Tensor Renormalization Group for interacting quantum fields

Manuel Campos1, German Sierra, and Esperanza Lopez

1Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera 13-15, Cantoblanco, 28049 Madrid, Spain

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied in Ref.[1] to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a $\lambda \phi^4$ theory for benchmark, we evaluate the order $\lambda$ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement.

We present a new tensor network algorithm for calculating the partition function of interacting quantum field theories in 2 dimensions. It is based on the Tensor Renormalization Group (TRG) protocol, adapted to operate entirely at the level of fields. This strategy was applied previously to the much simpler case of a free boson, obtaining an excellent performance. Here we include an arbitrary self-interaction and treat it in the context of perturbation theory. A real space analogue of the Wilsonian effective action and its expansion in Feynman graphs is proposed. Using a $\lambda \phi^4$ theory for benchmark, we evaluate the order $\lambda$ correction to the free energy. The results show a fast convergence with the bond dimension, implying that our algorithm captures well the effect of interaction on entanglement.

► BibTeX data

► References

[1] M. Campos, G. Sierra and E. Lopez, ``Tensor renormalization group in bosonic field theory,'' Phys. Rev. B 100, 195106 (2019).
https:/​/​doi.org/​10.1103/​PhysRevB.100.195106

[2] I. Affleck, T. Kennedy, E. H. Lieb, and H. Tasaki, ``Valence bond ground states in isotropic quantum antiferromagnets'', Commun. Math. Phys., 115, 477 (1988).
https:/​/​doi.org/​10.1007/​BF01218021

[3] S. R. White, ``Density matrix formulation for quantum renormalization groups'', Phys. Rev. Lett. 69, 2863 (1992).
https:/​/​doi.org/​10.1103/​PhysRevLett.69.2863

[4] M. Fannes, B. Nachtergaele, and R. F. Werner, ``Finitely correlated states on quantum spin chains'', Commun. Math. Phys. 144, 443 (1992).
https:/​/​doi.org/​10.1007/​BF02099178

[5] A. Klümper, A. Schadschneider, and J. Zittartz ``Matrix-product-groundstates for one-dimensional spin-1 quantum antiferromagnets'', Europhys. Lett. 24, 293 (1993).
https:/​/​doi.org/​10.1209/​0295-5075/​24/​4/​010

[6] S. Östlund and S. Rommer, ``Thermodynamic Limit of Density Matrix Renormalization'', Phys. Rev. Lett. 75, 3537 (1995).
https:/​/​doi.org/​10.1103/​PhysRevLett.75.3537

[7] T. Nishino. ``Density Matrix Renormalization Group Method for 2D Classical Models''. J. Phys. Soc. Jpn., 64, 3598 (1995).
https:/​/​doi.org/​10.1143/​JPSJ.64.3598

[8] T. Nishino and K. Okunishi, ``Corner Transfer Matrix Algorithm for Classical Renormalization Group'', J. Phys. Soc. Jpn. 66, 3040 (1997).
https:/​/​doi.org/​10.1143/​JPSJ.66.3040

[9] J. Dukelsky, M.A. Martin-Delgado, T. Nishino, G. Sierra, ``Equivalence of the Variational Matrix Product Method and the Density Matrix Renormalization Group applied to Spin Chains'', Europhys. Lett., 43, 457 (1998).
https:/​/​doi.org/​10.1209/​epl/​i1998-00381-x

[10] G. Sierra and M.A. Martin-Delgado ``The Density Matrix Renormalization Group, Quantum Groups and Conformal Field Theory'', Proceed. Workshop on the Exact Renormalization Group, Faro (Portugal) 1998, arXiv:cond-mat/​9811170.
arXiv:cond-mat/9811170

[11] G. Vidal, ``Efficient Classical Simulation of Slightly Entangled Quantum Computations'', Phys. Rev. Lett. 91, 147902 (2003).
https:/​/​doi.org/​10.1103/​PhysRevLett.91.147902

[12] F. Verstraete, D. Porras, and J. I. Cirac, ``Density Matrix Renormalization Group and Periodic Boundary Conditions: A Quantum Information Perspective'', Phys. Rev. Lett. 93, 227205 (2004).
https:/​/​doi.org/​10.1103/​PhysRevLett.93.227205

[13] F. Verstraete and J. I. Cirac, ``Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions'', arXiv:cond-mat/​0407066v1 (2004).
arXiv:cond-mat/0407066

[14] U. Schollwöck, ``The density-matrix renormalization group'', Rev. Mod. Phys. 77, 259 (2005).
https:/​/​doi.org/​10.1103/​RevModPhys.77.259

[15] V. Murg, F. Verstraete, and J. I. Cirac. ``Efficient evaluation of partition functions of frustrated and inhomogeneous spin systems''. Phys. Rev. Lett., 95, 057206 (2005).
https:/​/​doi.org/​10.1103/​PhysRevLett.95.057206

[16] D. Pérez-García, F. Verstraete, M. M. Wolf, J. I. Cirac, ``Matrix product state representations'', Quantum Inf. Comput. 7, 401 (2007).
https:/​/​dl.acm.org/​doi/​10.5555/​2011832.2011833

[17] M. Levin and C. P. Nave, ``Tensor Renormalization Group Approach to Two-Dimensional Classical Lattice Models'', Phys. Rev. Lett. 99, 120601 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.99.120601

[18] G. Vidal, ``Entanglement Renormalization'', Phys. Rev. Lett. 99, 220405 (2007).
https:/​/​doi.org/​10.1103/​PhysRevLett.99.220405

[19] V. Giovannetti, S. Montangero, R. Fazio, ``Quantum MERA Channels'', Phys. Rev. Lett. 101, 180503 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.101.180503

[20] F. Verstraete, J.I. Cirac, V. Murg, ``Matrix Product States, Projected Entangled Pair States, and variational renormalization group methods for quantum spin systems'', Adv. Phys. 57,143 (2008).
https:/​/​doi.org/​10.1080/​14789940801912366

[21] R. N. C. Pfeifer, G. Evenbly, and G. Vidal, ``Entanglement renormalization, scale invariance, and quantum criticality'', Phys. Rev. A 79, 040301 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.79.040301

[22] Z.-C. Gu and X.-G. Wen, ``Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order'', Phys. Rev. B 80, 155131 (2009).
https:/​/​doi.org/​10.1103/​PhysRevB.80.155131

[23] F. Pollmann, A. M. Turner, E. Berg, and M. Oshikawa, ``Entanglement spectrum of a topological phase in one dimension'', Phys. Rev. B 81, 064439 (2010).
https:/​/​doi.org/​10.1103/​PhysRevB.81.064439

[24] X. Chen, Z.-C. Gu, and X.-G. Wen, ``Classification of gapped symmetric phases in one-dimensional spin systems'', Phys. Rev. B 83, 035107 (2011).
https:/​/​doi.org/​10.1103/​PhysRevB.83.035107

[25] N. Schuch, D. Pérez-García, and J. I. Cirac, ``Classifying quantum phases using matrix product states and projected entangled pair states'', Phys. Rev. B 84, 165139 (2011).
https:/​/​doi.org/​10.1103/​PhysRevB.84.165139

[26] Y. Shimizu, ``Tensor renormalization group approach to a lattice boson model'', Mod. Phys. Lett. A 27, 1250035 (2012).
https:/​/​doi.org/​10.1142/​S0217732312500356

[27] R. Orús, ``A practical introduction to tensor networks: Matrix product states and projected entangled pair states'', Ann. Phys. 349, 117 (2014).
https:/​/​doi.org/​10.1016/​j.aop.2014.06.013

[28] G. Evenbly and G. Vidal, ``Tensor Network Renormalization'', Phys. Rev. Lett. 115, 180405 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.180405

[29] G. Evenbly and G. Vidal, ``Tensor network renormalization yields the multi-scale entanglement renormalization ansatz'', Phys. Rev. Lett. 115, 200401 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.200401

[30] S.-J. Ran, C. Peng, W. Li, M. Lewenstein, G. Su, ``Criticality in Two-Dimensional Quantum Systems: Tensor Network Approach'', Phys. Rev. B 95, 155114 (2017).
https:/​/​doi.org/​10.1103/​PhysRevB.95.155114

[31] M. Bal, M. Mariën, J. Haegeman, F. Verstraete, ``Renormalization group flows of Hamiltonians using tensor networks'' Phys. Rev. Lett. 118, 250602 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.250602

[32] H. He, Y. Zheng, B. Andrei Bernevig, N. Regnault, ``Entanglement Entropy From Tensor Network States for Stabilizer Codes'', Phys. Rev. B 97, 125102 (2018).
https:/​/​doi.org/​10.1103/​PhysRevB.97.125102

[33] S. Singha Roy, H. Shekhar Dhar, A. Sen De, U. Sen, ``Tensor-network approach to compute genuine multisite entanglement in infinite quantum spin chains'', Phys. Rev. A 99, 062305 (2019).
https:/​/​doi.org/​10.1103/​PhysRevA.99.062305

[34] M. C. Banuls, K. Cichy, H.-T. Hung, Y.-J. Kao, C.-J. D. Lin, Y.-P. Lin, D. T.-L. Tan, ``Phase structure and real-time dynamics of the massive Thirring model in 1+1 dimensions using the tensor-network method'', PoS (LATTICE2019) 022.
https:/​/​doi.org/​10.22323/​1.363.0022

[35] D. Kadoh, Y. Kuramashi, Y. Nakamura, R. Sakai, S. Takeda and Y. Yoshimura, ``Tensor network analysis of critical coupling in two dimensional $\phi^{4}$ theory'', JHEP 05 (2019), 184.
https:/​/​doi.org/​10.1007/​JHEP05(2019)184

[36] B. Vanhecke, J. Haegeman, K. Van Acoleyen, L. Vanderstraeten, F. Verstraete, ``A scaling hypothesis for matrix product states'', Phys. Rev. Lett. 123, 250604 (2019).
https:/​/​doi.org/​10.1103/​PhysRevLett.123.250604

[37] J. Garre-Rubio, ``Symmetries in topological tensor network states: classification, construction and detection'', arXiv:1912.08597.
arXiv:1912.08597

[38] M. C. Banuls, M. P. Heller, K. Jansen, J. Knaute, V. Svensson, ``From spin chains to real-time thermal field theory using tensor networks'', Phys. Rev. Research 2, 033301 (2020).
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033301

[39] Hui-Ke Jin, Hong-Hao Tu, Yi Zhou, ``Efficient tensor network representation for Gutzwiller projected states of paired fermions'', Phys. Rev. B 101, 165135 (2020).
https:/​/​doi.org/​10.1103/​PhysRevB.101.165135

[40] C. Delcamp, A. Tilloy, ``Computing the renormalization group flow of two-dimensional $\phi^4$ theory with tensor networks'', Phys. Rev. Research 2, 033278 (2020);.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033278

[41] Q. Mortier, N.Schuch, F. Verstraete, J. Haegeman, ``Resolving Fermi surfaces with tensor networks'', arXiv:2008.11176.
arXiv:2008.11176

[42] D. Poilblanc, M. Mambrini, F. Alet, ``Finite-temperature symmetric tensor network for spin-1/​2 Heisenberg antiferromagnets on the square lattice'', SciPost Phys. 10, 019 (2021).
https:/​/​doi.org/​10.21468/​SciPostPhys.10.1.019

[43] B. Vanhecke, F. Verstraete, K. Van Acoleyen, ``Entanglement scaling for $\lambda \phi_2^4$'', arxiv.2104.10564.
arXiv:2104.10564

[44] F. Verstraete and J. I. Cirac, ``Continuous matrix product states for quantum fields'', Phys. Rev. Lett. 104, 190405 (2010).
https:/​/​doi.org/​10.1103/​PhysRevLett.104.190405

[45] J. Haegeman, T. J. Osborne, H. Verschelde and F. Verstraete, ``Entanglement renormalization for quantum fields in real space'', Phys. Rev. Lett. 110, 100402 (2013).
https:/​/​doi.org/​10.1103/​PhysRevLett.110.100402

[46] D. Jennings, C. Brockt, J. Haegeman, T. J. Osborne and F. Verstraete, ``Continuum tensor network field states, path integral representations and spatial symmetries'', New J. Phys. 17, 063039 (2015).
https:/​/​doi.org/​10.1088/​1367-2630/​17/​6/​063039

[47] A. Tilloy, J. I. Cirac ``Continuous Tensor Network States for Quantum Fields'', Phys. Rev. X 9, 021040 (2019).
https:/​/​doi.org/​10.1103/​PhysRevX.9.021040

[48] J. Cotlera, M. R. M. Mozaffar, A. Mollabashi, A. Naseh, ``Renormalization Group Circuits for Weakly Interacting Continuum Field Theories'', Fortschr. Phys. 67, 1900038 (2019).
https:/​/​doi.org/​10.1002/​prop.201900038

[49] Q. Hu, A. Franco-Rubio, G. Vidal, ``Continuous tensor network renormalization for quantum fields'', arXiv:1809.05176.
arXiv:1809.05176

[50] T. D. Karanikolaou, P. Emonts, A. Tilloy, ``Gaussian Continuous Tensor Network States for Simple Bosonic Field Theories'' Phys. Rev. Research 3, 023059 (2021). arXiv:2006.13143.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023059
arXiv:2006.13143

[51] A.E. B. Nielsen, B. Herwerth, J. I. Cirac, and G. Sierra, ``Field tensor network states'', Phys. Rev. B 103, 155130 (2021).
https:/​/​doi.org/​10.1103/​PhysRevB.103.155130

[52] A. Tilloy, ``Variational method in relativistic quantum field theory without cutoff'', Phys. Rev. D 104, L091904 (2021).
https:/​/​doi.org/​10.1103/​PhysRevD.104.L091904

[53] A. Tilloy, ``Relativistic continuous matrix product states for quantum fields without cutoff'', arXiv:2102.07741.
arXiv:2102.07741

[54] B. Swingle, ``Entanglement renormalization and holography'', Phys. Rev. D 86, 065007 (2012).
https:/​/​doi.org/​10.1103/​PhysRevD.86.065007

[55] J. I. Latorre and G. Sierra, ``Holographic codes'', arXiv:1502.06618.
arXiv:1502.06618

[56] F. Pastawski, B. Yoshida, D. Harlow, and John Preskill, ``Holographic quantum error-correcting codes: toy models for the bulk/​boundary correspondence'', J. High Energy Phys. 2015, 149, (2015).
https:/​/​doi.org/​10.1007/​JHEP06(2015)149

[57] J. Molina-Vilaplana, ``Information geometry of entanglement renormalization for free quantum fields'', J. High Energ. Phys. 2015, 2 (2015).
https:/​/​doi.org/​10.1007/​JHEP09(2015)002

[58] M. Miyaji, T. Numasawa, N. Shiba, T. Takayanagi, K. Watanabe, ``cMERA as Surface/​State Correspondence in AdS/​CFT'', Phys. Rev. Lett. 115, 171602 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.171602

[59] P. Caputa, N. Kundu, M. Miyaji, T. Takayanagi, and K. Watanabe, ``Liouville action as path-integral complexity: from continuous tensor networks to AdS/​CFT'', J. High Energy Phys. 2017, 97 (2017).
https:/​/​doi.org/​10.1007/​JHEP11(2017)097

[60] R. Vasseur, A. C. Potter, Y.-Z. You, A. W. W. Ludwig, ``Entanglement Transitions from Holographic Random Tensor Networks'', Phys. Rev. B 100, 134203 (2019).
https:/​/​doi.org/​10.1103/​PhysRevB.100.134203

[61] A. Jahn, J. Eisert, ``Holographic tensor network models and quantum error correction: A topical review'', Quantum Sci. Technol. 6 033002 (2021).
https:/​/​doi.org/​10.1088/​2058-9565/​ac0293

[62] https:/​/​github.com/​m-campos/​interacting-trg.
https:/​/​github.com/​m-campos/​interacting-trg

[63] K.G. Wilson, ``Group and Critical Phenomena. I. Renormalization Group and the Kadanoff Scaling Picture'', Phys. Rev. B 4, 3174 (1971).
https:/​/​doi.org/​10.1103/​PhysRevB.4.3174

[64] R. Shankar, ``Renormalization Group Approach to Interacting Fermions'', Rev. Mod. Phys. 66, 129 (1994).
https:/​/​doi.org/​10.1103/​RevModPhys.66.129

[65] M. Abramowitz, I. A. Stegun, ``Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables'', Applied Mathematics Series 55 , New York, Dover Publications (1970).
https:/​/​dl.acm.org/​doi/​10.5555/​1098650

Cited by

[1] Robert Maxton and Yannick Meurice, "Perturbative boundaries of quantum advantage: Real-time evolution for digitized λϕ4 lattice models", Physical Review D 107 7, 074508 (2023).

[2] Robert Maxton and Yannick Meurice, "Perturbative boundaries of quantum computing: real-time evolution for digitized lambda phi^4 lattice models", arXiv:2210.05493, (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2023-05-29 01:50:12) and SAO/NASA ADS (last updated successfully 2023-05-29 01:50:13). The list may be incomplete as not all publishers provide suitable and complete citation data.