Tunable zero modes and quantum interferences in flat-band topological insulators

Juan Zurita1,2, Charles Creffield2, and Gloria Platero1

1Instituto de Ciencia de Materiales de Madrid (CSIC), Cantoblanco, E-28049 Madrid, Spain
2Universidad Complutense de Madrid, E-28040 Madrid, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


We investigate the interplay between Aharonov-Bohm (AB) caging and topological protection in a family of quasi-one-dimensional topological insulators, which we term CSSH ladders. Hybrids of the Creutz ladder and the SSH chain, they present a regime with completely flat bands, and a rich topological phase diagram, with several kinds of protected zero modes. These are reminiscent of the Creutz ladder edge states in some cases, and of the SSH chain edge states in others. Furthermore, their high degree of tunability, and the fact that they remain topologically protected even in small systems in the rungless case, due to AB caging, make them suitable for quantum information purposes. One of the ladders can belong to the BDI, AIII and D symmetry classes depending on its parameters, the latter being unusual in a non-superconducting model. Two of the models can also harbor topological end modes which do not follow the usual bulk-boundary correspondence, and are instead related to a Chern number. Finally, we propose some experimental setups to implement the CSSH ladders with current technology, focusing on the photonic lattice case.

Topological insulators are materials with an insulating bulk but a gapless surface spectrum. In ladder models, formed by two connected chains of sites, these states are located at the right and left of the system, and are pinned at zero energy if the relevant symmetries of the Hamiltonian are preserved. We explore the interplay between this protection and the effects of magnetically-induced localization in a family of models we have termed “CSSH ladders”. Hybrids of the Creutz ladder and the SSH chain, they present a regime with completely flat bands, and a rich topological phase diagram, with several kinds of topological edge states.

Some of these states can be tuned by changing the parameters of the model and remain protected even in very small systems, making them promising for quantum information purposes. Another kind of edge states is related to the Chern number of the 2D system created by changing the parameters of the model in a closed loop. Additionally, one of the ladders can belong to three different symmetry classes, one of which is unusual for a non-superconducting model. We propose some experimental setups to implement the CSSH ladders with current technology, focusing on the photonic lattice case.

► BibTeX data

► References

[1] A. Altland and M. R. Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Physical Review B 55, 1142 (1997).

[2] N. Lang and H. P. Büchler, Topological networks for quantum communication between distant qubits, npj Quantum Information 3, 47 (2017).

[3] F. Mei, G. Chen, L. Tian, S. L. Zhu, and S. Jia, Robust quantum state transfer via topological edge states in superconducting qubit chains, Physical Review A 98, 012331 (2018).

[4] L. Qi, G. L. Wang, S. Liu, S. Zhang, and H. F. Wang, Engineering the topological state transfer and topological beam splitter in an even-sized Su-Schrieffer-Heeger chain, Physical Review A 102, 022404 (2020).

[5] M. P. Estarellas, I. D'Amico, and T. P. Spiller, Topologically protected localised states in spin chains, Scientific Reports 7, 42904 (2017).

[6] P. Boross, J. K. Asbóth, G. Széchenyi, L. Oroszlány, and A. Pályi, Poor man's topological quantum gate based on the Su-Schrieffer-Heeger model, Physical Review B 100, 045414 (2019).

[7] M. Tovmasyan, E. P. Van Nieuwenburg, and S. D. Huber, Geometry-induced pair condensation, Physical Review B 88, 220510(R) (2013).

[8] L. Li and S. Chen, Characterization of topological phase transitions via topological properties of transition points, Physical Review B 92, 085118 (2015a).

[9] K. Padavić, S. S. Hegde, W. DeGottardi, and S. Vishveshwara, Topological phases, edge modes, and the Hofstadter butterfly in coupled Su-Schrieffer-Heeger systems, Physical Review B 98, 024205 (2018).

[10] C. G. Velasco and B. Paredes, Classification of topological ladder models (2019), arXiv:1907.11460.

[11] A. Piga, M. Lewenstein, S.-J. Ran, J. Jünemann, A. Bermúdez, and M. Rizzi, Exploring Interacting Topological Insulators with Ultracold Atoms: The Synthetic Creutz-Hubbard Model, Physical Review X 7, 031057 (2017).

[12] N. Sun and L.-K. K. Lim, Quantum charge pumps with topological phases in a Creutz ladder, Physical Review B 96, 035139 (2017).

[13] Y. Kuno, Extended flat band, entanglement, and topological properties in a Creutz ladder, Physical Review B 101, 184112 (2020).

[14] G. A. R. van Dalum, C. Ortix, and L. Fritz, Magnetic impurities along the edge of a quantum spin Hall insulator: Realizing a one-dimensional AIII insulator, Physical Review B 103, 075115 (2021).

[15] X. Liu and M. C. Hersam, 2D materials for quantum information science, Nature Reviews Materials 4, 669-684 (2019).

[16] S. Gholizadeh, M. Yahyavi, and B. Hetényi, Extended Creutz ladder with spin-orbit coupling: A one-dimensional analog of the Kane-Mele model, Epl 122, 27001 (2018).

[17] M. Creutz, End States, Ladder Compounds, and Domain-Wall Fermions, Physical Review Letters 83, 2636-2639 (1999).

[18] J. Vidal, B. Douçot, R. Mosseri, and P. Butaud, Interaction induced delocalization for two particles in a periodic potential, Phys. Rev. Lett. 85, 3906 (2000).

[19] B. Douçot and J. Vidal, Pairing of Cooper pairs in a fully frustrated Josephson-junction chain, Phys. Rev. Lett. 88, 227005 (2002).

[20] C. E. Creffield and G. Platero, Coherent control of interacting particles using dynamical and Aharonov-Bohm phases, Physical Review Letters 105, 086804 (2010).

[21] G. Pelegrí, A. M. Marques, R. G. Dias, A. J. Daley, J. Mompart, and V. Ahufinger, Topological edge states and Aharanov-Bohm caging with ultracold atoms carrying orbital angular momentum, Phys. Rev. A 99, 023613 (2019).

[22] J. Vidal, R. Mosseri, and B. Douçot, Aharonov-Bohm cages in two-dimensional structures, Phys. Rev. Lett. 81, 5888 (1998).

[23] J. Vidal, P. Butaud, B. Douçot, and R. Mosseri, Disorder and interactions in Aharonov-Bohm cages, Phys. Rev. B 64, 155306 (2001).

[24] C. C. Abilio, P. Butaud, T. Fournier, B. Pannetier, J. Vidal, S. Tedesco, and B. Dalzotto, Magnetic field induced localization in a two-dimensional superconducting wire network, Physical Review Letters 83, 5102-5105 (1999).

[25] C. Naud, G. Faini, and D. Mailly, Aharonov-Bohm cages in 2D normal metal networks, Physical Review Letters 86, 5104-5107 (2001).

[26] K. Shinohara, T. Aoki, and A. Morinaga, Scalar Aharonov-Bohm effect for ultracold atoms, Physical Review A 66, 042106 (2002).

[27] S. Mukherjee, M. Di Liberto, P. Öhberg, R. R. Thomson, and N. Goldman, Experimental Observation of Aharonov-Bohm Cages in Photonic Lattices, Physical Review Letters 121, 075502 (2018).

[28] M. Kremer, I. Petrides, E. Meyer, M. Heinrich, O. Zilberberg, and A. Szameit, A square-root topological insulator with non-quantized indices realized with photonic Aharonov-Bohm cages, Nature Communications 11, 907 (2020).

[29] C. Jörg, G. Queraltó, M. Kremer, G. Pelegrí, J. Schulz, A. Szameit, G. von Freymann, J. Mompart, and V. Ahufinger, Artificial gauge field switching using orbital angular momentum modes in optical waveguides, Light: Science & Applications 9, 150 (2020).

[30] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E. Kaxiras, and P. Jarillo-Herrero, Unconventional superconductivity in magic-angle graphene superlattices, Nature 556, 43-50 (2018).

[31] S. Takayoshi, H. Katsura, N. Watanabe, and H. Aoki, Phase diagram and pair Tomonaga-Luttinger liquid in a Bose-Hubbard model with flat bands, Physical Review A 88, 063613 (2013).

[32] R. Mondaini, G. G. Batrouni, and B. Grémaud, Pairing and superconductivity in the flat band: Creutz lattice, Physical Review B 98, 155142 (2018).

[33] J. Zurita, C. E. Creffield, and G. Platero, Topology and interactions in the photonic Creutz and Creutz-Hubbard ladders, Advanced Quantum Technologies 3, 1900105 (2019).

[34] D. Hügel and B. Paredes, Chiral ladders and the edges of quantum Hall insulators, Physical Review A 89, 023619 (2014).

[35] L. Zhou and Q. Du, Floquet topological phases with fourfold-degenerate edge modes in a driven spin-1/​2 Creutz ladder, Physical Review A 101, 033607 (2019).

[36] P. Molignini, Edge mode manipulation through commensurate multifrequency driving, Physical Review B 102, 235143 (2020).

[37] Z. X. Liu, Z. H. Li, and A. M. Wang, Fractional charged edge states in ladder topological insulators, Journal of Physics Condensed Matter 31, 125402 (2019).

[38] D. Sticlet, L. Seabra, F. Pollmann, and J. Cayssol, From fractionally charged solitons to Majorana bound states in a one-dimensional interacting model, Physical Review B 89, 115430 (2014).

[39] J. C. Budich and E. Ardonne, Equivalent topological invariants for one-dimensional Majorana wires in symmetry class $D$, Phys. Rev. B 88, 075419 (2013).

[40] Y. Lin, W. Hao, M. Wang, J. Qian, and H. Guo, Topological superconductors from one-dimensional periodically modulated Majorana chains, Scientific Reports 7, 9210 (2017).

[41] V. M. Martinez Alvarez and M. D. Coutinho-Filho, Edge states in trimer lattices, Phys. Rev. A 99, 013833 (2019).

[42] J. K. Asbóth, L. Oroszlány, and A. Pályi, A Short Course on Topological Insulators (Springer, 2015).

[43] M. Bello, C. E. Creffield, and G. Platero, Long-range doublon transfer in a dimer chain induced by topology and ac fields, Scientific Reports 6, 22562 (2016).

[44] N. Ivanov and J. Richter, Competition between plaquette and dimer phases in Heisenberg chains, Physics Letters A 232, 308-312 (1997).

[45] J. Richter, N. B. Ivanov, and J. Schulenburg, The antiferromagnetic spin-1/​2 chain with competing dimers and plaquettes: Numerical versus exact results, Journal of Physics Condensed Matter 10, 3635-3649 (1998).

[46] L. Čanová, J. Strečka, and M. Jaščur, Exact results of the Ising-Heisenberg model on the diamond chain with spin-1/​2, Czechoslovak Journal of Physics 54, 579-582 (2004).

[47] H. G. Paulinelli, S. M. De Souza, and O. Rojas, Thermal entanglement in an orthogonal dimer-plaquette chain with alternating Ising-Heisenberg coupling, Journal of Physics Condensed Matter 25, 306003 (2013).

[48] T. Verkholyak and J. Strečka, Exact solution for a quantum spin-12 Ising-Heisenberg orthogonal-dimer chain with Heisenberg intradimer and Ising interdimer interactions, Physical Review B 88, 134419 (2013).

[49] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band systems: From lattice models to experiments, Advances in Physics: X 3, 1473052 (2018).

[50] A. Nandy, Analytical study of quasi-one dimensional flat band networks and slow light analogue, Acta Physica Polonica A 136, 164-173 (2019).

[51] O. Rojas, J. Strečka, M. L. Lyra, and S. M. De Souza, Universality and quasicritical exponents of one-dimensional models displaying a quasitransition at finite temperatures, Physical Review E 99, 042117 (2019).

[52] L. Gálisová, J. Strečka, T. Verkholyak, and S. Havadej, Magnetization plateaus and bipartite entanglement of an exactly solved spin-1/​2 Ising-Heisenberg orthogonal-dimer chain, Physica E: Low-Dimensional Systems and Nanostructures 125, 114089 (2021).

[53] Z. Yan and S. Wan, Topological phases, topological flat bands, and topological excitations in a one-dimensional dimerized lattice with spin-orbit coupling, EPL 107, 47007 (2014).

[54] S. Han, H. Jiang, X. Li, and S. Xie, Spontaneous spin polarization in organic thiophene oligomers, Organic Electronics 15, 240-244 (2014).

[55] H. Jiang, C. Zhang, X. Hu, G. Hu, and S. Xie, Spin polarization of polaron in quasi-one dimensional organic system, Modern Physics Letters B 29, 1450266 (2015).

[56] M. Bahari and M. V. Hosseini, Topological properties of a generalized spin–orbit-coupled Su–Schrieffer–Heeger model, Physica E: Low-Dimensional Systems and Nanostructures 119, 113973 (2020).

[57] L. M. Volkova and D. V. Marinin, Frustrated Antiferromagnetic Spin Chains of Edge-Sharing Tetrahedra in Volcanic Minerals K3Cu3(Fe0.82Al0.18)O2(SO4)4 and K4Cu4O2(SO4)4MeCl, Journal of Superconductivity and Novel Magnetism 30, 959-971 (2017).

[58] W. Brenig and K. W. Becker, Magnetism of a tetrahedral cluster spin chain, Physical Review B 64, 214413 (2001).

[59] F. Ootomo and Y. Ono, Acoustic polaron in a ladder-type electron-lattice system, Journal of the Physical Society of Japan 69, 3320-3327 (2000).

[60] S. L. Zhang and Q. Zhou, Two-leg Su-Schrieffer-Heeger chain with glide reflection symmetry, Physical Review A 95, 061601 (2017).

[61] A. A. Nersesyan, Phase diagram of an interacting staggered Su-Schrieffer-Heeger two-chain ladder close to a quantum critical point, Physical Review B 102, 045108 (2020).

[62] M. Jangjan and M. V. Hosseini, Floquet engineering of topological metal states and hybridization of edge states with bulk states in dimerized two-leg ladders, Scientific Reports 10, 14256 (2020).

[63] J.-W. Ryu, S. Woo, N. Myoung, and H. C. Park, Topological edge states in bowtie ladders with different cutting edges (2020), arXiv:2012.00270.

[64] M. Drescher and A. Mielke, Hard-core bosons in flat band systems above the critical density, European Physical Journal B 90, 217 (2017).

[65] A. P. Schnyder, S. Ryu, A. Furusaki, and A. W. W. Ludwig, Classification of topological insulators and superconductors in three spatial dimensions, Phys. Rev. B 78, 195125 (2008).

[66] A. Kitaev, Periodic table for topological insulators and superconductors, AIP Conference Proceedings 1134, 22-30 (2009).

[67] T. D. Stanescu, Introduction to Topological Quantum Matter and Quantum Computation (CRC Press, 2016).

[68] H. Alaeian, C. W. S. Chang, M. V. Moghaddam, C. M. Wilson, E. Solano, and E. Rico, Creating lattice gauge potentials in circuit QED: The bosonic Creutz ladder, Physical Review A 99, 053834 (2019).

[69] L. Leonforte, A. Carollo, and F. Ciccarello, Vacancy-like Dressed States in Topological Waveguide QED, Phys. Rev. Lett. 126, 063601 (2021).

[70] R. Jackiw, Fractional and Majorana fermions: the physics of zero-energy modes, Physica Scripta T146, 014005 (2012).

[71] M. L. Herviou, Topological Phases and Majorana Fermions, Ph.D. thesis, Université Paris-Saclay (2017).

[72] B. Pérez-González, M. Bello, Á. Gómez-León, and G. Platero, Interplay between long-range hopping and disorder in topological systems, Physical Review B 99, 035146 (2019a).

[73] W. P. Su, J. R. Schrieffer, and A. J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42, 1698 (1979).

[74] J. Zak, Berry's phase for energy bands in solids, Phys. Rev. Lett. 62, 2747 (1989).

[75] S. Ryu and Y. Hatsugai, Topological Origin of Zero-Energy Edge States in Particle-Hole Symmetric Systems, Physical Review Letters 89, 077002 (2002).

[76] A. Lau and C. Ortix, Novel topological insulators from crystalline symmetries, European Physical Journal: Special Topics 227, 1309 (2018).

[77] M. Cariglia, Hidden symmetries of dynamics in classical and quantum physics, Reviews of Modern Physics 86, 1283-1336 (2014).

[78] J. M. Hou, Hidden-Symmetry-Protected Topological Semimetals on a Square Lattice, Physical Review Letters 111, 130403 (2013).

[79] T. Fukui, K. I. Imura, and Y. Hatsugai, Symmetry protected weak topological phases in a superlattice, Journal of the Physical Society of Japan 82, 073708 (2013).

[80] L. Li and S. Chen, Hidden-symmetry-protected topological phases on a one-dimensional lattice, EPL 109, 40006 (2015b).

[81] J. M. Hou and W. Chen, Hidden-symmetry-protected quantum pseudo-spin Hall effect in optical lattices, Physical Review A 93, 063626 (2016).

[82] J. M. Hou and W. Chen, Hidden symmetry-protected Z2 topological insulator in a cubic lattice, Physical Review B 96, 235108 (2017).

[83] J. Xiao and J. An, Boundary states in the chiral symmetric systems with a spatial symmetry, Journal of Physics Condensed Matter 30, 055002 (2018).

[84] A. M. Marques and R. G. Dias, One-dimensional topological insulators with noncentered inversion symmetry axis, Physical Review B 100, 041104 (2019).

[85] L. Wang, W. Cai, M. Bie, X. Zhang, and J. Xu, Zak phase and topological plasmonic Tamm states in one-dimensional plasmonic crystals, Optics Express 26, 28963 (2018).

[86] H.-X. Wang, G.-Y. Guo, and J.-H. Jiang, Band topology in classical waves: Wilson-loop approach to topological numbers and fragile topology, New Journal of Physics 21, 093029 (2019).

[87] W. Zhu, Y.-q. Ding, J. Ren, Y. Sun, Y. Li, H. Jiang, and H. Chen, Zak phase and band inversion in dimerized one-dimensional locally resonant metamaterials, Phys. Rev. B 97, 195307 (2018).

[88] S. Deng, G. Ortiz, and L. Viola, Multiband $s$-wave topological superconductors: Role of dimensionality and magnetic field response, Phys. Rev. B 87, 205414 (2013).

[89] L. Li, C. Yang, and S. Chen, Topological invariants for phase transition points of one-dimensional Z2 topological systems, European Physical Journal B 89, 195 (2016).

[90] Y. Ke, X. Qin, F. Mei, H. Zhong, Y. S. Kivshar, and C. Lee, Topological phase transitions and Thouless pumping of light in photonic waveguide arrays, Laser & Photonics Reviews 10, 995 (2016).

[91] S. Ganeshan, K. Sun, and S. Das Sarma, Topological zero-energy modes in gapless commensurate Aubry-André- Harper models, Physical Review Letters 110, 180403 (2013).

[92] J. H. Kang, J. H. Han, and Y. Shin, Realization of a Cross-Linked Chiral Ladder with Neutral Fermions in a 1D Optical Lattice by Orbital-Momentum Coupling, Physical Review Letters 121, 150403 (2018).

[93] J. Hyoun Kang, J. Ho Han, and Y. Shin, Creutz ladder in a resonantly shaken 1D optical lattice, New Journal of Physics 22, 013023 (2020).

[94] J. S. C. Hung, J. H. Busnaina, C. W. S. Chang, A. M. Vadiraj, I. Nsanzineza, E. Solano, H. Alaeian, E. Rico, and C. M. Wilson, Quantum Simulation of the Bosonic Creutz Ladder with a Parametric Cavity, Phys. Rev. Lett. 127, 100503 (2021).

[95] J. Han, A. A. Sukhorukov, and D. Leykam, Disorder-protected quantum state transmission through helical coupled-resonator waveguides, Photonics Research 8, 10, B15-B24 (2020).

[96] S. Barbarino, D. Rossini, M. Rizzi, R. Fazio, G. E. Santoro, and M. Dalmonte, Topological Devil's staircase in atomic two-leg ladders, New Journal of Physics 21, 043048 (2019).

[97] R. Resta, Quantum-Mechanical Position Operator in Extended Systems, Physical Review Letters 80, 1800 (1998).

[98] D. Vanderbilt, Berry phase in electronic structure theory (Cambridge University Press, 2018).

[99] C. Bena and G. Montambaux, Remarks on the tight-binding model of graphene, New Journal of Physics 11, 095003 (2009).

[100] J. Cayssol and J. N. Fuchs, Topological and geometrical aspects of band theory, Journal of Physics: Materials 4, 034007 (2021).

[101] J. N. Fuchs and F. Piéchon, Electric polarization of one-dimensional inversion-symmetric two-band insulators (2021), arXiv:2106.03595.

[102] P. Delplace, D. Ullmo, and G. Montambaux, Zak phase and the existence of edge states in graphene, Physical Review B 84, 195452 (2011).

[103] S. Longhi, Probing one-dimensional topological phases in waveguide lattices with broken chiral symmetry, Optics Letters 43, 4639 (2018).

[104] M. Bello, G. Platero, J. I. Cirac, and A. González-Tudela, Unconventional quantum optics in topological waveguide QED, Science Advances 5, eaaw0297 (2019).

[105] Y. Aihara, M. Hirayama, and S. Murakami, Anomalous dielectric response in insulators with the ${\pi}$ Zak phase, Phys. Rev. Research 2, 033224 (2020).

[106] B. Pérez-González, M. Bello, G. Platero, and Á. Gómez-León, Simulation of 1D Topological Phases in Driven Quantum Dot Arrays, Physical Review Letters 123, 126401 (2019b).

[107] Z.-Q. Jiao, S. Longhi, X.-W. Wang, J. Gao, W.-H. Zhou, Y. Wang, Y.-X. Fu, L. Wang, R.-J. Ren, L.-F. Qiao, and X.-M. Jin, Experimentally Detecting Quantized Zak Phases without Chiral Symmetry in Photonic Lattices, Physical Review Letters 127, 147401 (2021).

[108] N. R. Cooper, J. Dalibard, and I. B. Spielman, Topological bands for ultracold atoms, Reviews of Modern Physics 91, 015005 (2019).

[109] M. Atala, M. Aidelsburger, J. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, Direct measurement of the Zak phase in topological Bloch bands, Nature Physics , 795 (2013).

[110] N. Marzari and D. Vanderbilt, Maximally localized generalized Wannier functions for composite energy bands, Physical Review B 56, 12847 (1997).

[111] C. E. Creffield, Controlling spin without magnetic fields: The Bloch-Rashba rotator, Phys. Rev. B 102, 085436 (2020).

[112] R. Jafari, H. Johannesson, A. Langari, and M. A. Martin-Delgado, Quench dynamics and zero-energy modes: the case of the Creutz model, Physical Review B 99, 054302 (2019).

[113] M. Tovmasyan, S. Peotta, L. Liang, P. Törmä, and S. D. Huber, Preformed pairs in flat Bloch bands, Phys. Rev. B 98, 134513 (2018).

[114] A. Nelson, T. Neupert, T. c. v. Bzdušek, and A. Alexandradinata, Multicellularity of Delicate Topological Insulators, Phys. Rev. Lett. 126, 216404 (2021).

[115] F. Hofmann and M. Potthoff, Doublon dynamics in the extended Fermi-Hubbard model, Physical Review B 85, 205127 (2012).

[116] A. Raoux, M. Morigi, J.-N. Fuchs, F. Piéchon, and G. Montambaux, From Dia- to Paramagnetic Orbital Susceptibility of Massless Fermions, Phys. Rev. Lett. 112, 026402 (2014).

[117] E. Illes and E. J. Nicol, Magnetic properties of the $\alpha-T_3$ model: Magneto-optical conductivity and the Hofstadter butterfly, Physical Review B 94, 125435 (2016).

[118] E. Illes and E. J. Nicol, Klein tunneling in the $\alpha-T_3$ model, Physical Review B 95, 235432 (2017).

Cited by

[1] Eulàlia Nicolau, Anselmo M. Marques, Jordi Mompart, Verònica Ahufinger, and Ricardo G. Dias, "Local Hilbert space fragmentation and weak thermalization in Bose-Hubbard diamond necklaces", Physical Review B 107 9, 094312 (2023).

[2] Marco Di Liberto and Nathan Goldman, "Chiral orbital order of interacting bosons without higher bands", Physical Review Research 5 2, 023064 (2023).

[3] P. A. Almeida, L. S. Sousa, Tome M. Schmidt, and G. B. Martins, "Ferromagnetism in armchair graphene nanoribbon heterostructures", Physical Review B 105 5, 054416 (2022).

[4] P. D. Sacramento and M. F. Madeira, "Topological states in chiral electronic chains", Physical Review B 106 8, 085130 (2022).

[5] Carlos Fulgado-Claudio, Jose M. Sánchez Velázquez, and Alejandro Bermudez, "Fermion production at the boundary of an expanding universe: a cold-atom gravitational analogue", Quantum 7, 1042 (2023).

[6] Juan Zurita, Charles E. Creffield, and Gloria Platero, "Fast quantum transfer mediated by topological domain walls", Quantum 7, 1043 (2023).

[7] Amrita Mukherjee, Atanu Nandy, Shreekantha Sil, and Arunava Chakrabarti, "Tailoring flat bands and topological phases in a multistrand Creutz network", Physical Review B 105 3, 035428 (2022).

[8] Tongtong Wei and Yueke Wang, "Coupled topological edge states in one-dimensional all-dielectric heterostructures", Optics Express 30 20, 36900 (2022).

[9] S. N. Kempkes, P. Capiod, S. Ismaili, J. Mulkens, L. Eek, I. Swart, and C. Morais Smith, "Compact localized boundary states in a quasi-1D electronic diamond-necklace chain", Quantum Frontiers 2 1, 1 (2023).

[10] Xu-Jin Wang, Lu Zhang, Liang Yan, and Jie-Yun Yan, "Controllable Floquet topological phases in the magnetic ladder system", New Journal of Physics 26 3, 033016 (2024).

[11] R. G. Dias and A. M. Marques, "Long-range hopping and indexing assumption in one-dimensional topological insulators", Physical Review B 105 3, 035102 (2022).

[12] Edward McCann, "Catalog of noninteracting tight-binding models with two energy bands in one dimension", Physical Review B 107 24, 245401 (2023).

[13] Seung-Gyo Jeong, Sang-Hoon Han, Tae-Hwan Kim, and Sangmo Cheon, "Revealing inverted chirality of hidden domain wall states in multiband systems without topological transition", Communications Physics 6 1, 262 (2023).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 06:35:35) and SAO/NASA ADS (last updated successfully 2024-04-15 06:35:36). The list may be incomplete as not all publishers provide suitable and complete citation data.