quantum 5, 601 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Topology in general but also topological objects such as monopoles are a central concept in physics. They are prime examples for the intriguing physics of gauge theories and topological states of matter. Vector monopoles are already frequently discussed such as the well-established Dirac monopole in three dimensions. Less known are tensor monopoles giving rise to tensor gauge fields. Here we report that tensor monopoles can potentially be realized in superconducting multi-terminal systems using the phase differences between superconductors as synthetic dimensions. In a first proposal we suggest a circuit of superconducting islands featuring charge states to realize a tensor monopole. As a second example we propose a triple dot system coupled to multiple superconductors that also gives rise to such a topological structure. All proposals can be implemented with current experimental means and the monopole readily be detected by measuring the quantum geometry.

Popular summary
In this work, we theoretically demonstrate how a tensor monopole can be constructed in superconducting multi-terminal systems using four superconducting phase differences as synthetic dimensions. Hence, we pave the way to realize this recently proposed exotic topological phenomenon of a tensor monopole in the well-established platform of superconducting circuits.
► BibTeX data
► References
[1] P. A. M. Dirac, Proc. R. Soc. Lond. A 133, 60–72 (1931).
https://doi.org/10.1098/rspa.1931.0130
[2] X.-L. Qi, S.-C. Zhang, Rev. Mod. Phys. 83, 1057 (2011).
https://doi.org/10.1103/RevModPhys.83.1057
[3] M. V. Berry, Proc. R. Soc. A 392, 45 (1984).
https://doi.org/10.1098/rspa.1984.0023
[4] D. J. Thouless, M. Kohmoto, M. P. Nightingale, M. den Nijs, Phys. Rev. Lett. 49, 405 (1982).
https://doi.org/10.1103/PhysRevLett.49.405
[5] M. Z. Hasan, C. L. Kane, Rev. Mod. Phys. 82, 3045 (2010).
https://doi.org/10.1103/RevModPhys.82.3045
[6] M. Sato, Y. Ando, Rep. Prog. Phys. 80, 30076501 (2017).
https://doi.org/10.1088/1361-6633/aa6ac7
[7] K. von Klitzing, G. Dorda, M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
https://doi.org/10.1103/PhysRevLett.45.494
[8] Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
https://doi.org/10.1103/PhysRevLett.71.3697
[9] C. N. Yang, J. Math. Phys 19, 320–328 (1978).
https://doi.org/10.1063/1.523506
[10] F. Wilczek, A. Zee, Phys. Rev. Lett. 52, 2111 (1984).
https://doi.org/10.1103/PhysRevLett.52.2111
[11] S. Sugawa, F. Salces-Carcoba, A. R. Perry, Y. Yue, I. B. Spielman, Science 360, 1429 (2018).
https://doi.org/10.1126/science.aam9031
[12] M. Nakahara, Geometry, Topology, and Physics (Institute of Physics Publishing, Bristol, 2003).
https://doi.org/10.1201/9781420056945
[13] R. I. Nepomechie, Phys. Rev. D 31, 1921 (1985).
https://doi.org/10.1103/PhysRevD.31.1921
[14] C. Teitelboim, Phys. Lett. B 167, 69–72 (1986).
https://doi.org/10.1016/0370-2693(86)90547-2
[15] P. Orland, Nucl. Phys. B 205, 107–118 (1982).
https://doi.org/10.1016/0550-3213(82)90468-0
[16] T. Banks, N. Seiberg, Phys. Rev. D 83, 084019 (2011).
https://doi.org/10.1103/PhysRevD.83.084019
[17] N. E. Mavromatos, S. Sarkar, Phys. Rev. D 95, 104025 (2017).
https://doi.org/10.1103/PhysRevD.95.104025
[18] M. Montero, A. M. Uranga, I. Valenzuela, J. High Energy Phys. 7, 1–49 (2017).
https://doi.org/10.1007/JHEP07(2017)123
[19] V. Mathai, G. C. Thiang, Comm. Math. Phys. 355, 561–602 (2017).
https://doi.org/10.1007/s00220-017-2965-z
[20] V. Mathai, G. C. Thiang, J. Lond. Math. Soc. 54, 403–416 (1996).
https://doi.org/10.1112/jlms/54.2.403
[21] G. Palumbo, N. Goldman, Phys. Rev. B 99, 045154 (2019).
https://doi.org/10.1103/PhysRevB.99.045154
[22] G. Palumbo, N. Goldman, Phys. Rev. Lett. 121, 170401 (2018).
https://doi.org/10.1103/PhysRevLett.121.170401
[23] X. Tan, D.-W. Zhang, W. Zheng, X. Yang, S. Song, Z. Han, Y. Dong, Z. Wang, D. Lan, H. Yan, S.-L. Zhu, Y. Yu, Phys. Rev. Lett. 126, 126 (2021).
https://doi.org/10.1103/PhysRevLett.126.017702
[24] M. Chen, C. Li, G. Palumbo, Y.-Q. Zhu, N. Goldman, P. Cappellaro, arXiv preprint arXiv:2008.00596 (2020).
arXiv:2008.00596
[25] R.-P. Riwar, M. Houzet, J. S. Meyer, Y. V. Nazarov, Nat. Commun. 7, 11167 (2016).
https://doi.org/10.1038/ncomms11167
[26] E. Eriksson, R.-P. Riwar, M. Houzet, J. S. Meyer, Y. V. Nazarov, Phys. Rev. B 95, 075417 (2017).
https://doi.org/10.1103/PhysRevB.95.075417
[27] H.-Y. Xie, M. G. Vavilov, A. Levchenko, Phys. Rev. B 96, 161406(R) (2017).
https://doi.org/10.1103/PhysRevB.96.161406
[28] J. S. Meyer, M. Houzet, Phys. Rev. Lett. 119, 136807 (2017).
https://doi.org/10.1103/PhysRevLett.119.136807
[29] H.-Y. Xie, M. G. Vavilov, A. Levchenko, Phys. Rev. B 97, 035443 (2018).
https://doi.org/10.1103/PhysRevB.97.035443
[30] O. Deb, K. Sengupta, D. Sen, Phys. Rev. B 97, 174518 (2018).
https://doi.org/10.1103/PhysRevB.97.174518
[31] R. L. Klees, G. Rastelli, J. C. Cuevas, W. Belzig, Phys. Rev. Lett. 124, 197002 (2020).
https://doi.org/10.1103/PhysRevLett.124.197002
[32] H.-Y. Xie, A. Levchenko, Phys. Rev. B 99, 094519 (2019).
https://doi.org/10.1103/PhysRevB.99.094519
[33] R. L. Klees, J. L. Cuevas, W. Belzig, G. Rastelli, Phys. Rev. B 103, 014516 (2021).
https://doi.org/10.1103/PhysRevB.103.014516
[34] H. Weisbrich, R. L. Klees, G. Rastelli, W. Belzig, PRX Quantum 2, 010310 (2021).
https://doi.org/10.1103/PRXQuantum.2.010310
[35] V. Fatemi, A. R. Akhmerov, L. Bretheau, Phys. Rev. Research 3, 013288 (2021).
https://doi.org/10.1103/PhysRevResearch.3.013288
[36] L. Peyruchat, J. Griesmar, J.-D. Pillet, Ç. Ö. Girit, Phys. Rev. Research 3, 013289 (2021).
https://doi.org/10.1103/PhysRevResearch.3.013289
[37] T. Herrig, R.-P. Riwar, arXiv preprint arXiv:2012.10655 (2020).
arXiv:2012.10655
[38] A. Blais, S. M. Girvin, W. D. Oliver, Nat. Phys. 16, 247 (2020).
https://doi.org/10.1038/s41567-020-0806-z
[39] J. M. Martinis, M. H. Devoret, J. Clarke, Nat. Phys. 16, 234 (2020).
https://doi.org/10.1038/s41567-020-0829-5
[40] M. Gell-Mann, Phys. Rev. 125, 1067 (1962).
https://doi.org/10.1103/PhysRev.125.1067
[41] U. Vool, and M. Devoret, Int. J. Circuit Theory Appl. 45, 897 (2017).
https://doi.org/10.1002/cta.2359
Cited by
[1] Hong-Yi Xie, Jaglul Hasan, and Alex Levchenko, "Non-Abelian monopoles in the multiterminal Josephson effect", Physical Review B 105 24, L241404 (2022).
[2] Giandomenico Palumbo, "Fractional quantum Hall effect for extended objects: from skyrmionic membranes to dyonic strings", Journal of High Energy Physics 2022 5, 124 (2022).
[3] Lev Teshler, Hannes Weisbrich, Jonathan Sturm, Raffael L. Klees, Gianluca Rastelli, and Wolfgang Belzig, "Ground state topology of a four-terminal superconducting double quantum dot", arXiv:2304.11982, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-28 02:17:55) and SAO/NASA ADS (last updated successfully 2023-09-28 02:17:55). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.