Quantum thermo-dynamical construction for driven open quantum systems

Roie Dann and Ronnie Kosloff

The Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum dynamics of driven open systems should be compatible with both quantum mechanic and thermodynamic principles. By formulating the thermodynamic principles in terms of a set of postulates we obtain a thermodynamically consistent master equation. Following an axiomatic approach, we base the analysis on an autonomous description, incorporating the drive as a large transient control quantum system. In the appropriate physical limit, we derive the semi-classical description, where the control is incorporated as a time-dependent term in the system Hamiltonian. The transition to the semi-classical description reflects the conservation of global coherence and highlights the crucial role of coherence in the initial control state. We demonstrate the theory by analyzing a qubit controlled by a single bosonic mode in a coherent state.

The theoretical simulation of quantum systems dynamics is a prerequisite for the engineering and realization of quantum devices. Since any quantum device interacts with its environment and is controlled by an external classical agent, the dynamical description is typically described in terms of a time-dependent master equation.

In the present study, we construct a master equation from thermodynamical principles. We start from a fully quantum description of a total system partitioned to a primary system, controller and environment. By employing dynamical symmetry considerations and a semi-classical limit for the controller, we obtain the general dynamical form of the driven open system, consistent with the thermodynamical principles.

► BibTeX data

► References

[1] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi. Quantum adiabatic markovian master equations. New Journal of Physics, 14 (12): 123016, 2012. 10.1088/​1367-2630/​14/​12/​123016.

[2] R. Alicki. On the detailed balance condition for non-hamiltonian systems. Reports on Mathematical Physics, 10 (2): 249–258, 1976. 10.1016/​0034-4877(76)90046-X.

[3] R. Alicki. The markov master equations and the fermi golden rule. International Journal of Theoretical Physics, 16 (5): 351–355, 1977. 10.1007/​BF01807150.

[4] R. Alicki and R. Kosloff. Introduction to quantum thermodynamics: History and prospects. In Thermodynamics in the Quantum Regime, pages 1–33. Springer, 2018. 10.1007/​978-3-319-99046-0_1.

[5] R. Alicki, D. Gelbwaser-Klimovsky, and G. Kurizki. Periodically driven quantum open systems: Tutorial. arXiv preprint arXiv:1205.4552, 2012.

[6] T. Baumgratz, M. Cramer, and M. B. Plenio. Quantifying coherence. Physical review letters, 113 (14): 140401, 2014. 10.1103/​PhysRevLett.113.140401.

[7] F. G. Brandao, M. Horodecki, J. Oppenheim, J. M. Renes, and R. W. Spekkens. Resource theory of quantum states out of thermal equilibrium. Physical review letters, 111 (25): 250404, 2013. 10.1103/​PhysRevLett.111.250404.

[8] H.-P. Breuer and B. Vacchini. Quantum semi-markov processes. Physical review letters, 101 (14): 140402, 2008. 10.1103/​PhysRevLett.101.140402.

[9] H.-P. Breuer, F. Petruccione, et al. The theory of open quantum systems. Oxford University Press on Demand, 2002. 10.1093/​acprof:oso/​9780199213900.001.0001.

[10] H.-P. Breuer, E.-M. Laine, J. Piilo, and B. Vacchini. Colloquium: Non-markovian dynamics in open quantum systems. Reviews of Modern Physics, 88 (2): 021002, 2016. 10.1103/​RevModPhys.88.021002.

[11] A. Burshtein. Kinetics of induced relaxation. Sov. Phys. JETP, 21: 567–573, 1965.

[12] F. Cummings. Stimulated emission of radiation in a single mode. Physical Review, 140 (4A): A1051, 1965. 10.1103/​PhysRev.140.A1051.

[13] S. Daffer, K. Wódkiewicz, J. D. Cresser, and J. K. McIver. Depolarizing channel as a completely positive map with memory. Physical Review A, 70 (1): 010304, 2004. 10.1103/​PhysRevA.70.010304.

[14] R. Dann and R. Kosloff. Open system dynamics from thermodynamic compatibility. Phys. Rev. Research, 3: 023006, Apr 2021a. 10.1103/​PhysRevResearch.3.023006.

[15] R. Dann and R. Kosloff. Inertial theorem: Overcoming the quantum adiabatic limit. Physical Review Research, 3 (1): 013064, 2021b. 10.1103/​PhysRevResearch.3.013064.

[16] R. Dann, A. Levy, and R. Kosloff. Time-dependent markovian quantum master equation. Physical Review A, 98 (5): 052129, 2018. 10.1103/​PhysRevA.98.052129.

[17] R. Dann, A. Tobalina, and R. Kosloff. Shortcut to equilibration of an open quantum system. Physical review letters, 122 (25): 250402, 2019. 10.1103/​PhysRevLett.122.250402.

[18] R. Dann, A. Tobalina, and R. Kosloff. Fast route to equilibration. Physical Review A, 101 (5): 052102, 2020. 10.1103/​PhysRevA.101.052102.

[19] R. Dann, N. Megier, and R. Kosloff. Non-markovian dynamics under time-translation symmetry. arXiv preprint arXiv:2106.05295, 2021.

[20] E. B. Davies. Markovian master equations. Communications in mathematical Physics, 39 (2): 91–110, 1974. 10.1007/​BF01608389.

[21] L. Diósi. Calderia-leggett master equation and medium temperatures. Physica A: Statistical Mechanics and its Applications, 199 (3-4): 517–526, 1993. 10.1016/​0378-4371(93)90065-C.

[22] R. Dümcke. The low density limit for ann-level system interacting with a free bose or fermi gas. Communications in mathematical physics, 97 (3): 331–359, 1985. 10.1007/​BF01213401.

[23] F. J. Dyson. The s matrix in quantum electrodynamics. Physical Review, 75 (11): 1736, 1949. 10.1103/​PhysRev.75.1736.

[24] J. H. Eberly, N. Narozhny, and J. Sanchez-Mondragon. Periodic spontaneous collapse and revival in a simple quantum model. Physical Review Letters, 44 (20): 1323, 1980. 10.1103/​PhysRevLett.44.1323.

[25] E. Geva, R. Kosloff, and J. Skinner. On the relaxation of a two-level system driven by a strong electromagnetic field. The Journal of chemical physics, 102 (21): 8541–8561, 1995. 10.1063/​1.468844.

[26] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan. Completely positive dynamical semigroups of n-level systems. Journal of Mathematical Physics, 17 (5): 821–825, 1976. 10.1063/​1.522979.

[27] A. S. Holevo. A note on covariant dynamical semigroups. Reports on mathematical physics, 32 (2): 211–216, 1993. 10.1016/​0034-4877(93)90014-6.

[28] S. A. Holmstrom, C. Wei, A. S. Windsor, N. B. Manson, J. P. Martin, and M. Glasbeek. Spin echo at the rabi frequency in solids. Physical review letters, 78 (2): 302, 1997. 10.1103/​PhysRevLett.78.302.

[29] M. Horodecki and J. Oppenheim. Fundamental limitations for quantum and nanoscale thermodynamics. Nature communications, 4 (1): 1–6, 2013. 10.1038/​ncomms3059.

[30] D. Janzing, P. Wocjan, R. Zeier, R. Geiss, and T. Beth. Thermodynamic cost of reliability and low temperatures: tightening landauer's principle and the second law. International Journal of Theoretical Physics, 39 (12): 2717–2753, 2000. 10.1023/​A:1026422630734.

[31] E. T. Jaynes and F. W. Cummings. Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51 (1): 89–109, 1963. 10.1109/​PROC.1963.1664.

[32] A. Kofman, G. Kurizki, and B. Sherman. Spontaneous and induced atomic decay in photonic band structures. Journal of Modern Optics, 41 (2): 353–384, 1994. 10.1080/​09500349414550381.

[33] D. Kohen, C. C. Marston, and D. J. Tannor. Phase space approach to theories of quantum dissipation. The Journal of chemical physics, 107 (13): 5236–5253, 1997. 10.1063/​1.474887.

[34] K. Kraus. General state changes in quantum theory. Annals of Physics, 64 (2): 311–335, 1971. 10.1016/​0003-4916(71)90108-4.

[35] P. Lambropoulos, G. M. Nikolopoulos, T. R. Nielsen, and S. Bay. Fundamental quantum optics in structured reservoirs. Reports on Progress in Physics, 63 (4): 455, 2000. 10.1088/​0034-4885/​63/​4/​201.

[36] M. D. Leistikow, A. P. Mosk, E. Yeganegi, S. R. Huisman, A. Lagendijk, and W. L. Vos. Inhibited spontaneous emission of quantum dots observed in a 3d photonic band gap. Phys. Rev. Lett., 107: 193903, 2011. 10.1103/​PhysRevLett.107.193903.

[37] A. Levy and R. Kosloff. The local approach to quantum transport may violate the second law of thermodynamics. EPL (Europhysics Letters), 107 (2): 20004, 2014. 10.1209/​0295-5075/​107/​20004.

[38] L. Li, M. J. Hall, and H. M. Wiseman. Concepts of quantum non-markovianity: A hierarchy. Physics Reports, 759: 1–51, 2018. 10.1016/​j.physrep.2018.07.001.

[39] D. A. Lidar, Z. Bihary, and K. B. Whaley. From completely positive maps to the quantum markovian semigroup master equation. Chemical Physics, 268 (1-3): 35–53, 2001. 10.1016/​S0301-0104(01)00330-5.

[40] G. Lindblad. Completely positive maps and entropy inequalities. Communications in Mathematical Physics, 40 (2): 147–151, 1975. 10.1007/​BF01609396.

[41] G. Lindblad. On the generators of quantum dynamical semigroups. Communications in Mathematical Physics, 48 (2): 119–130, 1976. 10.1007/​BF01608499.

[42] M. Lostaglio, D. Jennings, and T. Rudolph. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nature communications, 6 (1): 1–9, 2015a. doi.org/​10.1038/​ncomms7383.

[43] M. Lostaglio, K. Korzekwa, D. Jennings, and T. Rudolph. Quantum coherence, time-translation symmetry, and thermodynamics. Physical review X, 5 (2): 021001, 2015b. 10.1103/​PhysRevX.5.021001.

[44] C. Majenz, T. Albash, H.-P. Breuer, and D. A. Lidar. Coarse graining can beat the rotating-wave approximation in quantum markovian master equations. Physical Review A, 88 (1): 012103, 2013. 10.1103/​PhysRevA.88.012103.

[45] S. Maniscalco and F. Petruccione. Non-markovian dynamics of a qubit. Physical Review A, 73 (1): 012111, 2006. 10.1103/​PhysRevA.73.012111.

[46] I. Marvian and R. W. Spekkens. Extending noether’s theorem by quantifying the asymmetry of quantum states. Nature communications, 5 (1): 1–8, 2014a. 10.1038/​ncomms4821.

[47] I. Marvian and R. W. Spekkens. Modes of asymmetry: the application of harmonic analysis to symmetric quantum dynamics and quantum reference frames. Physical Review A, 90 (6): 062110, 2014b. 10.1103/​PhysRevA.90.062110.

[48] I. Marvian Mashhad. Symmetry, asymmetry and quantum information. 2012. http:/​/​hdl.handle.net/​10012/​7088.

[49] G. McCauley, B. Cruikshank, D. I. Bondar, and K. Jacobs. Accurate lindblad-form master equation for weakly damped quantum systems across all regimes. npj Quantum Information, 6 (1): 103037, 2020. 10.1038/​s41534-020-00299-6.

[50] B. Mollow. Power spectrum of light scattered by two-level systems. Physical Review, 188 (5), 1969. 10.1103/​PhysRev.188.1969.

[51] E. Mozgunov and D. Lidar. Completely positive master equation for arbitrary driving and small level spacing. Quantum, 4: 227, 2020. 10.22331/​q-2020-02-06-227.

[52] C. Müller and T. M. Stace. Deriving lindblad master equations with keldysh diagrams: Correlated gain and loss in higher order perturbation theory. Physical Review A, 95 (1): 013847, 2017. 10.1103/​PhysRevA.95.013847.

[53] S. Nakajima. On quantum theory of transport phenomena: steady diffusion. Progress of Theoretical Physics, 20 (6): 948–959, 1958. 10.1143/​PTP.20.948.

[54] F. Nathan and M. S. Rudner. Universal lindblad equation for open quantum systems. Phys. Rev. B, 102: 115109, 2020. 10.1103/​PhysRevB.102.115109.

[55] M. C. Newstein. Spontaneous emission in the presence of a prescribed classical field. Physical Review, 167 (1): 89, 1968. 10.1103/​PhysRev.167.89.

[56] R. Paris. The asymptotics of the touchard polynomials. arXiv preprint arXiv:1606.07883, 2016.

[57] D. F. Phillips, A. Fleischhauer, A. Mair, R. L. Walsworth, and M. D. Lukin. Storage of light in atomic vapor. Physical Review Letters, 86 (5): 783, 2001. 10.1103/​PhysRevLett.86.783.

[58] J. Piilo, S. Maniscalco, K. Härkönen, and K.-A. Suominen. Non-markovian quantum jumps. Physical review letters, 100 (18): 180402, 2008. 10.1103/​PhysRevLett.100.180402.

[59] A. Rivas, S. F. Huelga, and M. B. Plenio. Quantum non-markovianity: characterization, quantification and detection. Reports on Progress in Physics, 77 (9): 094001, 2014. 10.1088/​0034-4885/​77/​9/​094001.

[60] F. L. Rodrigues, G. De Chiara, M. Paternostro, and G. T. Landi. Thermodynamics of weakly coherent collisional models. Physical review letters, 123 (14): 140601, 2019. 10.1103/​PhysRevLett.123.140601.

[61] F. Schuda, C. Stroud Jr, and M. Hercher. Observation of the resonant stark effect at optical frequencies. Journal of Physics B: Atomic and Molecular Physics, 7 (7): L198, 1974. 10.1088/​0022-3700/​7/​7/​002.

[62] M. O. Scully. Laser entropy: from lasers and masers to bose condensates and black holes. Physica Scripta, 95 (2): 024002, 2019. 10.1088/​1402-4896/​ab41fc.

[63] A. Shabani and D. A. Lidar. Completely positive post-markovian master equation via a measurement approach. Physical Review A, 71 (2): 020101, 2005. 10.1103/​PhysRevA.71.020101.

[64] B. W. Shore and P. L. Knight. The jaynes-cummings model. Journal of Modern Optics, 40 (7): 1195–1238, 1993. 10.1080/​09500349314551321.

[65] A. Y. Smirnov and M. H. Amin. Theory of open quantum dynamics with hybrid noise. New Journal of Physics, 20 (10): 103037, 2018. 10.1088/​1367-2630/​aae79c.

[66] A. Streltsov, G. Adesso, and M. B. Plenio. Colloquium: Quantum coherence as a resource. Reviews of Modern Physics, 89 (4): 041003, 2017. 10.1103/​RevModPhys.89.041003.

[67] K. Szczygielski, D. Gelbwaser-Klimovsky, and R. Alicki. Markovian master equation and thermodynamics of a two-level system in a strong laser field. Physical Review E, 87 (1): 012120, 2013. 10.1103/​PhysRevE.87.012120.

[68] R. S. Whitney. Staying positive: going beyond lindblad with perturbative master equations. Journal of Physics A: Mathematical and Theoretical, 41 (17): 175304, 2008. 10.1088/​1751-8113/​41/​17/​175304.

[69] M. Winczewski, A. Mandarino, M. Horodecki, and R. Alicki. Bypassing the intermediate times dilemma for open quantum system. arXiv preprint arXiv:2106.05776, 2021.

[70] M. Yamaguchi, T. Yuge, and T. Ogawa. Markovian quantum master equation beyond adiabatic regime. Physical Review E, 95 (1): 012136, 2017. 10.1103/​PhysRevE.95.012136.

[71] R. Zwanzig. Ensemble method in the theory of irreversibility. The Journal of Chemical Physics, 33 (5): 1338–1341, 1960. doi.org/​10.1063/​1.1731409.

Cited by

[1] Adam Hewgill, Gabriele De Chiara, and Alberto Imparato, "Quantum thermodynamically consistent local master equations", Physical Review Research 3 1, 013165 (2021).

[2] Roie Dann and Ronnie Kosloff, "Open system dynamics from thermodynamic compatibility", Physical Review Research 3 2, 023006 (2021).

[3] Chang-Kang Hu, Roie Dann, Jin-Ming Cui, Yun-Feng Huang, Chuan-Feng Li, Guang-Can Guo, Alan C. Santos, and Ronnie Kosloff, "Experimental verification of the inertial theorem control protocols", arXiv:1903.00404.

[4] Roie Dann, Nina Megier, and Ronnie Kosloff, "Non-Markovian dynamics under time-translation symmetry", arXiv:2106.05295.

[5] Shimshon Kallush, Roie Dann, and Ronnie Kosloff, "Controlling the uncontrollable: Quantum control of open system dynamics", arXiv:2107.11767.

[6] Patrick P. Potts, Alex Arash Sand Kalaee, and Andreas Wacker, "A thermodynamically consistent Markovian master equation beyond the secular approximation", arXiv:2108.07528.

The above citations are from SAO/NASA ADS (last updated successfully 2021-12-07 16:44:06). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-12-07 16:44:04).