On safe post-selection for Bell tests with ideal detectors: Causal diagram approach

Pawel Blasiak1, Ewa Borsuk1, and Marcin Markiewicz2

1Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland
2International Centre for Theory of Quantum Technologies, University of Gdańsk, PL-80308 Gdańsk, Poland

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Reasoning about Bell nonlocality from the correlations observed in post-selected data is always a matter of concern. This is because conditioning on the outcomes is a source of non-causal correlations, known as a $\textit{selection bias}$, rising doubts whether the conclusion concerns the actual causal process or maybe it is just an effect of processing the data. Yet, even in the idealised case without detection inefficiencies, post-selection is an integral part of experimental designs, not least because it is a part of the entanglement generation process itself. In this paper we discuss a broad class of scenarios with post-selection on multiple spatially distributed outcomes. A simple criterion is worked out, called the $\textit{all-but-one}$ principle, showing when the conclusions about nonlocality from breaking Bell inequalities with post-selected data remain in force. Generality of this result, attained by adopting the high-level diagrammatic tools of causal inference, provides safe grounds for systematic reasoning based on the standard form of multipartite Bell inequalities in a wide array of entanglement generation schemes, without worrying about the dangers of selection bias. In particular, it can be applied to post-selection defined by single-particle events in each detection chanel when the number of particles in the system is conserved.

► BibTeX data

► References

[1] J. S. Bell, Speakable and unspeakable in quantum mechanics (Cambridge University Press, 1987).

[2] H. M. Wiseman, ``The two Bell's theorems of John Bell,'' J. Phys. A: Math. Theor. 47, 424001 (2014).

[3] N. Brunner, D. Cavalcanti, S. Pironio, V. Scarani, and S. Wehner, ``Bell nonlocality,'' Rev. Mod. Phys. 86, 419 (2014).

[4] V. Scarani, Bell Nonlocality (Oxford University Press, 2019).

[5] A. Aspect, ``Closing the Door on Einstein and Bohr's Quantum Debate,'' Physics 8 (2015).

[6] A. Ekert and R. Renner, ``The ultimate physical limits of privacy,'' Nature 507, 443 (2014).

[7] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

[8] R. D. Gill, ``Statistics, Causality and Bell's Theorem,'' Statist. Sci. 29, 512 (2014).

[9] J.-A. Larsson, ``Loopholes in Bell inequality tests of local realism,'' J. Phys. A: Math. Gen. 47, 424003 (2014).

[10] J.-W. Pan, Z.-B. Chen, C.-Y. Lu, H. Weinfurter, A. Zeilinger, and M. Żukowski, ``Multiphoton entanglement and interferometry,'' Rev. Mod. Phys. 84, 777 (2012).

[11] M. Erhard, M. Krenn, and A. Zeilinger, ``Advances in high-dimensional quantum entanglement,'' Nat. Rev. Phys. 2, 365 (2020).

[12] J. Wang, F. Sciarrino, A. Laing, and M. G. Thompson, ``Integrated photonic quantum technologies,'' Nat. Photonics 14, 273 (2020).

[13] M. Żukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, ``''Event-Ready-Detectors'' Bell Experiment via Entanglement Swapping,'' Phys. Rev. Lett. 71, 4287 (1993).

[14] J. D. Franson, ``Bell inequality for position and time,'' Phys. Rev. Lett. 62, 2205 (1989).

[15] Q. Zhang, X.-H. Bao, C.-Y. Lu, X.-Q. Zhou, T. Yang, T. Rudolph, and J.-W. Pan, ``Demonstration of a scheme for the generation of ''event-ready'' entangled photon pairs from a single-photon source,'' Phys. Rev. A 77, 062316 (2008).

[16] M. Krenn, A. Hochrainer, M. Lahiri, and A. Zeilinger, ``Entanglement by Path Identity,'' Phys. Rev. Lett. 118, 080401 (2017).

[17] J. Kysela, M. Erhard, A. Hochrainer, M. Krenn, and A. Zeilinger, ``Path identity as a source of high-dimensional entanglement,'' Proc. Natl. Acad. Sci. U.S.A. 117, 26118 (2020).

[18] P. Blasiak and M. Markiewicz, ``Entangling three qubits without ever touching,'' Sci. Rep. 9, 20131 (2019).

[19] Y.-S. Kim, T. Pramanik, Y.-W. Cho, M. Yang, S.-W. Han, S.-Y. Lee, M.-S. Kang, and S. Moon, ``Informationally symmetrical Bell state preparation and measurement,'' Opt. Express 26, 29539 (2018).

[20] Y.-S. Kim, Y.-W. Cho, H.-T. Lim, and S.-W. Han, ``Efficient linear optical generation of a multipartite W state via a quantum eraser,'' Phys. Rev. A 101, 022337 (2020).

[21] P. Blasiak, E. Borsuk, M. Markiewicz, and Y.-S. Kim, ``Efficient linear-optical generation of a multipartite W state,'' Phys. Rev. A 104, 023701 (2021a).

[22] S. Stanisic, N. Linden, A. Montanaro, and P. S. Turner, ``Generating entanglement with linear optics,'' Phys. Rev. A 96, 043861 (2017).

[23] B. Bellomo, R. Lo Franco, and G. Compagno, ``N identical particles and one particle to entangle them all,'' Phys. Rev. A 96, 022319 (2017).

[24] A. Castellini, B. Bellomo, G. Compagno, and R. Lo Franco, ``Activating remote entanglement in a quantum network by local counting of identical particles,'' Phys. Rev. A 99, 062322 (2019).

[25] H.-S. Zhong, Y. Li, W. Li, L.-C. Peng, Z.-E. Su, Y. Hu, Y.-M. He, X. Ding, W. Zhang, H. Li, L. Zhang, Z. Wang, L. You, X.-L. Wang, X. Jiang, L. Li, Y.-A. Chen, N.-L. Liu, C.-Y. Lu, and J.-W. Pan, ``12-Photon entanglement and Scalable Scattershot Boson Sampling with Optimal Entangled-Photon Pairs from Parametric Down-Conversion,'' Phys. Rev. Lett. 121, 250505 (2018).

[26] H. Wang, J. Qin, X. Ding, M.-C. Chen, S. Chen, X. You, Y.-M. He, X. Jiang, L. You, Z. Wang, C. Schneider, J. J. Renema, S. Hofling, C.-Y. Lu, and J.-W. Pan, ``Boson Sampling with 20 Input Photons and a 60-Mode Interferometer in a $10^{14}$-Dimensional Hilbert Space Demonstration,'' Phys. Rev. Lett. 123, 250503 (2019).

[27] R. Lo Franco and G. Compagno, ``Indistinguishability of Elementary Systems as a Resource for Quantum Information Processing,'' Phys. Rev. Lett. 120, 240403 (2018).

[28] F. Nosrati, A. Castellini, G. Compagno, and R. Lo Franco, ``Robust entanglement preparation against noise by controlling spatial indistinguishability,'' npj Quantum Inf. 6, 39 (2020).

[29] K. Sun, A. Wang, Z.-H. Liu, X.-Y. Xu, J.-S. Xu, C.-F. Li, G.-C. Guo, A. Castellini, F. Nosrati, G. Compagno, and R. Lo Franco, ``Experimental quantum entanglement and teleportation by tuning remote spatial indistinguishability of independent photons,'' Opt. Lett. 23, 6410 (2020).

[30] M. R. Barros, S. Chin, T. Pramanik, H.-T. Lim, Y.-W. Cho, J. Huh, and Y.-S. Kim, ``Entangling Bosons through Particle Indistinguishability and Spatial Overlap,'' Opt. Express 28, 38083 (2020).

[31] J. Pearl, Causality: Models, Reasoning, and Inference, 2nd ed. (Cambridge University Press, 2009).

[32] P. Spirtes, C. Glymour, and R. Scheines, Causation, Prediction, and Search, 2nd ed. (MIT Press, 2000).

[33] J. Pearl, M. Glymour, and N. P. Jewell, Causal Inference in Statistics: A Primer (Wiley, 2016).

[34] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause and Effect (Basic Books, 2018).

[35] S. Popescu, L. Hardy, and M. Żukowski, ``Revisiting Bell's theorem for a class of down-conversion experiments,'' Phys. Rev. A 56, R4353 (1997).

[36] M. Żukowski, ``Violations of local realism in multiphoton interference experiments,'' Phys. Rev. A 61, 022109 (2000).

[37] F. Sciarrino, G. Vallone, A. Cabello, and P. Mataloni, ``Bell experiments with random destination sources,'' Phys. Rev. A 83, 032112 (2011).

[38] S. Aerts, P. Kwiat, J.-A. Larsson, and M. Zukowski, ``Two-Photon Franson-Type Experiments and Local Realism,'' Phys. Rev. Lett. 83, 2872 (1999).

[39] G. Lima, G. Vallone, A. Chiuri, A. Cabello, and P. Mataloni, ``Experimental Bell-inequality violation without the postselection loophole,'' Phys. Rev. A 81, 040101 (2010).

[40] G. Carvacho, J. Cariñe, G. Saavedra, Á. Cuevas, J. Fuenzalida, F. Toledo, M. Figueroa, A. Cabello, J.-A. Larsson, P. Mataloni, G. Lima, and G. B. Xavier, ``Postselection-Loophole-Free Bell Test Over an Installed Optical Fiber Network,'' Phys. Rev. Lett. 115, 030503 (2015).

[41] F. Vedovato, C. Agnesi, M. Tomasin, M. Avesani, J.-A. Larsson, G. Vallone, and P. Villoresi, ``Postselection-Loophole-Free Bell Violation with Genuine Time-Bin Entanglement,'' Phys. Rev. Lett. 121, 190401 (2018).

[42] H. Price, Time's Arrow and Archimedes' Point: New Directions for the Physics of Time (Oxford University Press, 1996).

[43] K. B. Wharton and N. Argaman, ``Colloquium: Bell's theorem and locally mediated reformulations of quantum mechanics,'' Rev. Mod. Phys. 92, 021002 (2020).

[44] P. Blasiak, E. M. Pothos, J. M. Yearsley, C. Gallus, and E. Borsuk, ``Violations of locality and free choice are equivalent resources in Bell experiments,'' Proc. Natl. Acad. Sci. USA 118, e2020569118 (2021b).

[45] C. J. Wood and R. W. Spekkens, ``The lesson of causal discovery algorithms for quantum correlations: causal explanations of Bell-inequality violations require fine-tuning,'' New J. Phys. 17, 033002 (2015).

[46] R. Chaves, R. Kueng, J. B. Brask, and D. Gross, ``Unifying Framework for Relaxations of the Causal Assumptions in Bell's Theorem,'' Phys. Rev. Lett. 114, 140403 (2015).

[47] K. Ried, M. Agnew, L. Vermeyden, D. Janzing, R. W. Spekkens, and K. J. Resch, ``A quantum advantage for inferring causal structure,'' Nature Phys. (2015).

[48] M. Ringbauer, C. Giarmatzi, R. Chaves, F. Costa, A. G. White, and A. Fedrizzi, ``Experimental test of nonlocal causality,'' Sci. Adv. 2, e1600162 (2016).

[49] J.-M. A. Allen, J. Barrett, D. Horsman, C. M. Lee, and R. W. Spekkens, ``Quantum Common Causes and Quantum Causal Models,'' Phys. Rev. X 7, 031021 (2017).

[50] R. Chaves, G. B. Lemos, and J. Pienaar, ``Causal Modeling the Delayed-Choice Experiment,'' Phys. Rev. Lett. 120, 190401 (2018a).

[51] R. Chaves, G. Carvacho, I. Agresti, V. Di Giulio, L. Aolita, S. Giacomini, and F. Sciarrino, ``Quantum violation of an instrumental test,'' Nature Phys. 14, 291 (2018b).

[52] E. G. Cavalcanti, ``Classical Causal Models for Bell and Kochen-Specker inequality Violations Require Fine-Tuning,'' Phys. Rev. X 8, 021018 (2018).

[53] P. Blasiak and E. Borsuk, ``Causal reappraisal of the quantum three box paradox,'' arXiv: 2107.13937 (2021).

Cited by

[1] Pawel Blasiak and Ewa Borsuk, "Causal reappraisal of the quantum three-box paradox", Physical Review A 105 1, 012207 (2022).

[2] Huw Price and Ken Wharton, "Entanglement Swapping and Action at a Distance", Foundations of Physics 51 6, 105 (2021).

[3] Liang Huang, Xue-Mei Gu, Yang-Fan Jiang, Dian Wu, Bing Bai, Ming-Cheng Chen, Qi-Chao Sun, Jun Zhang, Sixia Yu, Qiang Zhang, Chao-Yang Lu, and Jian-Wei Pan, "Experimental Demonstration of Genuine Tripartite Nonlocality under Strict Locality Conditions", Physical Review Letters 129 6, 060401 (2022).

[4] Valentin Gebhart, "Creating nonlocality using geometric phases between partially distinguishable photons", Physical Review A 107 6, 062420 (2023).

[5] Valentin Gebhart and Augusto Smerzi, "Coincidence postselection for genuine multipartite nonlocality: Causal diagrams and threshold efficiencies", Physical Review A 106 6, 062202 (2022).

[6] Valentin Gebhart and Augusto Smerzi, "Extending the fair sampling assumption using causal diagrams", Quantum 7, 897 (2023).

[7] Seungbeom Chin, Yong-Su Kim, and Sangmin Lee, "Graph Picture of Linear Quantum Networks and Entanglement", Quantum 5, 611 (2021).

[8] Pawel Blasiak, Ewa Borsuk, and Marcin Markiewicz, "Arbitrary entanglement of three qubits via linear optics", Scientific Reports 12 1, 21596 (2022).

[9] Valentin Gebhart, Luca Pezzè, and Augusto Smerzi, "Genuine Multipartite Nonlocality with Causal-Diagram Postselection", Physical Review Letters 127 14, 140401 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-03-02 20:07:24) and SAO/NASA ADS (last updated successfully 2024-03-02 20:07:25). The list may be incomplete as not all publishers provide suitable and complete citation data.