Tensor Renormalization Group for interacting quantum fields
1Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain
Published: | 2021-11-23, volume 5, page 586 |
Eprint: | arXiv:2105.00010v3 |
Doi: | https://doi.org/10.22331/q-2021-11-23-586 |
Citation: | Quantum 5, 586 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a $\lambda \phi^4$ theory for benchmark, we evaluate the order $\lambda$ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement.

Popular summary
► BibTeX data
► References
[1] M. Campos, G. Sierra and E. Lopez, ``Tensor renormalization group in bosonic field theory,'' Phys. Rev. B 100, 195106 (2019).
https://doi.org/10.1103/PhysRevB.100.195106
[2] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, ``Valence bond ground states in isotropic quantum antiferromagnets'', Commun. Math. Phys., 115, 477 (1988).
https://doi.org/10.1007/BF01218021
[3] S. R. White, ``Density matrix formulation for quantum renormalization groups'', Phys. Rev. Lett. 69, 2863 (1992).
https://doi.org/10.1103/PhysRevLett.69.2863
[4] M. Fannes, B. Nachtergaele, and R. F. Werner, ``Finitely correlated states on quantum spin chains'', Commun. Math. Phys. 144, 443 (1992).
https://doi.org/10.1007/BF02099178
[5] A. Klümper, A. Schadschneider, and J. Zittartz ``Matrix-product-groundstates for one-dimensional spin-1 quantum antiferromagnets'', Europhys. Lett. 24, 293 (1993).
https://doi.org/10.1209/0295-5075/24/4/010
[6] S. Östlund and S. Rommer, ``Thermodynamic Limit of Density Matrix Renormalization'', Phys. Rev. Lett. 75, 3537 (1995).
https://doi.org/10.1103/PhysRevLett.75.3537
[7] T. Nishino. ``Density Matrix Renormalization Group Method for 2D Classical Models''. J. Phys. Soc. Jpn., 64, 3598 (1995).
https://doi.org/10.1143/JPSJ.64.3598
[8] T. Nishino and K. Okunishi, ``Corner Transfer Matrix Algorithm for Classical Renormalization Group'', J. Phys. Soc. Jpn. 66, 3040 (1997).
https://doi.org/10.1143/JPSJ.66.3040
[9] J. Dukelsky, M.A. Martin-Delgado, T. Nishino, G. Sierra, ``Equivalence of the Variational Matrix Product Method and the Density Matrix Renormalization Group applied to Spin Chains'', Europhys. Lett., 43, 457 (1998).
https://doi.org/10.1209/epl/i1998-00381-x
[10] G. Sierra and M.A. Martin-Delgado ``The Density Matrix Renormalization Group, Quantum Groups and Conformal Field Theory'', Proceed. Workshop on the Exact Renormalization Group, Faro (Portugal) 1998, arXiv:cond-mat/9811170.
arXiv:cond-mat/9811170
[11] G. Vidal, ``Efficient Classical Simulation of Slightly Entangled Quantum Computations'', Phys. Rev. Lett. 91, 147902 (2003).
https://doi.org/10.1103/PhysRevLett.91.147902
[12] F. Verstraete, D. Porras, and J. I. Cirac, ``Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective'', Phys. Rev. Lett. 93, 227205 (2004).
https://doi.org/10.1103/PhysRevLett.93.227205
[13] F. Verstraete and J. I. Cirac, ``Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions'', arXiv:cond-mat/0407066v1 (2004).
arXiv:cond-mat/0407066
[14] U. Schollwöck, ``The density-matrix renormalization group'', Rev. Mod. Phys. 77, 259 (2005).
https://doi.org/10.1103/RevModPhys.77.259
[15] V. Murg, F. Verstraete, and J. I. Cirac. ``Efficient evaluation of partition functions of frustrated and inhomogeneous spin systems''. Phys. Rev. Lett., 95, 057206 (2005).
https://doi.org/10.1103/PhysRevLett.95.057206
[16] D. Pérez-García, F. Verstraete, M. M. Wolf, J. I. Cirac, ``Matrix product state representations'', Quantum Inf. Comput. 7, 401 (2007).
https://dl.acm.org/doi/10.5555/2011832.2011833
[17] M. Levin and C. P. Nave, ``Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models'', Phys. Rev. Lett. 99, 120601 (2007).
https://doi.org/10.1103/PhysRevLett.99.120601
[18] G. Vidal, ``Entanglement Renormalization'', Phys. Rev. Lett. 99, 220405 (2007).
https://doi.org/10.1103/PhysRevLett.99.220405
[19] V. Giovannetti, S. Montangero, R. Fazio, ``Quantum MERA Channels'', Phys. Rev. Lett. 101, 180503 (2008).
https://doi.org/10.1103/PhysRevLett.101.180503
[20] F. Verstraete, J.I. Cirac, V. Murg, ``Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems'', Adv. Phys. 57,143 (2008).
https://doi.org/10.1080/14789940801912366
[21] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, ``Entanglement renormalization, scale invariance, and quantum criticality'', Phys. Rev. A 79, 040301 (2009).
https://doi.org/10.1103/PhysRevA.79.040301
[22] Z.-C. Gu and X.-G. Wen, ``Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order'', Phys. Rev. B 80, 155131 (2009).
https://doi.org/10.1103/PhysRevB.80.155131
[23] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, ``Entanglement spectrum of a topological phase in one dimension'', Phys. Rev. B 81, 064439 (2010).
https://doi.org/10.1103/PhysRevB.81.064439
[24] X. Chen, Z.-C. Gu, and X.-G. Wen, ``Classification of gapped symmetric phases in one-dimensional spin systems'', Phys. Rev. B 83, 035107 (2011).
https://doi.org/10.1103/PhysRevB.83.035107
[25] N. Schuch, D. Pérez-García, and J. I. Cirac, ``Classifying quantum phases using matrix product states and projected entangled pair states'', Phys. Rev. B 84, 165139 (2011).
https://doi.org/10.1103/PhysRevB.84.165139
[26] Y. Shimizu, ``Tensor renormalization group approach to a lattice boson model'', Mod. Phys. Lett. A 27, 1250035 (2012).
https://doi.org/10.1142/S0217732312500356
[27] R. Orús, ``A practical introduction to tensor networks: Matrix product states and projected entangled pair states'', Ann. Phys. 349, 117 (2014).
https://doi.org/10.1016/j.aop.2014.06.013
[28] G. Evenbly and G. Vidal, ``Tensor Network Renormalization'', Phys. Rev. Lett. 115, 180405 (2015).
https://doi.org/10.1103/PhysRevLett.115.180405
[29] G. Evenbly and G. Vidal, ``Tensor network renormalization yields the multi-scale entanglement renormalization ansatz'', Phys. Rev. Lett. 115, 200401 (2015).
https://doi.org/10.1103/PhysRevLett.115.200401
[30] S.-J. Ran, C. Peng, W. Li, M. Lewenstein, G. Su, ``Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach'', Phys. Rev. B 95, 155114 (2017).
https://doi.org/10.1103/PhysRevB.95.155114
[31] M. Bal, M. Mariën, J. Haegeman, F. Verstraete, ``Renormalization group flows of Hamiltonians using tensor networks'' Phys. Rev. Lett. 118, 250602 (2017).
https://doi.org/10.1103/PhysRevLett.118.250602
[32] H. He, Y. Zheng, B. Andrei Bernevig, N. Regnault, ``Entanglement Entropy From Tensor Network States for Stabilizer Codes'', Phys. Rev. B 97, 125102 (2018).
https://doi.org/10.1103/PhysRevB.97.125102
[33] S. Singha Roy, H. Shekhar Dhar, A. Sen De, U. Sen, ``Tensor-network approach to compute genuine multisite entanglement in infinite quantum spin chains'', Phys. Rev. A 99, 062305 (2019).
https://doi.org/10.1103/PhysRevA.99.062305
[34] M. C. Banuls, K. Cichy, H.-T. Hung, Y.-J. Kao, C.-J. D. Lin, Y.-P. Lin, D. T.-L. Tan, ``Phase structure and real-time dynamics of the massive Thirring model in 1+1 dimensions using the tensor-network method'', PoS (LATTICE2019) 022.
https://doi.org/10.22323/1.363.0022
[35] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, ``Tensor network analysis of critical coupling in two dimensional $\phi^{4}$ theory'', JHEP 05 (2019), 184.
https://doi.org/10.1007/JHEP05(2019)184
[36] B. Vanhecke, J. Haegeman, K. Van Acoleyen, L. Vanderstraeten, F. Verstraete, ``A scaling hypothesis for matrix product states'', Phys. Rev. Lett. 123, 250604 (2019).
https://doi.org/10.1103/PhysRevLett.123.250604
[37] J. Garre-Rubio, ``Symmetries in topological tensor network states: classification, construction and detection'', arXiv:1912.08597.
arXiv:1912.08597
[38] M. C. Banuls, M. P. Heller, K. Jansen, J. Knaute, V. Svensson, ``From spin chains to real-time thermal field theory using tensor networks'', Phys. Rev. Research 2, 033301 (2020).
https://doi.org/10.1103/PhysRevResearch.2.033301
[39] Hui-Ke Jin, Hong-Hao Tu, Yi Zhou, ``Efficient tensor network representation for Gutzwiller projected states of paired fermions'', Phys. Rev. B 101, 165135 (2020).
https://doi.org/10.1103/PhysRevB.101.165135
[40] C. Delcamp, A. Tilloy, ``Computing the renormalization group flow of two-dimensional $\phi^4$ theory with tensor networks'', Phys. Rev. Research 2, 033278 (2020);.
https://doi.org/10.1103/PhysRevResearch.2.033278
[41] Q. Mortier, N.Schuch, F. Verstraete, J. Haegeman, ``Resolving Fermi surfaces with tensor networks'', arXiv:2008.11176.
arXiv:2008.11176
[42] D. Poilblanc, M. Mambrini, F. Alet, ``Finite-temperature symmetric tensor network for spin-1/2 Heisenberg antiferromagnets on the square lattice'', SciPost Phys. 10, 019 (2021).
https://doi.org/10.21468/SciPostPhys.10.1.019
[43] B. Vanhecke, F. Verstraete, K. Van Acoleyen, ``Entanglement scaling for $\lambda \phi_2^4$'', arxiv.2104.10564.
arXiv:2104.10564
[44] F. Verstraete and J. I. Cirac, ``Continuous matrix product states for quantum fields'', Phys. Rev. Lett. 104, 190405 (2010).
https://doi.org/10.1103/PhysRevLett.104.190405
[45] J. Haegeman, T. J. Osborne, H. Verschelde and F. Verstraete, ``Entanglement renormalization for quantum fields in real space'', Phys. Rev. Lett. 110, 100402 (2013).
https://doi.org/10.1103/PhysRevLett.110.100402
[46] D. Jennings, C. Brockt, J. Haegeman, T. J. Osborne and F. Verstraete, ``Continuum tensor network field states, path integral representations and spatial symmetries'', New J. Phys. 17, 063039 (2015).
https://doi.org/10.1088/1367-2630/17/6/063039
[47] A. Tilloy, J. I. Cirac ``Continuous Tensor Network States for Quantum Fields'', Phys. Rev. X 9, 021040 (2019).
https://doi.org/10.1103/PhysRevX.9.021040
[48] J. Cotlera, M. R. M. Mozaffar, A. Mollabashi, A. Naseh, ``Renormalization Group Circuits for Weakly Interacting Continuum Field Theories'', Fortschr. Phys. 67, 1900038 (2019).
https://doi.org/10.1002/prop.201900038
[49] Q. Hu, A. Franco-Rubio, G. Vidal, ``Continuous tensor network renormalization for quantum fields'', arXiv:1809.05176.
arXiv:1809.05176
[50] T. D. Karanikolaou, P. Emonts, A. Tilloy, ``Gaussian Continuous Tensor Network States for Simple Bosonic Field Theories'' Phys. Rev. Research 3, 023059 (2021). arXiv:2006.13143.
https://doi.org/10.1103/PhysRevResearch.3.023059
arXiv:2006.13143
[51] A.E. B. Nielsen, B. Herwerth, J. I. Cirac, and G. Sierra, ``Field tensor network states'', Phys. Rev. B 103, 155130 (2021).
https://doi.org/10.1103/PhysRevB.103.155130
[52] A. Tilloy, ``Variational method in relativistic quantum field theory without cutoff'', Phys. Rev. D 104, L091904 (2021).
https://doi.org/10.1103/PhysRevD.104.L091904
[53] A. Tilloy, ``Relativistic continuous matrix product states for quantum fields without cutoff'', arXiv:2102.07741.
arXiv:2102.07741
[54] B. Swingle, ``Entanglement renormalization and holography'', Phys. Rev. D 86, 065007 (2012).
https://doi.org/10.1103/PhysRevD.86.065007
[55] J. I. Latorre and G. Sierra, ``Holographic codes'', arXiv:1502.06618.
arXiv:1502.06618
[56] F. Pastawski, B. Yoshida, D. Harlow, and John Preskill, ``Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence'', J. High Energy Phys. 2015, 149, (2015).
https://doi.org/10.1007/JHEP06(2015)149
[57] J. Molina-Vilaplana, ``Information geometry of entanglement renormalization for free quantum fields'', J. High Energ. Phys. 2015, 2 (2015).
https://doi.org/10.1007/JHEP09(2015)002
[58] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, ``cMERA as Surface/State Correspondence in AdS/CFT'', Phys. Rev. Lett. 115, 171602 (2015).
https://doi.org/10.1103/PhysRevLett.115.171602
[59] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K. Watanabe, ``Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT'', J. High Energy Phys. 2017, 97 (2017).
https://doi.org/10.1007/JHEP11(2017)097
[60] R. Vasseur, A. C. Potter, Y.-Z. You, A. W. W. Ludwig, ``Entanglement Transitions from Holographic Random Tensor Networks'', Phys. Rev. B 100, 134203 (2019).
https://doi.org/10.1103/PhysRevB.100.134203
[61] A. Jahn, J. Eisert, ``Holographic tensor network models and quantum error correction: A topical review'', Quantum Sci. Technol. 6 033002 (2021).
https://doi.org/10.1088/2058-9565/ac0293
[62] https://github.com/m-campos/interacting-trg.
https://github.com/m-campos/interacting-trg
[63] K.G. Wilson, ``Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture'', Phys. Rev. B 4, 3174 (1971).
https://doi.org/10.1103/PhysRevB.4.3174
[64] R. Shankar, ``Renormalization Group Approach to Interacting Fermions'', Rev. Mod. Phys. 66, 129 (1994).
https://doi.org/10.1103/RevModPhys.66.129
[65] M. Abramowitz, I. A. Stegun, ``Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'', Applied Mathematics Series 55 , New York, Dover Publications (1970).
https://dl.acm.org/doi/10.5555/1098650
Cited by
[1] Robert Maxton and Yannick Meurice, "Perturbative boundaries of quantum advantage: Real-time evolution for digitized λϕ4 lattice models", Physical Review D 107 7, 074508 (2023).
[2] Robert Maxton and Yannick Meurice, "Perturbative boundaries of quantum computing: real-time evolution for digitized lambda phi^4 lattice models", arXiv:2210.05493, (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-05-29 01:50:12) and SAO/NASA ADS (last updated successfully 2023-05-29 01:50:13). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.