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Completely positive and trace-preserving maps characterize physically implementable
quantum operations. On the other hand, general linear maps, such as positive but not
completely positive maps, which can not be physically implemented, are fundamen-
tal ingredients in quantum information, both in theoretical and practical perspectives.
This raises the question of how well one can simulate or approximate the action of a
general linear map by physically implementable operations. In this work, we introduce
a systematic framework to resolve this task using the quasiprobability decomposition
technique. We decompose a target linear map into a linear combination of physically
implementable operations and introduce the physical implementability measure as the
least amount of negative portion that the quasiprobability must pertain, which directly
quantifies the cost of simulating a given map using physically implementable quantum
operations. We show this measure is efficiently computable by semidefinite programs
and prove several properties of this measure, such as faithfulness, additivity, and uni-
tary invariance. We derive lower and upper bounds in terms of the Choi operator’s
trace norm and obtain analytic expressions for several linear maps of practical inter-
ests. Furthermore, we endow this measure with an operational meaning within the
quantum error mitigation scenario: it establishes the lower bound of the sampling cost
achievable via the quasiprobability decomposition technique. In particular, for parallel
quantum noises, we show that global error mitigation has no advantage over local error
mitigation.

1 Introduction
The postulates of quantum mechanics prescribe that the evolution of a closed global quantum
system must be unitary [1]. The physically implementable quantum operations are then obtained
in the reduced dynamics of subsystems and are mathematically characterized by completely positive
and trace-preserving maps (CPTPs) [2]. Nevertheless, many other linear maps such as positive
but not completely positive maps, which are impossible to be physically implemented, are also
fundamental ingredients from theoretical and practical perspectives. On the one hand, positive
maps play an essential role in quantum information processing; for any entangled state, there
exists a positive map that determines whether or not the given state is entangled [3]. On the other
hand, under certain conditions, the reduced dynamics might not be captured within the completely
positive map formalism [4, 5]. Thus we have to relax the completely positivity condition to less
conservative ones such as positive maps. In summary, these exceptions witness the importance of
positive maps in quantum theory and motive us to raise the following fundamental problem:

How to simulate the action of ‘non-physical’ linear maps using physical operations?

The Structural Physical Approximation (SPA) method [6–9] offers a structural way to re-
solve one important case, i.e., approximating the positive but not completely positive maps (non-
physical) using completely positive maps (physical). Briefly, SPA performs a convex mixture of the

Xin Wang: wangxin73@baidu.com

Accepted in Quantum 2021-12-02, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

01
2.

10
95

9v
2 

 [
qu

an
t-

ph
] 

 2
 D

ec
 2

02
1

https://quantum-journal.org/?s={Physical%20Implementability%20of%20Linear%20Maps%20and%20Its%20Application%20in%20Error%20Mitigation}&reason=title-click
https://quantum-journal.org/?s={Physical%20Implementability%20of%20Linear%20Maps%20and%20Its%20Application%20in%20Error%20Mitigation}&reason=title-click
mailto:wangxin73@baidu.com


original positive map with the completely depolarizing channel, where the completely depolarizing
channel projects the input state onto the maximally mixed state, i.e., Ω(ρ) = I/d, ∀ρ. Such a
mixture is always feasible since any linear map (not necessarily positive) mixed with a sufficiently
large amount of Ω will result in a completely positive map [10, 11]. However, to make the SPA
efficient, one should mix as little amount of Ω as possible. We call the completely positive map
generated by the least Ω the SPA of the original map. The SPA method finds novel applications in
entanglement detection by yielding experimentally implementable physical processes for positive
maps that are non-physical.

In this paper, we introduce a systematic framework to resolve the above fundamental problem
and establish an operational and quantitative study of the physical implementability (or non-
physicality from another perspective) of general linear maps, using the quasiprobability decompo-
sition technique [12–16] and theoretical tools from semidefinite programming. More specifically,
we decompose the target linear map, i.e., Hermitian- and trace-preserving maps (not necessarily
positive), into a linear combination of physically implementable quantum operations, i.e., CPTPs.
Then the physical implementability of the target map is defined to be the least amount of nega-
tive portion that the quasiprobability must pertain. To some extent, one can view our method
as a generalization of the SPA method by enlarging the resource set from the completely depo-
larizing channel to any CPTPs. This physical implementability measure is efficiently computable
via semidefinite programming [17]. Besides, it possesses many desirable properties, such as faith-
fulness, additivity with respect to tensor products, unitary channel invariance, and monotonicity
under superchannels. For general target maps, we derive lower and upper bounds in terms of the
Choi operator’s trace norm. This bound is tight in the sense of equalities saturated by certain
channels. For several linear maps of practical interests, we obtain analytic expressions. Notably,
by considering the inverse of a quantum channel as the target linear map, we endow this measure
with an operational interpretation within the quantum error mitigation scenario as it quantifies
the lower bound of the sampling cost achievable via the quasiprobability decomposition technique.
This result establishes the limits and delivered meaningful insights to quantum error mitigation
schemes using the quasiprobability decomposition method.

Outline and main contributions The outline and main contribution of this paper can be
summarized as follows:

• In Section 2, we set the notation and formally define the concept of invertible linear maps.

• In Section 3, we introduce the physical implementability measure to characterize how well
a linear map can be physically implemented or approximated. We show this measure is
efficiently computable by semidefinite programs. We prove several properties of this measure,
such as faithfulness, additivity, and unitary channel invariance. What’s more, we derive
bounds in terms of the Choi operator’s trace norm and obtain analytic expressions for several
linear maps of practical interests.

• In Section 4, we enrich the proposed physical implementability measure with an operational
interpretation within the quantum error mitigation framework. It establishes the lower bound
of the sampling cost achievable via the quasiprobability decomposition technique. For parallel
quantum noises, we prove that global error mitigation has no advantage over local error
mitigation, i.e., dealing with quantum noises individually.

• In Appendix A, we introduce the robustness of physical implementability from the resource
theory perspective. We discuss the relationship between two seemingly different quantities:
physical implementability and robustness. We show that these two quantities are equivalent
in some sense.

2 Preliminaries
In this section, we set the notations and define quantities that will be used throughout this paper.
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2.1 Notations
We label different quantum systems by capital Latin letters (e.g., A,B,R). The corresponding
Hilbert spaces of these quantum systems are denoted as HA,HB ,HR, respectively. Throughout
this paper, we only consider quantum systems of finite dimensions. Systems with the same letter
are assumed to be isomorphic: A′ ∼= A. Multipartite quantum systems are described by tensor
product spaces, i.e., HAB = HA⊗HB . We use these labels as subscripts or superscripts to indicate
which system the corresponding mathematical object belongs to if necessary. We drop the scripts
when they are evident from the context.

We denote by L (HA) the set of linear operators and by IA the identity operator in the system
A. For a linear operator X ∈ L (HA), we use XT to denote its transpose and X† to denote its

conjugate transpose. The trace norm of X is defined as ‖X‖1 := Tr
√
X†X. The spectral norm of

X is defined as ‖X‖∞ := σmax(X), where σmax(X) is the largest singular value of X. We denote
by L †(HA) the set of Hermitian operators and P(HA) the set of positive semidefinite operators
in the system A. Quantum states are positive semidefinite operators with unit trace. We write
X > 0 if and only if X is positive semidefinite.

A linear map NA→B is a linear map that transforms linear operators in system A to linear
operators in system B, i.e., NA→B : L (HA) → L (HB). We use the calligraphic letters (e.g.,
M, N , O) to represent the linear maps1 and use id to represent the identity map. Let Tr denote
the trace function. We say the linear map NA→A is trace-preserving (TP) if Tr[N (X)] = Tr[X]
for arbitrary X ∈ L (HA), is trace non-increasing (TN) if Tr[N (X)] 6 Tr[X] for arbitrary X ∈
L (HA), is Hermitian-preserving (HP) if N (X) ∈ L †(HA) for arbitrary X ∈ L †(HA), is positive if
N (X) ∈P(HA) for arbitrary X ∈P(HA), and is completely positive (CP) if idR⊗N is positive
for arbitrary reference system R. We call a linear map CPTP if it is both completely positive
and trace-preserving, CPTN if it is completely positive and trace non-increasing, HPTP if it is
Hermitian- and trace-preserving. Note that CPTP and CPTN maps are also known as quantum
channels and quantum subchannels in quantum information theory.

Let A be a d-dimensional quantum system and let A′ be isomorphic to A. A maximally
entangled state of rank d in A′A is defined as |Ψ〉A′A :=

∑d−1
i=0 |ii〉 /

√
d, where {|i〉}d−1

i=0 forms an

orthonormal basis of the system A. We denote its unnormalized version by |Γ〉 :=
√
d |Ψ〉. Given

a linear map NA→A, its Choi operator [18] is defined as

JA
′A
N := (idA′ ⊗NA→A)(|Γ〉〈Γ|A′A) =

d−1∑
i,j=0

|i〉〈j|A′ ⊗NA→A(|i〉〈j|A). (1)

By the Choi-Jamio lkowski isomorphism [18, 19], N is completely positive if and only if JN > 0,
is trace-preserving if and only if TrA JN = IA′ , where IA′ is the identity operator in A′, is trace
non-increasing if and only if TrA JN 6 IA′ , and is Hermitian preserving if and only if J†N = JN

2.
Given the Choi operator JN , the output of N can be reconstructed via

N (ρ) = TrA′ [(ρT ⊗ IA)JN ], (2)

where the transpose T is with respect to the orthonormal basis defining |Γ〉A′A.
We use R to represent the real field and C to represent the complex field.

2.2 Invertible CPTP maps
In this subsection, we formally define the concept of invertible CPTP maps [12, 21, 22] and explore
their properties. Invertible CPTP maps motivate our study of physical implementbility and will
be investigated in detail in Section 3.5. Readers who are familiar with invertible maps may safely
skip this section and come back when necessary.

1Throughout this work, we are only interested in the linear maps for which the input and output quantum
systems have the same dimension.

2We refer the interested readers to [20, Section 2.2] and the references therein for a detailed proof of these results.
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Let OA→A be a CPTP map in the system A. We say O is invertible, if there exists a linear
map NA→A in the system A such that

∀X ∈ L (HA), N ◦ O(X) = X. (3)

In this manuscript we only consider system A of finite dimension, where the range of an invertible
map O is the whole space, that is {O(X) | X ∈ L (HA)} = L (HA). That is, N cancels the effect
of O and returns back the input state. In this case, we adopt the convention O−1 ≡ N and call
O−1 the inverse map of O. What’s more, we say O is strictly invertible, if in addition the quantum
map N is CPTP. Wigner’s theorem [23] guarantees that a CPTP map OA→A is strictly invertible
if and only if it is a unitary channel, i.e., O(·) = U(·)U† for some unitary U . On the other hand,
the qudit depolarizing channel is invertible but not strictly invertible since its inverse linear map
is not completely positive (cf. Lemma 14). We emphasize that not all CPTP maps are invertible;
the constant quantum channel [24–28], which maps all inputs into some fixed quantum state, is a
prominent counterexample.

In the following, we show that for the system A of finite dimension, if a CPTP map OA→A is
invertible, its inverse map O−1 must necessarily be both Hermitian- and trace-preserving (HPTP).

Property 1 Let OA→A be an invertible CPTP map. The following statements hold:
1. O−1 is Hermitian-preserving; and
2. O−1 is trace-preserving.

Proof First notice that for arbitrary X ∈ L (HA),

O−1 ◦ O(ρ) = ρ⇔ O ◦O−1 ◦ O(ρ) = O(ρ)⇔ O ◦O−1 (O(ρ)) = O(ρ)⇒ O ◦O−1 = idO, (4)

where idO is the identity map on the range of O.
Now we show the Hermitian-preserving property. Assume the system A is d-dimensional.

Then L (HA) is a d2-dimensional linear space over the complex field C and L †(HA) is a d2-
dimensional linear space over the real field R. As so, there exist linearly independent operators
O1, ..., Od2 ∈ L †(HA)3 such that for every O ∈ L †(HA),

O =
d2∑
i=1

ciOi, ci ∈ R. (5)

Since O is a quantum channel and Hermitian-preserving, we have O(Oi) ∈ L †(HA). Since O is
linear and invertible, O(O1), ...,O(Od2) must be linearly independent over the field R. Otherwise,
there exists O 6= 0 for which O(O) = 0, implying that O is not invertible since by linearity we
already have O−1(0) = 0. To conclude, {O(O1), ...,O(Od2)} is a linear independent set in L †(HA)
over the field R of size d2, thus it forms a basis for L †(HA). Then for any O ∈ L †(HA), there
exists {ai ∈ R}i such that

O =
d2∑
i=1

aiO(Oi), (6)

= O

 d2∑
i=1

aiOi

 , (7)

where the first equality follows since {O(Oi)}i forms a basis, and the second equality follows since
O is linear. Now it holds that for any O ∈ L †(HA),

O−1(O) = O−1 ◦ O

 d2∑
i=1

aiOi

 =
d2∑
i=1

aiOi ∈ L †(HA), (8)

3For example, write Eij ∈ Rd×d as the matrix that Eij [k, l] equals 1 for k, l = i, j and 0 otherwise. We can
choose the basis as {Ekk}k∈[d]; {Ekl − Elk}k<l;k,l∈[d]; {iEkl − iElk}k<l;k,l∈[d].
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implying that O−1 is Hermitian-preserving.
The trace-preserving property is easy to check. Notice that in this work we only consider

system A of finite dimension, where the range of an invertible map O is the whole space, i.e.,
{O(X) | X ∈ L (HA)} = L (HA). For arbitrary X ∈ L (HA), we have

Tr
[
O−1(X)

]
= Tr

[
O ◦ O−1(X)

]
= Tr [X] , (9)

where the first equality follows from trace-preserving property of O and the second equality follows
from the definition of inverse map. �

3 Physical implementability of linear maps
In this section, we introduce the physical implementability measure to characterize how well a
linear map can be physically approximated. We investigate its various properties, derive bounds
in terms of its Choi operator’s trace norm, and deliver analysis for particular examples of interest.

3.1 Definition
Completely positive and trace-preserving (CPTP) maps mathematically characterize physically
implementable quantum operations in a given quantum system. Nevertheless, general linear maps,
such as positive but not completely positive maps, which are impossible to be physically imple-
mented, are also fundamental ingredients from theoretical and practical perspectives. For example,
in the error mitigation task, one might wish to implement the inverse map of the noise, which may
not be completely positive thus is non-physical. It leads naturally to the problem of physically
approximating these ‘non-physical’ linear maps. To this end, we introduce the physical imple-
mentability measure to characterize that how well a given quantum linear map can be physically
implemented. Here we interpret “physically approximating a linear map” as decomposing the
given map into linear combination of CPTPs, and quantify the hardness of approximation by the
l1-norm of the decomposition coefficients. This interpretation is inspired by the error mitigation
task and its operational meaning will be further discussed in Section 4.

Formally, given an HPTP map N in H, the physical implementability of N is defined as

ν(N ) := log min
{∑

α

|ηα|

∣∣∣∣∣ N =
∑
α

ηαOα, Oα is CPTP, ηα ∈ R

}
, (10)

where logarithms are in base 2 throughout this paper. Intuitively, we decompose the map N as a
linear combination of CPTP maps that are physically implementable in a quantum system; negative
terms, that is ηα < 0, must be introduced and they quantify the fundamental limit of physical
implementability of N . In the following Lemma 2 we show that N can always be decomposed into a
linear combination of two quantum channels with carefully chosen coefficients. Lemma 2 and SDP
(23) show that the value of (10) is the minimization of a convex function over a closed convex set,
thus we can write min instead of inf in (10). Interestingly, the physical implementability measure
finds its operational meaning in error mitigation tasks, as we will argue in the next section.

The measure ν bears nice properties. First of all, it is efficiently computable via semidefinite
programs. It satisfies the desirable additivity property with respect to tensor products. This prop-
erty ensures that the parallel application of linear maps cannot make the physical implementation
‘easier’ compared to implementing these linear maps individually. It also satisfies the monotonicity
property with respect to quantum superchannels. We give upper and lower bounds on the phys-
ical implementability in terms of its Choi operator’s trace norm, connecting this measure to the
widely studied operator norm in the literature. These bounds are tight in the sense that there exist
HPTP maps for which the bounds are saturated. What’s more, we are able to derive analytical
expressions of this measure for some inverse maps of practically interesting CPTP maps.

3.2 Semidefinite programs
In this section, we propose a semidefinite program (SDP) calculating ν(N ) for arbitrary HPTP
maps N . We remind that under mild regularity assumptions, SDP can be efficiently solved by
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interior point method [29] with runtime polynomial in d, where d is the dimension of the quantum
system H. This algorithm is designed by noticing that the optimal decomposition (10) can always
be obtained by just two quantum channels.

In the following, we prove that HPTP maps can always be decomposed into a linear combination
of two quantum channels with carefully chosen coefficients. It is worth noting that, the construction
in Lemma 2 does not yield the optimal physical implementability. However, in Theorem 3 we show
the optimality can be obtained by another two CPTP maps.

Lemma 2 Let N be an HPTP map, then there exist two real numbers η1 > 0, η2 > 0 and two
CPTP maps O1,O2 such that

N = η1O1 − η2O2. (11)

Proof By the Choi-Jamio lkowski isomorphism, it’s equivalent to prove that there exist two real
numbers η1, η2, and two positive semidefinite operators J1 and J2, such that Ji > 0, TrB Ji = IA,
i = 1, 2, and

JN = η1J1 − η2J2. (12)

From solution of (12) one can construct desired O1,O2 via (2).
Write dA, dB as the dimensions of system A,B respectively. Recall that TrB JN = IA, it suffices

to let

η1 = (‖JN ‖1 + 1) · dB , J1 = IAB/dB , (13)
η2 = (‖JN ‖1 + 1) · dB − 1, J2 = (η1J1 − JN )/η2 (14)

�

Theorem 3 Let N be an HPTP map. It holds that

ν(N ) = log min
{
η1 + η2

∣∣∣ N = η1O1 − η2O2; ηi > 0, Oi is CPTP
}
. (15)

Proof From Lemma 2 we know N can always be written as linear combination of two CPTPs. This
implies that ν(N ) is finite. We prove that ν(N ) can always be obtained by a linear combination
of two CPTPs. Suppose on the contrary that ν(N ) is achieved by

N =
∑
α∈K

η′αO′α, η′α ∈ R, O′α is CPTP, (16)

where |K| > 3 and might be infinite (in which case the sum shall be replaced by the integral
in (16)). That is, ν(N ) =

∑
α∈K |η′α|.

Noticing the set of CPTPs is convex, we divide the set of quantum channels in (16) into two
subgroups according to the sign of their coefficients. More precisely, set

η1 :=
∑

α:η′α>0
η′α, (17)

O1 := η1
∑

α:η′α>0

η′α
η1
O′α, (18)

η2 :=
∑

α:η′α<0
|η′α|, (19)

O2 := η2
∑

α:η′α<0

|η′α|
η2
O′α, (20)

we can easily check from (16) that

N = η1N1 − η2N2. (21)
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What’s more, the above decomposition yields

η1 + η2 =
∑
α′

|η′α| = ν(N ). (22)

�

Remark 1 Note that a similar conclusion to Theorem 3 has been obtained in [16] . The proof here
is similar.

An advantage of Theorem 3 is that it leads to a semidefinite program characterization of the
measure ν(N ) (more concretely, 2ν(N )), in terms of its the Choi operator JN :

Primal: 2ν(N ) = min p1 + p2 (23a)
s.t. JN = J1 − J2 (23b)

TrB J1 = p1IA (23c)
TrB J2 = p2IA (23d)
J1 > 0, J2 > 0 (23e)

Throughout this paper, ‘s.t.’ is short for ‘subject to’. Correspondingly, the dual SDP is given by
(the proof can be found in Appendix B)

Dual: 2ν(N ) = max Tr [MABJN ] (24a)
s.t. TrNA = 1 (24b)

TrKA = 1 (24c)
MAB +NA ⊗ IB > 0 (24d)
−MAB +KA ⊗ IB > 0 (24e)

where the maximization ranges over all Hermitian operators MAB in the joint system AB, and
Hermitian operators NA,KA in the system A. One can check that the primal SDP satisfies the
Slater condition, thus the strong duality holds. These primal and dual semidefinite programs are
useful in proving the properties of ν(N ).

Besides, we show that relaxing the condition in (15) from CPTPs to CPTN (completely positive
and trace non-increasing) maps leads to the same ν(N ).

Lemma 4 Let N be an HPTP map. It holds that

ν(N ) = log min
{
η1 + η2

∣∣∣ N = η1O1 − η2O2; ηi > 0, Oi is CPTN
}
. (25)

Proof Define the following optimization problem:

2ω(N ) = min p1 + p2 (26a)
s.t. JN = J1 − J2 (26b)

TrB J1 6 p1IA (26c)
TrB J2 6 p2IA (26d)
J1 > 0, J2 > 0 (26e)

It is equivalent to show that ν(N ) = ω(N ). Note that the only difference between the programs (23)
and (26) lies in that we relax the equality conditions in (23c) and (23d) to inequality conditions.

By definition it holds that ν(N ) > ω(N ) since the constraints are relaxed. We prove ν(N ) 6
ω(N ) by showing that we are able to construct a feasible solution of (23) from any feasible solution
of (26) with the same performance. Assume (p1, p2, J1, J2) achieves (26). That is,

2ω(N ) = p1 + p2, JN = J1 − J2, TrB J1 6 p1IA, TrB J2 6 p2IA. (27)
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Define the following operators

J̃1 := J1 +
[
p1 + p2

2 IA −
TrB J1 + TrB J2

2

]
⊗ IB/dB , (28)

J̃2 := J2 +
[
p1 + p2

2 IA −
TrB J1 + TrB J2

2

]
⊗ IB/dB . (29)

By (27), we have J̃1, J̃2 > 0 and J̃1 − J̃2 = J1 − J2 = JN . What’s more,

TrB J̃1 = TrB J1 + p1 + p2

2 IA −
TrB J1 + TrB J2

2 (30)

= p1 + p2

2 IA + TrB J1 − TrB J2

2 (31)

= p1 + p2 + 1
2 IA, (32)

TrB J̃2 = TrB J2 + p1 + p2

2 IA −
TrB J1 + TrB J2

2 (33)

= p1 + p2

2 IA −
TrB J1 − TrB J2

2 (34)

= p1 + p2 − 1
2 IA, (35)

where we used the fact that TrB J1−TrB J2 = TrB JN = IA. Since p1 + p2 > 1 by definition, J̃2 is
well defined. That is to say, ((p1 + p2 + 1)/2, (p1 + p2 − 1)/2, J̃1, J̃2) is a feasible solution for (23)
and thus

2ν(N ) 6
p1 + p2 + 1

2 + p1 + p2 − 1
2 = p1 + p2 = 2ω(N ). (36)

�

3.3 Properties
In this section, we prove several interesting properties of ν(N ) – faithfulness, additivity w.r.t. (with
respect to) tensor product of linear maps, subadditivity w.r.t. linear map composition, unitary
channel invariance, and monotonicity under quantum superchannels – via exploring its semidefinite
program characterizations.

The faithfulness property ensures a linear map possesses zero physical implementability measure
if and only if it is physically implementable, i.e., it is a CPTP map. As so, positive physical
implementability measure indicates that the corresponding map is not physically implementable.

Lemma 5 (Faithfulness) Let NA→A be an HPTP map. ν(N ) = 0 if and only if N is CPTP.

Proof The ‘if’ part follows directly by definition. To show the ‘only if’ part, recall the alternative
characterization of ν(·) in Theorem 3. Since ν(N ) = 0, there must exist a channel ensemble
{(η1,O1), (η2,O2)} such that N = η1O1 − η2O2, η1, η2 > 0, and η1 + η2 = 1. Since N is trace-
preserving, it holds that η1 − η2 = 1. These conditions yield η1 = 1, η2 = 0 and thus N = O1,
implying that N is completely positive. �

Theorem 6 (Additivity w.r.t. tensor product) LetMA1→B1 and NA2→B2 be two HPTP maps.
It holds that

ν(M⊗N ) = ν(M) + ν(N ). (37)

Proof It is equivalent to show that

2ν(M⊗N ) = 2ν(M) · 2ν(N ). (38)

We prove (38) by exploring the primal and dual SDP characterizations of ν in (23) and (24).
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“6”: Assume the tetrad (p1, p2, P1, P2) achieves 2ν(M) and the tetrad (q1, q2, Q1, Q2) achieves
2ν(N ) w.r.t. (23). That is,

2ν(M) = p1 + p2, JM = P1 − P2, TrB1 P1 = p1IA1 , TrB1 P2 = p2IA1 , (39)
2ν(N ) = q1 + q2, JN = Q1 −Q2, TrB2 Q1 = q1IA2 , TrB2 Q2 = q2IA2 . (40)

What’s more, sinceM is trace-preserving, we have p1− p2 = 1. Similarly, q1− q2 = 1. Notice that

JM⊗N = JM ⊗ JN (41)
= (P1 − P2)⊗ (Q1 −Q2) (42)
= (P1 ⊗Q1 + P2 ⊗Q2)− (P1 ⊗Q2 + P2 ⊗Q1). (43)

This yields a feasible decomposition of JM⊗N . Further more, since

TrB1B2 [P1 ⊗Q1 + P2 ⊗Q2] = TrB1 P1 ⊗ TrB2 Q1 + TrB1 P2 ⊗ TrB2 Q2 (44)
= (p1q1 + p2q2) IA1A2 , (45)

TrB1B2 [P1 ⊗Q2 + P2 ⊗Q1] = TrB1 P1 ⊗ TrB2 Q2 + TrB1 P2 ⊗ TrB2 Q1 (46)
= (p1q2 + p2q1) IA1A2 , (47)

it holds that

2ν(M⊗N ) 6 p1q1 + p2q2 + p1q2 + p2q1 = p1(q1 + q2) + p2(q1 + q2) = 2ν(M) · 2ν(N ). (48)

“>”: Assume the triple (M1, N1,K1) achieves 2ν(M) and the triple (M2, N2,K2) achieves 2ν(N )

w.r.t. (24). That is,

2ν(M) = Tr[M1JM], TrN1 = 1, TrK1 = 1, M1 +N1 ⊗ IB1 > 0, −M1 +K1 ⊗ IB1 > 0, (49)
2ν(N ) = Tr[M2JN ], TrN2 = 1, TrK2 = 1, M2 +N2 ⊗ IB2 > 0, −M2 +K2 ⊗ IB2 > 0. (50)

As a direct consequence, we obtain

1 = Tr[N1] = Tr[NT
1 ] = Tr[M(NT

1 )] = TrAB [(N1 ⊗ IB1)JM], (51a)
1 = Tr[K1] = Tr[KT

1 ] = Tr[M(KT
1 )] = TrAB [(K1 ⊗ IB1)JM], (51b)

1 = Tr[N2] = Tr[NT
2 ] = Tr[N (NT

2 )] = TrAB [(N2 ⊗ IB2)JN ], (51c)
1 = Tr[K2] = Tr[KT

2 ] = Tr[N (KT
2 )] = TrAB [(K2 ⊗ IB2)JN ], (51d)

where we have used (2) and the fact that T ,M, and N are all trace-preserving to derive the above
relations.

Define the following operators:

M̃A1A2B1B2 := M1 ⊗M2 + M1 ⊗ (N2 −K2) + (N1 −K1)⊗M2

2 , (52)

ÑA1A2 := N1 ⊗N2 +K1 ⊗K2

2 , (53)

K̃A1A2 := N1 ⊗K2 +K1 ⊗N2

2 . (54)

In the following, we show that the triple (M̃, Ñ , K̃) is a feasible solution to 2ν(M⊗N ) since it
satisfies all the constraints in the dual SDP (24). First of all, we have

Tr[ÑA1A2 ] = 1
2 (Tr[N1] Tr[N2] + Tr[K1] Tr[K2]) = 1, (55)

Tr[K̃A1A2 ] = 1
2 (Tr[N1] Tr[K2] + Tr[K1] Tr[N2]) = 1, (56)

where we use the constraints that TrNi = 1, TrKi = 1 for i = 1, 2. Second, we have

2
(
M̃A1A2B1B2 + ÑA1A2 ⊗ IB1B2

)
(57)
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= 2M1 ⊗M2 +M1 ⊗ (N2 −K2) + (N1 −K1)⊗M2 +N1 ⊗N2 ⊗ IB1B2 +K1 ⊗K2 ⊗ IB1B2 (58)
= (M1 +N1 ⊗ IB1)⊗ (M2 +N2 ⊗ IB2) + (−M1 +K1 ⊗ IB1)⊗ (−M2 +K2 ⊗ IB2) (59)
> 0, (60)

where the inequality follows from Eqs. (49) and (50). This gives

M̃A1A2B1B2 + ÑA1A2 ⊗ IB1B2 > 0. (61)

Similarly, we have

2
(
−M̃A1A2B1B2 + K̃A1A2 ⊗ IB1B2

)
(62)

= − 2M1 ⊗M2 −M1 ⊗ (N2 −K2)− (N1 −K1)⊗M2 +N1 ⊗K2 ⊗ IB1B2 +K1 ⊗N2 ⊗ IB1B2

(63)
= (M1 +N1 ⊗ IB1)⊗ (−M2 +K2 ⊗ IB2) + (−M1 +K1 ⊗ IB1)⊗ (M2 +N2 ⊗ IB2) (64)
> 0, (65)

yielding

−M̃A1A2B1B2 + K̃A1A2 ⊗ IB1B2 > 0. (66)

This concludes that the triple (M̃, Ñ , K̃) is a feasible solution.

Since the triple (M̃, Ñ , K̃) is a feasible solution, we conclude that

2ν(M⊗N ) > Tr[M̃A1A2B1B2JM⊗N ] (67)
= Tr [M1JM] Tr [M2JN ] (68)

+ Tr [M1JM] Tr [(N2 −K2)JN ] + Tr [(N1 −K1)JM] Tr [M2JN ]
2 (69)

= Tr [M1JM] Tr [M2JN ] (70)
= 2ν(M) · 2ν(M), (71)

where the second equality follows from (51) and the last equality follows from (49) and (50). We
are done. �

Theorem 7 (Subadditivity w.r.t. composition) Let MA2→A3 and NA1→A2 be two HPTP
maps. It holds that

ν(M◦N ) 6 ν(M) + ν(N ). (72)

Proof It is equivalent to show that

2ν(M◦N ) 6 2ν(M) · 2ν(N ). (73)

We prove (73) by exploring the alternative characterization of ν(·) proved in Theorem 3. As-
sume the ensemble {(p1,P1), (p2,P2)} achieves 2ν(M) and the ensemble {(q1,Q1), (q2,Q2)} achieves
2ν(N ). That is,

2ν(M) = p1 + p2, M = p1P1 − p2P2, (74)
2ν(N ) = q1 + q2, N = q1Q1 − q2Q2. (75)

Notice that

M◦N = (p1P1 − p2P2) ◦ (q1Q1 − q2Q2) (76)
= [p1q1P1 ◦ Q1 + p2q2P2 ◦ Q2]− [p1q2P1 ◦ Q2 + p2q1P2 ◦ Q1] (77)
≡ r1O1 − r2O2, (78)
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where

r1 := p1q1 + p2q2, (79)
r2 := p1q2 + p2q1, (80)

O1 := p1q1

r1
P1 ◦ Q1 + p2q2

r1
P2 ◦ Q2, (81)

O2 := p1q2

r2
P1 ◦ Q2 + p2q1

r2
P2 ◦ Q1. (82)

Since the set of quantum channels is closed under convex combination, the above defined O1 and
O2 are valid quantum channels. Then (78) yields a feasible decomposition of M◦N , resulting

2ν(M◦N ) 6 r1 + r2 = (p1 + p2)(q1 + q2) = 2ν(M) · 2ν(N ). (83)

�
As a direct corollary of the subadditivity property w.r.t. the composition operation, we find

that the implementability measure is invariant under unitary quantum channels for both pre- and
post-processing.

Corollary 8 (Unitary channel invariance) Let NA→A be an HPTP map. For arbitrary chan-
nels U(·) := U(·)U† and V(·) := V (·)V †, where U and V are unitaries, it holds that

ν(U ◦ N ◦ V) = ν(N ). (84)

Proof First of all, we have ν(U) = 0 for arbitrary unitary channel U by Lemma 5. Eq. (72) yields

ν(U ◦ N ◦ V) 6 ν(U) + ν(N ) + ν(V) = ν(N ). (85)

For the unitary channel U(·) := U(·)U†, set U†(·) := U†(·)U . One can check that U† ◦U = U ◦U† =
id. That is, U† is the inverse channel of U . Notice that

U† ◦ (U ◦ N ◦ V) ◦ V† = N . (86)

Applying Eq. (72) to the above equality leads to

ν(N ) = ν(U† ◦ (U ◦ N ◦ V) ◦ V†) 6 ν(U†) + ν(U ◦ N ◦ V) + ν(V†) = ν(U ◦ N ◦ V). (87)

Eqs. (85) and (87) together conclude the proof. �

From the resource theory perspective [30], the set of linear maps under investigation is HPTP
maps (Hermitian- and trace-preserving maps), while the set of free maps is CPTP maps (com-
pletely positive and trace-preserving maps), because they can be perfectly physically implemented.
Quantum superchannels transform CPTP maps to CPTP maps [31], thus they serve as a natural
candidate of free supermaps since they do not incur physical implementability when operating on a
CPTP map. We show in the following the monotonicity property, which states that a superchannel
can never render a linear map more difficult to be physically implemented.

Theorem 9 (Monotonicity) Let NA→A be an HPTP map and let Θ be a superchannel. It holds
that

ν(Θ(N )) 6 ν(N ). (88)

Proof Since Θ is a superchannel, there exist a Hilbert space HE wih dE 6 dA and two CPTP
maps Ppre

A→AE , Ppost
AE→A such that [31]

Θ(N ) = Ppost
AE→A ◦ (NA→A ⊗ idE) ◦ Ppre

A→AE . (89)

See Fig. 1 for illustration. Assume the decomposition N =
∑
α ηαOα achieves ν(N ) w.r.t. (10),

i.e., ν(N ) = log (
∑
α |ηα|) and each Oα is a CPTP. Substituting this decomposition into (89) yields

Θ(N ) = Ppost
AE→A ◦ (NA→A ⊗ idE) ◦ Ppre

A→AE (90)
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=
∑
α

ηαPpost
AE→A ◦ (Oα ⊗ idE) ◦ Ppre

A→AE (91)

=
∑
α

ηαO′α, (92)

where each O′α ≡ Ppost◦Oα◦Ppre is a quantum channel. This induces an valid linear decomposition
of Θ(N ) and thus ν(Θ(N )) 6 ν(N ). �

ρ

Θ(N )

E

A A
Θ(N )(ρ)

Ppre

N
Ppost

Figure 1: A superchannel transforms a quantum linear map to quantum linear map.

This resource perspective motivates us to investigate the physical implementability of linear
maps within the quantum resource theory framework [30] and explore the widely studied robustness
measure as well as other channel resource measures [26, 32–37]. We investigate in Appendix A
the proposed robustness measure and show that the two measures, physical implementability and
robustness, are actually equivalent in some sense.

3.4 Bounds
In this section, we derive lower and upper bounds on ν(N ) in terms of the commonly used trace
norm of the corresponding Choi operator JN . What’s more, we show explicitly that these bounds
are tight. Particularly, the bounds can be saturated by the inverse maps of some well-known
quantum channels.

Theorem 10 Let H be a d-dimensional Hilbert space and Let N be an HPTP map in H. It holds
that

‖JN ‖1
d

6 2ν(N ) 6 ‖JN ‖1 . (93)

Proof To show the first inequality in (93), we make use of the primal SDP (23). Notice that
constraint (23b) yields

‖JN ‖1 = ‖J1 − J2‖1 6 ‖J1‖1 + ‖J2‖1 = d(p1 + p2), (94)

where the inequality follows from the triangle inequality and the last equality follows from the con-
straints (23c) and (23d), respectively. Since Eq. (94) holds for arbitrary decomposition satisfying
the constraints, it holds in particular for the optimal decomposition and thus

ν(N ) = p1 + p2 > ‖JN ‖1 /d. (95)

To show the second inequality in (93), recall that JN is Hermitian and thus diagonalizable.
Consider the eigenvalue decomposition

JN =
∑
i

λi|ψi〉〈ψi| =
∑
i:λi>0

λi|ψi〉〈ψi| −
∑
j:λj<0

|λj ||ψj〉〈ψj |, (96)

where in the second equality we group the eigenstates by the sign of the corresponding eigenvalues.
Let

η1 :=
∑
i:λi>0

λi, (97)
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J1 :=
∑
i:λi>0

λi
η1
|ψi〉〈ψi|, (98)

η2 :=
∑
j:λj<0

|λj |, (99)

J2 :=
∑
j:λj<0

|λj |
η2
|ψj〉〈ψj |. (100)

By construction, we have JN = η1J1 − η2J2, η1, η2 > 0, J1, J2 > 0, and Tr J1 = Tr J2 = 1. What’s
more, since J1 > 0 and Tr J1 = 1, the eigenvalues of TrB J1 are always less than 1, and thus
TrB J1 6 IA. Similarly, TrB J2 6 IA. By Lemma 4 we know the optimal value for decomposing N
onto CPTN and CPTP are the same, thus we can conclude

2ν(N ) 6 η1 + η2 = ‖JN ‖1 . (101)

�

Remark 2 As we will show later in Theorem 13, the trace norm lower bound in (93) is tight and can
be saturated by the set of so-called mixed unitary linear maps. On the other hand, the trace upper
bound can be saturated by the amplitude damping channel in the limit sense by Theorem 11.

3.5 Analytic expression for particular linear maps
In this subsection, we analytically evaluate the physical implementability for some linear maps,
which are the inverse map of some practically interesting quantum CPTP maps.

Inverse map of the amplitude damping channel The qubit amplitude damping channel Aε
is given by Kraus operators A0 := |0〉〈0| +

√
1− ε|1〉〈1| and A1 :=

√
ε|0〉〈1|, where ε ∈ [0, 1]. That

is,

Aε(ρ) = A0ρA
†
0 +A1ρA

†
1. (102)

It turns out that Aε is invertible, and the Choi operator of its invertible map A−1
ε has the form

JA−1
ε

=


1 0 0 1√

1−ε
0 0 0 0
0 0 −ε

1−ε 0
1√
1−ε 0 0 1

1−ε

 . (103)

Theorem 11 For ε ∈ [0, 1), it holds that ν(A−1
ε ) = log 1+ε

1−ε . What’s more,

lim
ε→1

ν(A−1
ε ) = log

∥∥∥JA−1
ε

∥∥∥
1
. (104)

Proof We prove this theorem by exploring the primal and dual SDP characterizations in Eqs. (23)
and (24). Let p1 = 1/(1− ε), p2 = ε/(1− ε),

J1 :=


1

1−ε 0 0 1√
1−ε

0 0 0 0
0 0 0 0
1√
1−ε 0 0 1

1−ε

 , J2 :=


ε

1−ε 0 0 0
0 0 0 0
0 0 ε

1−ε 0
0 0 0 0

 . (105)

One can check that the tetrad (p1, p2, J1, J2) is a feasible solution to the primal SDP (23), yielding

2ν(A−1
ε ) 6 p1 + p2 = 1 + ε

1− ε . (106)
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On the other hand, set

MAB :=


1 0 1 0
0 1 0 1
1 0 −2 0
0 1 0 0

 , KA :=
[
1 1
1 0

]
, NA :=

[
−1 −1
−1 2

]
. (107)

We can verify that the triple (A,B,D) is a feasible solution to the dual SDP (24), leading to

2ν(A−1
ε ) > Tr

[
MABJA−1

ε

]
= 1 + ε

1− ε . (108)

Eqs. (106) and (108) together give the desired result. �

Remark 3 Note that the previous work [16] has investigated the non-physical implementability of
A−1
ε w.r.t. the set of so-called implementable operations4 by imposing both lower and upper bounds

on 2ν(A−1
ε ) [16, Theorem 3], which has not been tight yet. Our Theorem 11 further strengthens the

results on mitigating the amplitude damping noise by concluding that the obtained upper bound
is actually optimal even if a larger free set of quantum operations is allowed.

Inverse map of the generalized amplitude damping channel The generalized amplitude
damping (GAD) channel is one of the realistic sources of noise in superconducting quantum pro-
cessor [38, 39], whose quantum capacity has been studied in [39, 40] It can be viewed as the qubit
analogue of the bosonic thermal channel and can be used to model lossy processes with background
noise for low-temperature systems. The generalized amplitude damping channel is a two-parameter
family of channels described as follows:

Ay,N (ρ) := A1ρA
†
1 +A2ρA

†
2 +A3ρA

†
3 +A4ρA

†
4, (109)

where y,N ∈ [0, 1] and

A1 :=
√

1−N(|0〉〈0|+
√

1− y|1〉〈1|), (110)

A2 :=
√
y(1−N)|0〉〈1|, (111)

A3 :=
√
N(
√

1− y|0〉〈0|+ |1〉〈1|), (112)

A4 :=
√
yN |1〉〈0|. (113)

Note that when N = 0, Ay,0 reduces to the conventional amplitude damping channel. Similar
to the amplitude damping channel, Ay,N is invertible when y 6= 1, and the Choi operator of its
inverse map A−1

y,N has the form

JA−1
y,N

=


1−y+Ny

1−y 0 0 1√
1−y

0 −Ny
1−y 0 0

0 0 −y+Ny
1−y 0

1√
1−y 0 0 1−Ny

1−y

 . (114)

Lemma 12 For y ∈ [0, 1), it holds that

γ(A−1
y,N ) = 1 + |y − 2Ny|

1− y . (115)

Proof We prove (115) by exploring the primal and dual SDP characterizations in Eqs. (23) and (24).
We divide the proof into two cases based on the value of N , since it influences our constructions
of the feasible solutions.

4We refer to Eqs. (2) and (3) in [16] for the definition of implementable operations.
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Case 1: N 6 1/2. In this case, y − 2Ny > 0. We can design feasible solutions to both the
primal (23) and the dual (24) programs that both evaluate to 1+y−2Ny

1−y :

J1 =


1−Ny
1−y 0 0 1√

1−y
0 0 0 0
0 0 0 0
1√

1−y 0 0 1−Ny
1−y

 , J2 =


y−2Ny

1−y 0 0 0
0 Ny

1−y 0 0
0 0 y−Ny

1−y 0
0 0 0 0

 , (116)

MAB =


1 0 1 0
0 1 0 1
1 0 −2 0
0 1 0 0

 , KA =
[
1 1
1 0

]
, NA =

[
−1 −1
−1 2

]
. (117)

Case 2: N > 1/2. In this case, 2Ny − y > 0. We can design feasible solutions to both the
primal (23) and the dual (24) programs that both evaluate to 1−y+2Ny

1−y :

J1 =


1−y+Ny

1−y 0 0 1√
1−y

0 0 0 0
0 0 0 0
1√

1−y 0 0 1−y+Ny
1−y

 , J2 =


0 0 0 0
0 Ny

1−y 0 0
0 0 y−Ny

1−y 0
0 0 0 2Ny−y

1−y

 , (118)

MAB =


1 0 1 0
0 −1 0 1
1 0 0 0
0 1 0 0

 , KA =
[
1 1
1 0

]
, NA =

[
1 1
1 0

]
. (119)

�

The mixed unitary map. Let U = {Ui}i∈I be a set of unitaries in H. We say an HPTP map
T ∈ T †(H) is a mixed unitary map w.r.t. U if there exists a set of real numbers {ri ∈ R}i∈I such
that

∑
i∈I ri = 1 and

T (·) :=
∑
i∈I

riUi(·)U†i . (120)

Note that the such defined mixed unitary map can be viewed a natural extension of the mixed
unitary channel intensively studied in [20, Chapter 4], by allowing negative coefficients in the mix-
ture. Interestingly, if U possesses the orthogonality property, the non-physical implementability
of arbitrary mixed unitary map w.r.t. U can be evaluated analytically.

Theorem 13 Let U = {Ui}i∈I be a set of unitaries satisfying the mutual orthogonality condition:
∀i 6= j, Tr[U†i Uj ] = 0. For arbitrary mixed unitary map T w.r.t. U of the form (120), it holds
that

ν(T ) = log
‖JT ‖1
d

= log
(∑
i∈I
|ri|

)
. (121)

where d is the dimension of the system which T is acting on.

Proof By the definition of physical implementability, we have ν(T ) 6 log(
∑
i |ri|). In the following

we show that ‖JT ‖1 = d
∑
i |ri|. This, together with the lower bound in Theorem 10, concludes

the proof. Notice that

JT := (id⊗N )(|Γ〉〈Γ|) = d
∑
i

ri(I ⊗ Ui)|Ψ〉〈Ψ|(I ⊗ U†i ). (122)
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We claim {(I ⊗ Ui) |Ψ〉}i∈I is a set of orthogonal unit vectors, i.e.,

〈Ψ| (I ⊗ U†i )(I ⊗ Uj) |Ψ〉 = δij . (123)

When i = j, the equation can be verified directly. When i 6= j, it holds that

〈Ψ| (I ⊗ U†i )(I ⊗ Uj) |Ψ〉 = 1
d

d−1∑
m,n=0

〈mm| (I ⊗ U†i Uj) |nn〉 (124)

= 1
d

d−1∑
m,n=0

〈m|U†i Uj |m〉 (125)

= 1
d

Tr(U†i Uj) (126)

= 0, (127)

where the last equality follows from the orthogonality condition. Eqs. (122) and (123) together
yield ‖JT ‖1 = d

∑
i |ri|. We are done. �

Invertible map of the qudit depolarizing channel. As an interesting implication of Theo-
rem 13, we can analytically derive the non-physical implementability of the invertible maps of both
the depolarizing and dephasing channels. In the following, we first formally define the depolarizing
and dephasing channel in the d-dimensional Hilbert space H. Let Zd := {0, 1, · · · , d − 1} which
forms a ring w.r.t. to addition and multiplication modulo d. The set of discrete Weyl operators
{Wx,z}x,z∈Zd in H is defined as [20, Section 4.1.2]

Wx,z := XxZz, (128)

where the generalized Pauli operators X and Z are defined as

X :=
∑
k∈Zd

|k + 1〉〈k|, Z :=
∑
k∈Zd

ζk|k〉〈k|, (129)

with the d-root of unity ζ := e2πi/d. Notice that the set of Weyl operators satisfies the orthogonality
condition:

Tr
[
W †x,zWx′,z′

]
=
{
d, if (x, z) = (x′, z′)
0, otherwise.

(130)

The qudit depolarizing quantum channel Dd,ε, where ε ∈ [0, 1], is defined in terms of the Weyl
operators as

Dd,ε(ρ) := (1− ε)ρ+ ε

d2

∑
x,z∈Zd

Wx,zρW
†
x,z. (131)

In [16], Takagi gave the optimal sampling cost for qudit quantum channel and qubit dephasing
channel, using ad-hoc techniques. Here we show that those bounds can be derived from Theorem
13.

Regarding the depolarizing channel of great practical interests, we have the following.

Lemma 14 For ε ∈ [0, 1), it holds that ν(D−1
d,ε) = log 1+(1−2/d2)ε

1−ε .

Proof First of all, notice that [16, Theorem 1]

D−1
d,ε(ρ) =

(
1 + (d2 − 1)ε

d2(1− ε)

)
id(ρ)− ε

d2(1− ε)
∑

(x,z)∈Zd×Zd\(0,0)

Wx,zρW
†
x,z (132)

and thus D−1
d,ε is a mixed unitary map w.r.t. the set of Weyl operators {Wx,z}. Since this set

satisfies the orthogonality condition (130), Theorem 13 implies that

ν(D−1
d,ε) = log

(
1 + (d2 − 1)ε

d2(1− ε) + (d2 − 1) ε

d2(1− ε)

)
= log 1 + (1− 2/d2)ε

1− ε . (133)

�
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Invertible map of the qubit dephasing channel. Let σz be the Pauli Z operator. Notice
that when d = 2, the operator Z define in (129) reduces to σz. The qubit dephasing quantum
channel Fε, where ε ∈ [0, 1], is defined as

Fε(ρ) := (1− ε)ρ+ εσzρσz. (134)

We have the following.

Lemma 15 For ε ∈ [0, 1/2), it holds that ν(F−1
ε ) = log 1

1−2ε .

Proof The proof follows similarly the argument of Lemma 14 by noticing that [16, Theorem 1]

F−1
ε (ρ) = 1− ε

1− 2ε id(ρ)− ε

1− 2εσz(ρ)σz (135)

and that the operators I and σz are orthogonal. �

Remark 4 Unlike Lemma 14, Lemma 15 does not hold in general for the qudit dephasing channel
Fd,ε(ρ) := (1− ε)ρ+ εZρZ†, where Z is define in (129). This dues to that Z does not satisfy the
relation Z† = Z in general. It remains as an interesting problem to compute analytically ν(F−1

d,ε )
for d > 3.

Remark 5 We emphasize that Lemma 14 and Lemma 15 have been shown previously in Theorems 1
and 2 of [16], respectively. In that Ref., the author assumed that the linear map is decomposed w.r.t.
the set of implementable operations, which in turn is a strict subset of the set of quantum channels.
In this sense, our obtained results enhance the previous ones by specifying the fundamental limit
on the physical implementability of these two linear maps.

4 Applications in error mitigation
In this section we endow the proposed physical implementability measure with an operational
interpretation within the quantum error mitigation framework as it establishes the lower bound of
the sampling cost achievable via the quasiprobability decomposition technique.

4.1 Physical implementability is the sampling cost
In quantum computing, especially in the NISQ era [41], a common computational task is to estimate
the expected value Tr[ρA] for a given observable A and a quantum state ρ. Without loss of
generality, we may assume A to be diagonal in the computational basis, otherwise one can apply a
unitary to ρ firstly and then measure in the computational basis. That is, we consider measurement
in the form of

A =
∑

x∈{0,1}n
A(x)|x〉〈x|, A(x) ∈ [−1, 1]. (136)

If ρ can be prepared perfectly, one can get Tr(ρA) directly by a sequence of measurements.
However, the preparation of ρ inevitably suffers from noise that can be modeled by some CPTP
O ∈ C (H), rendering the value Tr[O(ρ)A]. How can we deal with the noise and recover the expected
value anyway? There are many recently proposed error mitigation methods to accomplish this task
(see, e.g., [13, 15, 16, 42–45]).

Since the preparation procedure is given a priori, one feasible way is to perform the invertible
map O−1 (assumed to exist), yielding

Tr
[
O−1 ◦ O(ρ)A

]
= Tr[ρA], (137)

which successfully mitigates the noise. This is quite similar to the quantum channel correction
task in the first glance, since we can think of O−1 as a correcting procedure.

However, the main problem with (137) is that the invertible map N ≡ O−1 might not be
physically implementable, i.e., it is not a CPTP, though we have already shown in Property 1 that
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N is both Hermitian- and trace-preserving. Thus the problem that we are faced with is to physically
approximate the effect of an HPTP map, which would unavoidably incur extra computation cost
due to approximation. We use the probabilistic error cancellation technique [12–16] to deal with
this issue and it turns out that the incurred computation cost is quantified exactly by the physical
implementability measure. The precise error mitigation procedure goes as follows:

1. We optimally decompose N into a linear combination of CPTP maps {ηα,Oα}α as (10).
Then 2ν(N ) =

∑
α |ηα|.

2. We iterate the following sampling procedure M times. In the m-th round where m ∈ [M ],

2.1. We sample a CPTP map O(m) from {Oα}α with probability {|ηα|/
∑
α |ηα|}α. Denote

by η(m) the sampled coefficient.

2.2. Apply CPTP O(m) to O(ρ), measure each qubit in the computational basis. Denote
s(m) ∈ {0, 1}n as the binary string obtained and A

(
s(m)) as the measurement value.

Write a random variable

X(m) = 2ν(N ) sgn
(
η(m)

)
A
(
s(m)

)
∈ [−2ν(N ), 2ν(N )]. (138)

where sgn : R → ±1 is the sign function defined as ∀x 6 0, sgn(x) = −1 and ∀x > 0,
sgn(x) = 1.

3. Using the data obtained in the second step, we compute the following empirical mean value

ξ := 1
M

M∑
m=1

X(m) = 2ν(N )

M

M∑
m=1

sgn
(
η(m)

)
A
(
s(m)

)
(139)

4. Output ξ as an estimation of the target expected value Tr[ρA].
Now we analyze the efficiency and accuracy of the above estimation procedure. First of all, we

show in Lemma 16 that ξ is actually an unbiased estimator of Tr[ρA]. This justifies the validity of
the estimator, as long as M is sufficiently large, due to the weak law of large numbers. What’s more,
we can apply the Hoeffding inequality to ensure that M = 22ν+1 log(2/ε)/δ2 number of samples in
Step 2 would estimate the target expectation value Tr[ρA] within error δ with probability no less
than 1− ε:

Pr {|ξ − Tr[ρA]| > δ}
(a)
6 2 exp

(
−2M2δ2

4M22ν

)
6 ε (140)

⇒ M > 22ν+1 log(2/ε)/δ2, (141)

where (a) follows from the fact that |X(m)| 6 2ν . We can thus identify the unique role of 2ν in
quantifying the number of rounds required to reach desired estimating precision, empowering the
mathematically defined implementability measure ν(N ) an interesting operational meaning.

Lemma 16 The random variable ξ defined in (139) is an unbiased estimator of Tr[ρA].

Proof Denote by E(X) the expectation of a random variable X. By (139) we have

E(ξ) = 2ν(N )

M

M∑
m=1

E
(

sgn
(
η(m)

)
A
(
s(m)

))
(142)

= 2ν(N )

M

M∑
m=1

∑
α

|ηα|
2ν(N ) sgn (ηα)

∑
s∈{0,1}n

Tr [Oα ◦ O(ρ)|s〉〈s|]A (s) (143)

= 2ν(N )

M

M∑
m=1

∑
α

ηα
2ν(N ) Tr [Oα ◦ O(ρ)A] (144)

= 2ν(N )

M

M∑
m=1

1
2ν(N ) Tr [N ◦ O(ρ)A] (145)
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= Tr [ρA] . (146)

�

One may wonder that the proposed error mitigation setting is a bit unrealistic as the assumption
of one can implement all CPTPs perfectly directly remove the necessity of error mitigation in the
very first place. To deal with this concern, we describe the setting in more details. In our error
mitigation setting, the state preparation and the error mitigation procedures are performed by
different parties. Namely, user A will prepare the quantum state ρ subject to inevitable quantum
noise O, while user B can perform error mitigation on the received quantum state O(ρ) noiselessly.
Since user B only knows the error model O but has no information about the ideal state ρ that
user A aims to prepare, he cannot prepare ρ directly by himself.

At the first glance, our setting is different from the more relevant setting where all quantum
operations are subject to noise. However, these two settings are in fact closely related, argued
as follows. For any invertible quantum noise O, we decompose O−1 into a linear combination of
CPTPs as

O−1 :=
∑
α

ηαOα (147)

Consider the setting where every operation is subject to the noise O. The target is to implement
a noiseless quantum operation U . Notice that

U = OO−1U =
∑
α

ηαOOαU , (148)

inspiring a feasible method to implement U ideally: We firstly sample α, and then perform the
quantum operation OαU . This quantum operation will be inevitably corrupted by the noise O.
Statistically, the operation we effectively perform is exactly U .

4.2 Properties of the above error mitigation procedure
We explore the operational properties of this error mitigation procedure based on the nice properties
ν and its connection to the sampling cost:

• First, since the physical implementability measure ν can be computed efficiently via semidef-
inite programs (cf. Theorem 3), we can estimate the sampling cost of arbitrary linear maps,
yielding a feasible way to deal with quantum noise in the NISQ era [41]. However, since the
overall sampling cost of a quantum circuit is given by the product of the sampling cost of
each gate in the circuit, the overall cost in our error mitigation procedure has an exponential
scaling in the number of quantum gates, indicating that error mitigation cannot substitute
the role of error correction. Indeed, the proposed error mitigation is an auxiliary method
to alleviate quantum errors since NISQ devices do not have enough qubits to support error
correcting codes.

• Second, the additivity of ν w.r.t. tensor product of linear maps (cf. Theorem 6) implies that
for parallel quantum noises, global error mitigation has no advantage over local error miti-
gation, i.e., dealing with quantum noises individually. On the other hand, the subadditivity
of ν w.r.t. composition of linear maps (cf. Theorem 7) implies that for sequential quantum
noises, treating them as a whole might be beneficial and reduce the sampling cost, compared
to handling these noises one by one. This is intuitive since these quantum noises might cancel
mutually in the sequential procedure.

• Third, we obtain the sampling cost analytically for some linear maps which are the inverse
map of practically interesting quantum CPTP maps. Prominent examples include the am-
plitude damping channel (cf. Theorem 11), the generalized amplitude damping channel (cf.
Lemma 12), the qudit depolarizing channel (cf. Lemma 14), and the qubit dephasing channel
(cf. Lemma 15). These results shed lights on dealing with quantum noises in the NISQ era
since they remain as the lower bound of the sampling cost which quasiprobability method
may achieve.
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5 Conclusions and discussions
In this work, we ask and study the question how can one simulate the action of a general linear
map on a quantum state when only quantum operations (CPTP maps) are available. We apply
the quasiprobability sampling method and use mathematical tools from semidefinite programming
to answer this question, which leads to the first operational quantification of the physical imple-
mentability (or non-physicality from another perspective) for general linear maps.

We offered a systematic way to approximate a general linear map, that may not be physically
implementable, by decomposing it into a linear combination of physically implementable quan-
tum operations, mathematically characterized by completely positive and trace-preserving maps
(CPTPs), motivated by the appealing quasi-probability decomposition technique. We introduced
the physical implementability measure ν(N ) of a linear map N , which is the least amount of
negative portion in the quasi-probability decomposition, as a quantifier of how well N can be
approximated by CPTPs. We show that ν is efficiently computable by semidefinite programs. We
proved that ν satisfies many interesting properties such as faithfulness, additivity with respect to
the tensor product, and unitary channel invariance. We also derived upper and lower bounds of ν
based on the trace norm of the target linear map’s Choi operator, and obtained analytic expressions
for several practical linear maps. Finally, we empowered this measure an operational meaning in
the quantum error mitigation task by showing that it establishes the lower bound of the sampling
cost achievable via the quasiprobability decomposition technique.

We expect that our proposed framework can find more applications in quantum information
and quantum computation. It is also interesting to further explore the structure of invertible
qubit HPTP maps and derive an analytic expression for the physical implementability measure. In
Section 4, we contributed an efficient method to estimate the expected value Tr[ρA] in the presence
of noise characterized by some noisy quantum channel N . This is an important task in quantum
computing, especially in the NISQ era. We yearn for new and novel methods for this task.
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Appendix A Robustness measure
A.1 Definition
As argued around Theorem 9, the set of CPTP maps is treated as the free set when defining
the physical implementability measure from the resource theoretic perspective. This motivates
us to consider this problem within the quantum resource theory framework [30] and explore the
intensively investigated robustness measure [16, 28, 35, 46–51, 51–59]. More precisely, Let N be
an HPTP map, we define the (absolute) robustness of physical implementability of N as

R(N ) := min
T is CPTP

{
s > 0

∣∣∣∣ N + sT
1 + s

is CPTP

}
. (149)

Note the minimization is well defined since the completely depolarizing channel is free. Intuitively,
R(N ) quantifies how robust the linear map N is against any physical implementation. Alterna-
tively, we can express R(N ) in terms of its Choi operator as

Primal: R(N ) = min s (150a)
s.t. JN + sJT = (1 + s)JK (150b)

JT > 0,TrB JT = IA (150c)
JK > 0,TrB JK = IA. (150d)

We can further simplify the above program using the trace-preserving condition. Assume the pair
(s, T ,K) achivese R(N ) in (150). Set J̃ := (1 + s)JK, then TrB J̃ = (1 + s)IA due to Eq. (150d).
Eq. (150b) guarantees that J̃ − JN = sJT > 0, following from the fact that s > 0 and Eq. (150c).
As so, we can simplify (150) as

Simplified Primal: R(N ) = min s (151a)

s.t. J̃ > JN (151b)

TrB J̃ = (s+ 1)IA (151c)

J̃ > 0, s > 0 (151d)
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Correspondingly, the dual SDP is given by

Simplified Dual: R(N ) = max Tr [MABJN ]− 1 (152a)
s.t. TrNA = 1 (152b)

MAB 6 NA ⊗ IB (152c)
MAB > 0 (152d)

One may check that the above SDP satisfies strong duality by the Slater’s theorem [60].

A.2 Relation with the physical implementability
It turns out that the physical implementability measure ν (10) is closely related to the robustness
of physical implementability R (149), resembling the relations previously obtained in [14, Eq. (1)]
and [16, Eq. (6)].

Theorem 17 Let N be an HPTP map. It holds that

2ν(N ) = 2R(N ) + 1. (153)

Proof Note that this theorem can be proved using a similar technique presented in [16, Appendix
A]. Here we write down the proof procedure for completeness.

“6”: Assume the channel pair (T ,K) achieves R(N ), i.e.,

N +R(N )T
1 +R(N ) = K. (154)

Rearranging the elements leads to N = (1 +R(N ))K−R(N )T , yielding a feasible decomposition
of N . As so, we obtain from Theorem 3 that

2ν(N ) 6 1 +R(N ) +R(N ) = 1 + 2R(N ). (155)

“>”: Assume the ensemble {(ηα,Oα)}α∈X achieves ν(N ) (10). Let X+ be the collection of
symbols for which the sign of ηα is positive and similarly for X−. We have X+ ∪ X− = X and
X+ ∩ X− = ∅. Set η+ :=

∑
α∈X+ |ηα| and η− :=

∑
α∈X− |ηα|. By assumption, 2ν(N ) = η+ + η−.

Since N is trace-preserving, we also have η+−η− = 1. We can divide the channels into two groups
according to the sign of their coefficients:

N =
∑
α∈X

ηαOα =
∑
α∈X+

|ηα|Oα −
∑
x∈X−

|ηα|Oα (156)

= η+

( ∑
x∈X+

|ηα|
η+ Oα

)
− η−

( ∑
x∈X−

|ηα|
η−
Oα

)
(157)

= (1 + η−)T − η−K, (158)

where T :=
∑
x∈X+ ηα/η

+Oα and K :=
∑
x∈X− |ηα|/η−Oα are well-defined quantum channels.

This gives R(N ) 6 η− = (2ν(N ) − 1)/2. We are done. �

Appendix B Proof of Eq. (24)
In this Appendix, we derive the dual program for the primal program given in (23). Recall the
primal SDP

−2ν(N ) = max − (p1 + p2) (159a)
s.t. JN = J1 − J2 (159b)

TrB J1 = p1IA (159c)
TrB J2 = p2IA (159d)
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J1, J2 > 0 (159e)

Introducing the Lagrange multipliers MAB ∈ L †(AB) and NA,KA ∈ L †(A), the Lagrange
function of this primal SDP is given by

L(MAB , NA,KA) (160)
:= − (p1 + p2) + 〈M,JM − J1 + J2〉+ 〈N, p1IA − TrB J1〉+ 〈K, p2IA − TrB J2〉 (161)
= 〈MAB , JM〉+ p1(Tr[NA]− 1) + p2(Tr[KA]− 1) (162)

+ 〈J1,−MAB −NA ⊗ IB〉+ 〈J2,MAB −KA ⊗ IB〉. (163)

Since J1 > 0, it must hold that −MAB − NA ⊗ IB 6 0 otherwise the inner norm is unbounded.
Similarly, we have MAB −KA⊗ IB 6 0, Tr[NA] 6 1, and Tr[KA] 6 1. This leads to the dual SDP

−2ν(N ) = min Tr[MABJM] (164a)
s.t. Tr[NA] 6 1 (164b)

Tr[KA] 6 1 (164c)
MAB +NA ⊗ IB > 0 (164d)
−MAB +KA ⊗ IB > 0 (164e)

Changing min to max, we get

2ν(N ) = max − Tr[MABJM] (165a)
s.t. Tr[NA] 6 1 (165b)

Tr[KA] 6 1 (165c)
MAB +NA ⊗ IB > 0 (165d)
−MAB +KA ⊗ IB > 0 (165e)

Since MAB is Hermitian, so is −MAB . Substituting MAB with −MAB and renaming the variables
NA,KA, we can rewrite the above program as

2ν(N ) = max Tr[MABJM] (166a)
s.t. Tr[NA] 6 1 (166b)

Tr[KA] 6 1 (166c)
MAB +NA ⊗ IB > 0 (166d)
−MAB +KA ⊗ IB > 0 (166e)

Comparing (166) with (24), we are left to show that the inequalities in (166b) and (166c) can
be further restricted to equalities. This is true since for any feasible (MAB , NA,KA), we can reset
it to be (MAB , NA + (1− Tr[NA])IA/dA, NA + (1− Tr[NA])IA/dA). This new solution will make
(166b) and (166c) to be equality. At the same time, it satisfies constraints (166d)-(166e) and keep
the objective value unchanged.
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