
High-precision quantum algorithms for
partial differential equations
Andrew M. Childs1,2,3, Jin-Peng Liu1,2,4, and Aaron Ostrander1,2,5

1Joint Center for Quantum Information and Computer Science, University of Maryland, MD 20742, USA
2Institute for Advanced Computer Studies, University of Maryland, MD 20742, USA
3Department of Computer Science, University of Maryland, MD 20742, USA
4Department of Mathematics, University of Maryland, MD 20742, USA
5Department of Physics, University of Maryland, MD 20742, USA

Quantum computers can produce a quantum encoding of the solution of a
system of differential equations exponentially faster than a classical algorithm
can produce an explicit description. However, while high-precision quantum al-
gorithms for linear ordinary differential equations are well established, the best
previous quantum algorithms for linear partial differential equations (PDEs)
have complexity poly(1/ε), where ε is the error tolerance. By developing quan-
tum algorithms based on adaptive-order finite difference methods and spectral
methods, we improve the complexity of quantum algorithms for linear PDEs
to be poly(d, log(1/ε)), where d is the spatial dimension. Our algorithms apply
high-precision quantum linear system algorithms to systems whose condition
numbers and approximation errors we bound. We develop a finite difference
algorithm for the Poisson equation and a spectral algorithm for more general
second-order elliptic equations.

1 Introduction
Many scientific problems involve partial differential equations (PDEs). Prominent ex-
amples include Maxwell’s equations for electromagnetism, Boltzmann’s equation and the
Fokker-Planck equation in thermodynamics, and Schrödinger’s equation in continuum
quantum mechanics. While models of physics are often studied in a constant number of
spatial dimensions, it is also natural to study high-dimensional PDEs, such as to model
systems with many interacting particles. Classical numerical methods have complexity
that grows exponentially in the dimension, a phenomenon sometimes called the curse of
dimensionality [2]. This is a major challenge for attempts to solve PDEs on classical
computers.

A common approach to solving PDEs on a digital computer is the finite difference
method (FDM). In this approach, we discretize space into a rectangular lattice, solve a
system of linear equations that approximates the PDE on the lattice, and output the
solution on those grid points. If each spatial coordinate has n discrete values, then nd

points are needed to discretize a d-dimensional problem. Simply outputting the solution
on these grid points takes time Ω(nd).

Beyond uniform grids, the sparse grid technique [32] has been applied to reduce the
time and space complexity of outputting a sparse encoding of the solution to O(n logd n)
[6, 39]. While this is a significant improvement, it still scales exponentially in d. It can be

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 1

ar
X

iv
:2

00
2.

07
86

8v
2

 [
qu

an
t-

ph
]

 4
 N

ov
 2

02
1

https://quantum-journal.org/?s=High-precision%20quantum%20algorithms%20for%20\newline%20partial%20differential%20equations&reason=title-click
https://quantum-journal.org/?s=High-precision%20quantum%20algorithms%20for%20\newline%20partial%20differential%20equations&reason=title-click

shown that for a grid-based approach this complexity is optimal with respect to certain
norms [6]. Reference [6] proposes alternative sparse grid algorithms whose complexities
scale linearly with n but exponentially with d. Another grid-based method is the finite
element method (FEM), where the differential equation is multiplied by functions with
local support (restricted by the grid) and then integrated. This produces a set of equations
that the solution must satisfy, which are then used to approximate the solution. In yet
another grid-based approach, the finite volume method (FVM) considers a grid dividing
space into volumes/cells. The field is integrated over these volumes to create auxiliary
variables, and relations between these variables are derived from the differential equation.

An alternative to grid methods is the concept of spectral methods [15, 28]. Spectral
methods use linear combinations of basis functions (such as Fourier basis states or Cheby-
shev polynomials) to globally approximate the solution. These basis functions allow the
construction of a linear system whose solution approximates the solution of the PDE.

These classical algorithms often consider the problem of outputting the solution at N
points in space, which clearly requires Ω(N) space and time. Quantum algorithms often
(though not always) consider the alternative problem of outputting a quantum state pro-
portional to such a vector, which requires only Ω(logN) space—and correspondingly pro-
vides more limited access to the solution—but can potentially be done in only poly(logN)
time.

The fact that quantum states can efficiently encode exponentially long vectors has
also been leveraged for the development of quantum linear system algorithms (QLSAs)
[1, 8, 16]. For a linear system A~x = ~b, a QLSA outputs a quantum state proportional to
the solution ~x. To learn information about the solution ~x, the output of the QLSA must
be post-processed. For example, to output all the entries of an N -dimensional vector ~x
given a quantum state |x〉 proportional to it, even a quantum computer needs time and
space Ω(N).

Because linear systems are often used in classical algorithms for PDEs such as those
described above, it is natural to consider their quantum counterparts. Clader, Jacobs, and
Sprouse [10] give a heuristic algorithm for using sparse preconditioners and QLSAs to solve
a linear system constructed using the FEM for Maxwell’s equations. The state output by
the QLSA is then post-processed to compute electromagnetic scattering cross-sections.

In subsequent work, Montanaro and Pallister [22] use QLSAs to implement the FEM
for d-dimensional boundary value problems and evaluate the quantum speedup that can
be achieved when estimating a function of the solution within precision ε. This involves a
careful analysis of how different algorithmic parameters (such as the dimension and condi-
tion number of the FEM linear system and the number of post-processing measurements)
scale with respect to input variables (such as the spatial dimension d and desired precision
ε), since all of these affect the complexity. Their algorithms have complexity poly(d, 1/ε),
compared to O((1/ε)d) for the classical FEM. This exponential improvement with respect
to d suggests that quantum algorithms may be notably faster when d is large. However,
they also argue that for fixed d, at most a polynomial speed-up can be expected due to
lower bounds on the cost of post-processing the state to estimate a function of the solution.

The FDM has also been used in quantum algorithms for PDEs. References [7, 35] apply
the FDM to solve Poisson’s equation in rectangular volumes under Dirichlet boundary con-
ditions. Although the circuits they construct have poly(log(1/ε)) gates, these circuits have
success probability poly(1/ε), leading to poly(1/ε) time complexity. Additionally, they do
not quantify errors resulting from the finite-difference approximation. Reference [12] ap-
plies the FDM to the problem of outputting states proportional to solutions of the wave
equation, giving complexity d

5
2 poly(1/ε), a polynomial dependence on d and 1/ε (which

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 2

is poly(n) for a fixed-order FDM). The FVM is combined with the reservoir method in
Reference [14] to simulate hyperbolic equations; although they achieve linear scaling with
respect to the spatial dimension, they use fixed order differences, leading to poly(1/ε) scal-
ing. These FDM, FEM, and FVM approaches can only give a total complexity poly(1/ε),
even using high-precision methods for the QLSA or Hamiltonian simulation, because of
the additional approximation errors in the FDM, FEM, and FVM.

The FDM is also applied in Reference [18] to simulate how a fixed number of particles
evolve under the Schrödinger equation with access to an oracle for the potential term.
This can be seen as a special case of quantum algorithms for PDEs. Other examples
include quantum algorithms for many-body quantum dynamics [37, 38] and for electronic
structure problems, including for quantum chemistry (see for example References [20, 25]).
However, here we focus on PDEs whose dynamics are not necessarily unitary.

In this paper, we propose new quantum algorithms for linear PDEs where the boundary
is the unit hypercube. In the spirit of Reference [22], we state our results in terms of the
approximation error and the spatial dimension; however, we do not consider the problem of
estimating a function of the PDE solution and instead focus on outputting states encoding
the solution, allowing us to give algorithms with complexity poly(log(1/ε)). Just as for the
QLSA, this improvement is potentially significant if the given equations must be solved as
a subroutine within some larger computation. The problem we address can be informally
stated as follows: Given a linear PDE with boundary conditions and an error parameter
ε, output a quantum state that is ε-close to one whose amplitudes are proportional to the
solution of the PDE at a set of grid points in the domain of the PDE. We focus on elliptic
PDEs, and we assume a technical condition that we call global strict diagonal dominance
(defined in (2.8)).

Our first algorithm is based on a quantum version of the FDM approach: we use a
finite-difference approximation to produce a system of linear equations and then solve that
system using the QLSA. We analyze our FDM algorithm as applied to Poisson’s equation
(which automatically satisfies global strict diagonal dominance) under periodic, Dirichlet,
and Neumann boundary conditions. Whereas previous FDM approaches [7, 12] considered
fixed orders of truncation, we adapt the order of truncation depending on ε, inspired
by the classical adaptive FDM [3]. As the order increases, the eigenvalues of the FDM
matrix approach the eigenvalues of the continuous Laplacian, allowing for more precise
approximations. The main algorithm we present uses the quantum Fourier transform
(QFT) and takes advantage of the high-precision LCU-based QLSA [8]. We first consider
periodic boundary conditions, but by restricting to appropriate subspaces, this approach
can also be applied to homogeneous Dirichlet and Neumann boundary conditions. We
state our result in Theorem 1, which (informally) says that this quantum adaptive FDM
approach produces a quantum state approximating the solution of Poisson’s equation with
complexity d6.5 poly(log d, log(1/ε)).

We also propose a quantum algorithm for more general second-order elliptic PDEs
under periodic or non-periodic Dirichlet boundary conditions. This algorithm is based on
quantum spectral methods [9]. The spectral method globally approximates the solution
of a PDE by a truncated Fourier or Chebyshev series (which converges exponentially
for smooth functions) with undetermined coefficients, and then finds the coefficients by
solving a linear system. This system is exponentially large in d, so solving it is infeasible
for classical algorithms but feasible in a quantum context. To be able to apply the QLSA
efficiently, we show how to make the system sparse using variants of the quantum Fourier
transform. Our bound on the condition number of the linear system uses global strict
diagonal dominance, and introduces a factor in the complexity that measures the extent

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 3

Algorithm Equation Boundary conditions Complexity
C

la
ss

ic
al

FDM/FEM/FVM general general poly((1/ε)d)
Adaptive FDM/FEM [3] general general poly((log (1/ε))d)
Spectral method [15, 28] general general poly((log (1/ε))d)

Sparse grid FDM/FEM [6, 39] general general poly((1/ε)(log(1/ε))d)
Sparse grid spectral method [29, 30] elliptic general poly(log (1/ε)(log log(1/ε))d)

Q
ua

nt
um

FEM [22] Poisson homogeneous poly(d, 1/ε)
FDM [7] Poisson homogeneous Dirichlet d poly(log d, 1/ε)
FDM [12] wave homogeneous d5/2 poly(1/ε)
FVM [14] hyperbolic periodic dpoly(1/ε)

Adaptive FDM [this paper] Poisson periodic, homogeneous d13/2 poly(log d, log (1/ε))
Spectral method [this paper] Poisson homogeneous Dirichlet dpoly (log d, log (1/ε))
Spectral method [this paper] elliptic inhomogeneous Dirichlet d2 poly (log (1/ε))

Table 1: Summary of the time complexities of classical and quantum algorithms for d-dimensional
PDEs with error tolerance ε. Portions of the complexity in bold represent best known dependence
on that parameter.

to which this condition holds. We state our result in Theorem 2, which (informally) gives a
complexity of d2 poly(log(1/ε)) for producing a quantum state approximating the solution
of general second-order elliptic PDEs with Dirichlet boundary conditions.

Both of these approaches have complexity poly(d, log(1/ε)), providing optimal depen-
dence on ε and an exponential improvement over classical methods as a function of the
spatial dimension d. Bounding the complexities of these algorithms requires analyzing
how d and ε affect the condition numbers of the relevant linear systems (finite differ-
ence matrices and matrices relating the spectral coefficients) and accounting for errors in
the approximate solution provided by the QLSA. Furthermore, the complexities of both
approaches scale logarithmically with high-order derivatives of the solution and the inho-
mogeneity. The detailed complexity dependence is presented in Theorem 1 and Theorem 2,
and is further discussed in Section 5.

Table 1 compares the performance of our approaches to other classical and quantum
algorithms for PDEs. Compared to classical algorithms, quantum algorithms improve
the dependence on spatial dimension from exponential to polynomial (with the significant
caveat that they produce a different representation of the solution). Compared to previous
quantum FDM/FEM/FVM algorithms [7, 12, 14, 22], the quantum adaptive FDM and
quantum spectral method improve the error dependence from poly(1/ε) to poly(log(1/ε)).
Our approaches achieve the best known dependence on the parameter ε for the Poisson
equation with homogeneous boundary conditions. Furthermore, our quantum spectral
method approach not only achieves the best known dependence on d and ε for elliptic PDEs
with inhomogeneous Dirichlet boundary conditions, but also improves the dependence on d
for the Poisson equation with inhomogeneous Dirichlet boundary conditions, as compared
to previous quantum algorithms.

The remainder of the paper is structured as follows. Section 2 introduces technical
details about linear PDEs and formally states the problem we solve. Section 3 covers our
FDM algorithm for Poisson’s equation. Section 4 details the spectral algorithm for elliptic
PDEs. Finally, Section 5 concludes with a brief discussion of the results, their possible
applications, and some open problems.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 4

2 Linear PDEs
In this paper, we focus on systems of linear PDEs. Such equations can be written in the
form

L (u(x)) = f(x), (2.1)

where the variable x = (x1, . . . , xd) ∈ Cd is a d-dimensional vector, the solution u(x) ∈ C
and the inhomogeneity f(x) ∈ C are scalar functions, and L is a linear differential
operator acting on u(x). In general, L can be written in a linear combination of u(x)
and its derivatives. A linear differential operator L of order h has the form

L (u(x)) =
∑
‖j‖1≤h

Aj(x) ∂
j

∂xj
u(x), (2.2)

where j = (j1, . . . , jd) is a d-dimensional non-negative vector with ‖j‖1 = j1 + · · ·+jd ≤ h,
Aj(x) ∈ C, and

∂j

∂xj
u(x) = ∂j1

∂xj11
· · · ∂

jd

∂xjdd
u(x). (2.3)

The problem reduces to a system of linear ordinary differential equations (ODEs) when
d = 1. For d ≥ 2, we call (2.1) a (multi-dimensional) PDE.

For example, systems of first-order linear PDEs can be written in the form

d∑
j=1

Aj(x)∂u(x)
∂xj

+A0(x)u(x) = f(x), (2.4)

where Aj(x), A0(x), f(x) ∈ C for j ∈ [d] := {1, . . . , d}. Similarly, systems of second-order
linear PDEs can be expressed in the form

d∑
j1,j2=1

Aj1j2(x) ∂
2u(x)

∂xj1∂xj2
+

d∑
j=1

Aj(x)∂u(x)
∂xj

+A0(x)u(x) = f(x), (2.5)

where Aj1,j2(x), Aj(x), A0(x), f(x) ∈ C for j1, j2, j ∈ [d]. A well-known second-order
linear PDEs is the Poisson equation

∆u(x) :=
d∑
j=1

∂2

∂x2
j

u(x) = f(x). (2.6)

A linear PDE of order h is called elliptic if its differential operator (2.2) satisfies∑
‖j‖1=h

Aj(x)ξj 6= 0, (2.7)

for all nonzero ξj = ξj11 . . . ξjdd with ξ1, . . . , ξd ∈ Rm and all x. Note that ellipticity only
depends on the highest-order terms. When h = 2, the linear PDE (2.5) is called a second-
order elliptic PDE if and only if Aj1j2(x) is positive-definite or negative-definite for any
x. In particular, the Poisson equation (2.6) is a second-order elliptic PDE.

We consider a class of elliptic PDEs that also satisfy the condition

C := 1−
d∑

j1=1

1
|Aj1,j1(x)|

∑
j2∈[d]\{j1}

|Aj1,j2(x)| > 0 (2.8)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 5

for all x. We call this condition global strict diagonal dominance, since it is a strengthening
of the standard (strict) diagonal dominance condition

d−
d∑

j1=1

1
|Aj1,j1(x)|

∑
j2∈[d]\{j1}

|Aj1,j2(x)| > 0. (2.9)

Observe that (2.8) holds for the Poisson equation (2.6) with C = 1.
In this paper, we focus on the following boundary value problem:

Problem 1. In the quantum PDE problem, we are given a system of second-order elliptic
equations

L (u(x)) =
∑
‖j‖1=2

Aj
∂j

∂xj
u(x) =

d∑
j1,j2=1

Aj1j2
∂2u(x)
∂xj1∂xj2

= f(x) (2.10)

satisfying the global strict diagonal dominance condition (2.8), where the variable x =
(x1, . . . , xd) ∈ D = [−1, 1]d is a d-dimensional vector, the inhomogeneity f(x) ∈ C is a
scalar function of x satisfying f(x) ∈ C∞, and the linear coefficients Aj ∈ C. We are also
given boundary conditions u(x) = γ(x) ∈ ∂D or ∂u(x)

∂xj

∣∣
xj=±1 = γ(x)|xj=±1 ∈ ∂D where

γ(x) ∈ C∞. We assume there exists a weak solution û(x) ∈ C for the boundary value
problem (see Reference [13, Section 6.1.2]). Given oracles that compute the coefficients
Aj, and that prepare normalized states |γ(x)〉 and |f(x)〉 whose amplitudes are proportional
to γ(x) and f(x) on a set of interpolation nodes x, the goal is to output a quantum state
|u(x)〉 whose amplitudes are proportional to u(x) on a set of interpolation nodes x.

3 Finite difference method
We now describe our first approach to quantum algorithms for linear PDEs, based on the
finite difference method (FDM). Using this approach, we show the following.

Theorem 1. There exists a quantum algorithm that outputs a state ε-close to |u〉 that
runs in time

Õ

(
d6.5 log4.5

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)
√

log
[
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)/ε]) (3.1)

and makes

Õ

(
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)
√

log
[
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)/ε]) (3.2)

queries to the oracle for ~f .

To show this, we first construct a linear system corresponding to the finite difference
approximation of Poisson’s equation with periodic boundary conditions and bound the
error of this high-order FDM in Section 3.1 (Lemma 1). Then we bound the condition
number of this system in Section 3.2 (Lemma 2 and Lemma 3) and bound the error of
approximation in Section 3.3 (Lemma 4). We use these results to give an efficient quantum
algorithm in Section 3.4, establishing Theorem 1. We conclude by discussing how to use the
method of images to apply this algorithm for Neumann and Dirichlet boundary conditions
in Section 3.5.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 6

The FDM approximates the derivative of a function f at a point x in terms of the values
of f on a finite set of points near x. Generally there are no restrictions on where these
points are located relative to x, but they are typically taken to be uniformly spaced points
with respect to a certain coordinate. This corresponds to discretizing [−1, 1]d (or [0, 2π)d)
to a d-dimensional rectangular lattice (where we use periodic boundary conditions).

For a scalar field, in which u(x) ∈ C, the canonical elliptic PDE is Poisson’s equation
(2.6), which we consider solving on [0, 2π)d with periodic boundary conditions. This also
implies results for the domain Ω = [−1, 1]d under Dirichlet (u(∂Ω) = 0) and Neumann
(n̂·∇u(∂Ω) = 0 where n̂ denotes the normal direction to ∂Ω, which for domain Ω = [−1, 1]d
is equivalent to ∂u

∂xj

∣∣
xj=±1 = 0 for j ∈ [d]) boundary conditions.

3.1 Linear system
To approximate the second derivatives appearing in Poisson’s equation, we apply the
central finite difference formula of order 2k. Taking xj = jh for a lattice with spacing h,
this formula gives the approximation

f ′′(0) ≈ 1
h2

k∑
j=−k

rjf(jh) (3.3)

where the coefficients are [18, 21]

rj :=


2(−1)j+1(k!)2

j2(k−j)!(k+j)! j ∈ [k]
−2
∑k
j=1 rj j = 0

r−j j ∈ −[k].
(3.4)

We leave the dependence on k implicit in this notation. The following lemma characterizes
the error of this formula.

Lemma 1 ([18, Theorem 7]). Let k ≥ 1 and suppose f(x) ∈ C2k+1 for x ∈ R. Define the
coefficients rj as in (3.4). Then

d2u(x0)
dx2 = 1

h2

k∑
j=−k

rjf(x0 + jh) +O
(∣∣∣d2k+1u

dx2k+1

∣∣∣(eh2
)2k−1)

(3.5)

where ∣∣∣d2k+1u

dx2k+1

∣∣∣ := max
y∈[x0−kh,x0+kh]

∣∣∣d2k+1u

dx2k+1 (y)
∣∣∣. (3.6)

Since we assume periodic boundary conditions and apply the same FDM formula at
each lattice site, the matrices we consider are circulant. Define the 2n × 2n matrix S
to have entries Si,j = δi,j+1 mod 2n. If we represent the solution u(x) as a vector ~u =∑2n
j=1 u(πj/n)~ej , then we can approximate Poisson’s equation using a central difference

formula as

1
h2L~u = 1

h2

(
r0I +

k∑
j=1

rj(Sj + S−j)
)
~u = ~f (3.7)

where ~f =
∑2n
j=1 f(πj/n)~ej . The solution ~u corresponds exactly with the quantum state

we want to produce, so we do not have to perform any post-processing such as in Refer-
ence [12] and other quantum differential equation algorithms. The matrix in this linear
system is just the finite difference matrix, so it suffices to bound its condition number and
approximation error (whereas previous quantum algorithms involved more complicated
linear systems).

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 7

3.2 Condition number
The following lemma characterizes the condition number of a circulant Laplacian on 2n
points.

Lemma 2. For k < (6/π2)1/3n2/3, the matrix L = r0I +
∑k
j=1 rj(Sj + S−j) with rj as in

(3.4) has condition number κ(L) = O(n2).

Proof. We first upper bound ‖L‖ using Gershgorin’s circle theorem [17] (a similar argu-
ment appears in Reference [18]). Note that

|rj | =
2(k!)2

j2(k − j)!(k + j)! ≤
2
j2 (3.8)

since

(k!)2

(k − j)!(k + j)! = k(k − 1) · · · (k − j + 1)
(k + j)(k + j − 1) · · · (k + 1) < 1. (3.9)

The radii of the Gershgorin discs are

2
k∑
j=1
|rj | ≤ 2

k∑
j=1

2
j2 ≤

2π2

3 . (3.10)

The discs are centered at r0, and

|r0| ≤ 2
k∑
j=1
|rj | ≤

2π2

3 , (3.11)

so ‖L‖ ≤ 4π2

3 .
To lower bound ‖L−1‖ we lower bound the (absolute value of the) smallest non-zero

eigenvalue of L (since by construction the all-ones vector is a zero eigenvector). Let
ω := exp(πi/n). Since L is circulant, its eigenvalues are

λl = r0 +
k∑
j=1

rj(ωlj + ω−lj) (3.12)

= r0 +
k∑
j=1

2rj cos
(πlj
n

)
(3.13)

= r0 +
k∑
j=1

2rj

(
1− π2l2j2

2n2 + (πcj)4

4!n4 cos
(
πcj
n

))
(3.14)

=
k∑
j=1

2rj

(
−π

2l2j2

2n2 + (πcj)4

4!n4 cos
(
πcj
n

))
(3.15)

where the cj ∈ [0, lj] arise from the Taylor remainder theorem. Using (3.8), we have

∣∣∣∣λ1 + π2

n2

k∑
j=1

rjj
2
∣∣∣∣ ≤ π4k3

6n4 . (3.16)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 8

We now compute the sum

−
k∑
j=1

rjj
2 =

k∑
j=1

j2 2(−1)j(k!)2

j2(k + j)!(k − j)! (3.17)

= 2(k!)2
k∑
j=1

(−1)j

(k + j)!(k − j)! (3.18)

= 2(k!)2

(2k)!

k∑
j=1

(−1)j
(

2k
k + j

)
(3.19)

= 2(k!)2

(2k)!

2k∑
j=k+1

(−1)j+k
(

2k
j

)
(3.20)

= (−1)k (k!)2

(2k)!

2k∑
j=0, j 6=k

(−1)j
(

2k
j

)
(3.21)

= (−1)k (k!)2

(2k)!

(
(1− 1)2k − (−1)k

(
2k
k

))
(3.22)

= −1. (3.23)

Therefore, we have

λ1 ≤ −
π2

n2 + π4k3

6n4 . (3.24)

Finally, we see that

κ(L) = ‖L‖‖L−1‖ (3.25)

≤ 4π2

3
(π2

n2 −
π4k3

6n4

)−1
(3.26)

= 4
3n

2
(
1− π2k3

6n2

)−1
(3.27)

which is O(n2) provided k < (6/π2)1/3n2/3.

In d dimensions, a similar analysis holds.

Lemma 3. For k < (6/π2)1/3n2/3, let L := r0I +
∑k
j=1 rj(Sj + S−j) with rj as in (3.4).

The matrix L′ := L ⊗ I⊗d−1 + I ⊗ L ⊗ I⊗d−2 + · · · + I⊗d−1 ⊗ L has condition number
κ(L′) = O(dn2).

Proof. By the triangle inequality for spectral norms, ‖L′‖ ≤ d‖L‖. Since L has zero-sum
rows by construction, the all-ones vector lies in its kernel, and thus the smallest non-zero
eigenvalue of L is the same as that of L′. Therefore we have

κ(L′) ≤ 4
3dn

2
(
1− π2k3

6n2

)−1
(3.28)

which is O(dn2) provided k < (6/π2)1/3n2/3.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 9

3.3 Error analysis
There are two types of error relevant to our analysis: the FDM error and the QLSA error.
We assume that we are able to perfectly generate states proportional to ~f . The FDM
errors arise from the remainder terms in the finite difference formulas and from inexact
approximations of the eigenvalues.

We introduce several states for the purpose of error analysis. Let |u〉 be the quantum
state that is proportional to ~u =

∑
j∈Zd2n

u(πj/n)
⊗d
i=1 eji for the exact solution of the

differential equation. Let |ū〉 be the state output by a QLSA that exactly solves the linear
system. Let |ũ〉 be the state output by a QLSA with error. Then the total error of
approximating |u〉 by |ũ〉 is bounded by

‖|u〉 − |ũ〉‖ ≤ ‖|u〉 − |ū〉‖+ ‖|ū〉 − |ũ〉‖ (3.29)
= εFDM + εQLSA (3.30)

and without loss of generality we can take εFDM and εQLSA to be of the same order of
magnitude.

Lemma 4. Let u(~x) be the exact solution of (
∑d
i=1

d2

dx2
i
)u(~x) = f(~x). Let ~u ∈ R(2n)d

encode the exact solution in the sense that ~u =
∑
j∈Zd2n

u(πj/n)
⊗d
i=1 eji. Let ū ∈ R(2n)d

be the exact solution of the FDM linear system 1
h2L

′ū = ~f , where L′ is a d-dimensional
(2k)th-order Laplacian as above with k < (6/π2)1/3n3/2, and ~f =

∑2n
j=1 f(πj/n)~ej. Then

‖~u− ū‖ ≤ O(2d/2n(d/2)−2k+1∣∣d2k+1u
dx2k+1

∣∣(e2/4)k).

Proof. The remainder term of the central difference formula is O(
∣∣d2k+1u
dx2k+1

∣∣h2k−1(e/2)2k),
so

1
h2L

′~u = ~f +O
(∣∣∣d2k+1u

dx2k+1

∣∣∣(eh/2)2k−1
)
~ε (3.31)

where ~ε is a (2n)d dimensional vector whose entries are O(1). This implies

1
h2L

′(~u− ū) = O
(∣∣∣d2k+1u

dx2k+1

∣∣∣(eh/2)2k−1
)
~ε (3.32)

and therefore

‖~u− ū‖ = O
(∣∣∣d2k+1u

dx2k+1

∣∣∣(eh/2)2k+1
)
‖(L′)−1~ε‖ (3.33)

= O
(
(2n)d/2

∣∣∣d2k+1u

dx2k+1

∣∣∣(eh/2)2k+1/λ1
)
. (3.34)

By Lemma 2 we have λ1 = Θ(1/n2), and since h = Θ(1/n), we have

‖~u− ū‖ = O
(
2d/2n(d/2)−2k+1

∣∣∣d2k+1u

dx2k+1

∣∣∣(e/2)2k
)

(3.35)

as claimed.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 10

3.4 FDM algorithm
To apply QLSAs, we must consider the complexity of simulating Hamiltonians that cor-
respond to Laplacian FDM operators. For periodic boundary conditions, the Laplacians
are circulant, so they can be diagonalized by the QFT F (or a tensor product of QFTs for
the multi-dimensional Laplacian L′), i.e., D = F †LF is diagonal. In this case the simplest
way to simulate exp(iLt) is to perform the inverse QFT, apply controlled phase rotations
to implement exp(iDt), and perform the QFT. Reference [27] shows how to exactly im-
plement arbitrary diagonal unitaries on m qubits using O(2m) gates. Since we consider
Laplacians on n lattice sites, simulating exp(iLt) takes O(n) gates with the dominant con-
tribution coming from the phase rotations (alternatively, the methods of Reference [36]
or Reference [4] could also be used). Using this Hamiltonian simulation algorithm in a
QLSA for the FDM linear system gives us the following theorem. We restate Theorem 1
as follows.

Theorem 1. There exists a quantum algorithm that outputs a state ε-close to |u〉 that
runs in time

Õ

(
d6.5 log4.5

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)
√

log
[
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)/ε]) (3.1)

and makes

Õ

(
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)
√

log
[
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)/ε]) (3.2)

queries to the oracle for ~f .

Proof. We use the Fourier series based QLSA from Reference [8]. By Theorem 3 of
that work, the QLSA makes O(κ

√
log(κ/εQLSA)) uses of a Hamiltonian simulation al-

gorithm and uses of the oracle for the inhomogeneity. For Hamiltonian simulation we
use d parallel QFTs and phase rotations as described in Reference [27], for a total of
O(dnκ

√
log(κ/εQLSA)) gates. The condition number for the d-dimensional Laplacian scales

as κ = O(dn2).
We take εFDM and εQLSA to be of the same order and just write ε. Then the QLSA

has time complexity O(d2n3√log(dn2/ε)) and query complexity O(dn2 log(dn2/ε)). The
adjustable parameters are the number of lattice sites n and the order 2k of the finite
difference formula. To keep the error below the target error of ε we require

2d/2n(d/2)−2k+1
∣∣∣d2k+1u

dx2k+1

∣∣∣(e/2)2k = O(ε), (3.36)

or equivalently,

(−d/2) + (2k − 1− (d/2)) log(n)− 2k log(e/2) = Ω
(
log
(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)). (3.37)

Now we focus on the choice of adjustable n and k relying on ε. This procedure is inspired
by the classical adaptive FDM [3], so we call it the adaptive FDM approach. We must
have 2k − 1 > d/2 for the left-hand side of (3.37) to be positive for large n. Indeed, we
find the best performance by taking k as large as possible subject to the assumption of

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 11

Lemma 2, i.e., k = cn2/3 where c := (6/π2)1/3. For this choice of k and for n sufficiently
large, (3.37) is equivalent to

k log(n) = cn2/3 log(n) = Ω
(
log
(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)). (3.38)

To satisfy the condition 2cn2/3 − 1 > d/2, we must have n = Ω(d3/2). Combining this
observation with (3.38), we choose

n = Θ
(
d3/2 log3/2

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)) (3.39)

so that

k = cn2/3 = Θ
(
d log

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)). (3.40)

The QLSA then has the stated time complexity

Õ(d2n3
√

log(dn2/ε)) = O

(
d6.5 log4.5

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)
√

log
[
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)/ε]), (3.41)

and makes

Õ(dn2 log(dn2/ε)) = O

(
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)
√

log
[
d4 log3

(∣∣∣d2k+1u

dx2k+1

∣∣∣/ε)/ε]). (3.42)

queries to the oracle for ~f .

This can be compared to the cost of using the conjugate gradient method to solve the
same linear system classically. The sparse conjugate gradient algorithm for an N × N
matrix has time complexity O(Ns

√
κ log(1/ε)). For arbitrary dimension N = Θ(nd), we

have s = dk = cdn2/3 and κ = O(dn2), so that the time complexity is O(d4+3d/2 log(1/ε)
log5/2+3d/2(

∣∣d2k+1u
dx2k+1

∣∣/ε)). Alternatively, d fast Fourier transforms could be used, although

this will generally take Ω(nd) = Ω(d3d/2 log3d/2(
∣∣d2k+1u
dx2k+1

∣∣/ε)) time.

3.5 Boundary conditions via the method of images
We can apply the method of images to deal with homogeneous Neumann and Dirichlet
boundary conditions using the algorithm for periodic boundary conditions described above.
In the method of images, the domain [−1, 1] is extended to include all of R, and the
boundary conditions are related to symmetries of the solutions. For a pair of Dirichlet
boundary conditions there are two symmetries: the solutions are anti-symmetric about
−1 (i.e., f(−x− 1) = −f(x− 1)) and anti-symmetric about 1 (i.e., f(1 +x) = −f(1−x)).
Continuity and anti-symmetry about −1 and 1 imply f(−1) = f(1) = 0, and furthermore
that f(x) = 0 for all odd x ∈ Z and that f(x + 4) = f(x) for all x ∈ R. For Neumann
boundary conditions, the solutions are instead symmetric about −1 and 1, which also
implies f(x+ 2) = f(x) for all x ∈ R.

We would like to combine the method of images with the FDM to arrive at finite
difference formulas for this special case. In both cases, the method of images implies
that the solutions are periodic, so without loss of generality we can consider a lattice
on [0, 2π) instead of a lattice on R. It is useful to think of this lattice in terms of the
cycle graph on 2n vertices, i.e., (V,E) = (Z2n, {(i, i + 1) | i ∈ Z2n}), which means that

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 12

the vectors encoding the solution u(x) will lie in R2n. Let each vector ~ej correspond to
the vertex j. Then we divide R2n into a symmetric and an anti-symmetric subspace,
namely span{ej + e2n+1−j}nj=1 and span{ej − e2n+1−j}nj=1, respectively. Vectors lying in
the symmetric subspace correspond to solutions that are symmetric about 0 and π, so they
obey Neumann boundary conditions at 0 and π; similarly, vectors in the anti-symmetric
space correspond to solutions obeying Dirichlet boundary conditions at 0 and π.

Restricting to a subspace of vectors reduces the size of the FDM vectors and matrices
we consider, and the symmetry of that subspace indicates how to adjust the coefficients.

If the FDM linear system is L′′~u′′ = ~f ′′ then L′′ has entries

L′′i,j =


r|i−j| ± ri+j−1 i ≤ k
r|i−j| k < i ≤ n− k
r|i−j| ± r2n−i−j+1 n− k ≤ i

(3.43)

where + (−) is chosen for Neumann (Dirichlet) boundary conditions and due to the trun-
cation order k, rj = 0 for any j > k. This is similar to how Laplacian coefficients are
modified when imposing boundary conditions in discrete variable representations [11].

For the purpose of solving the new linear systems using quantum algorithms, we still
treat these cases as obeying periodic boundary conditions. We assume access to an oracle
that produces states |f ′′〉 proportional to the inhomogeneity f ′′(x). Then we apply the
QLSA for periodic boundary conditions using |f ′′〉|±〉 to encode the inhomogeneity, which
will output solutions of the form |u′′〉|±〉. Here the ancillary state is chosen to be |+〉 (|−〉)
for Neumann (Dirichlet) boundary conditions.

Typically, the (second-order) graph Laplacian for the path graph with Dirichlet bound-
ary conditions has diagonal entries that are all equal to 2; however, using the above spec-
ification for the entries of L leads to the (1, 1) and (n, n) entries being 3 while the rest of
the diagonal entries are 2.

To reproduce this case, we consider an alternative subspace restriction used in Refer-
ence [33] to diagonalize the Dirichlet graph Laplacian. In this case it is easiest to consider
the lattice of a cycle graph on 2n+2 vertices, where the vertices 0 and n+1 are selected as
boundary points where the field takes the value 0. The relevant antisymmetric subspace
is now span({ej − e2n+2−j}nj=1) (which has no support on e0 and en+1).

If we again write the linear system as L′′~u′′ = ~f ′′, then the Laplacian has entries

L′′i,j =


r|i−j| − ri+j i ≤ k
r|i−j| k < i ≤ n− k
r|i−j| − r2n−i−j+2 n− k ≤ i.

We again assume access to an oracle producing states proportional to f ′′(x); however,
we assume that this oracle operates in a Hilbert space with one additional dimension
compared to the previous approaches (i.e., whereas previously we considered implementing

U , here we consider implementing
(
U ~0
~0T 1

)
). With this oracle we again prepare the state

|f ′′〉|−〉 and solve Poisson’s equation for periodic boundary conditions to output a state
|u′′〉|−〉 (where |u′′〉 lies in an (n+ 1)-dimensional Hilbert space but has no support on the
(n+ 1)st basis state).

4 Multi-dimensional spectral method
We now turn our attention to the spectral method for multi-dimensional PDEs. Since in-
terpolation facilitates constructing a straightforward linear system, we develop a quantum

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 13

algorithm based on the pseudo-spectral method [15, 28, 34] for second-order elliptic equa-
tions with global strict diagonal dominance, under various boundary conditions. Using
this approach, we show the following.

Theorem 2. Consider an instance of the quantum PDE problem as defined in Problem 1
with Dirichlet boundary conditions (4.28). Then there exists a quantum algorithm that
produces a state in the form of (4.29) whose amplitudes are proportional to u(x) on a
set of interpolation nodes x (with respect to the uniform grid nodes for periodic boundary
conditions or the Chebyshev-Gauss-Lobatto quadrature nodes for non-periodic boundary
conditions, as defined in in (4.7)), where u(x)/‖u(x)‖ is ε-close to û(x)/‖û(x)‖ in l2
norm for all nodes x, succeeding with probability Ω(1), with a flag indicating success,
using (

d‖A‖Σ
C‖A‖∗

+ qd2
)

poly(log(g′/gε)) (4.1)

queries to oracles as defined in Section 4.4. Here ‖A‖Σ :=
∑
‖j‖1≤h ‖Aj‖, ‖A‖∗ :=∑d

j=1 |Aj,j |, C > 0 is defined in (2.8), and

g = min
x
‖û(x)‖, g′ := max

x
max
n∈N
‖û(n+1)(x)‖, (4.2)

q =

√√√√∑‖k‖∞≤n∑d
j=1 f̂

2
k + (Aj,j γ̂j+k)2 + (Aj,j γ̂j−k)2∑

‖k‖∞≤n
∑d
j=1(f̂k +Aj,j γ̂

j+
k +Aj,j γ̂

j−
k)2

. (4.3)

The gate complexity is larger than the query complexity by a factor of poly(log(d‖A‖Σ/ε)).

After introducing the method, we discuss the complexity of the quantum shifted Fourier
transform (Lemma 5) and the quantum cosine transform (Lemma 6) in Section 4.1. These
transforms are used as subroutines in our algorithm. Then we construct a linear system
whose solution encodes the solution of the PDE in Section 4.2 (with a simple illustrative ex-
ample presented in Appendix A), analyze its condition number in Section 4.3 (Lemma 10,
established using Lemma 7, Lemma 8, and Lemma 9), and consider the complexity of state
preparation in Section 4.4 (Lemma 11). Finally, we prove our main result (Theorem 2) in
Section 4.5.

In the spectral approach, we approximate the exact solution û(x) by a linear combi-
nation of basis functions

u(x) =
∑

‖k‖∞≤n
ckφk(x) (4.4)

for some n ∈ Z+. Here k = (k1, . . . , kd) with kj ∈ [n+ 1]0 := {0, 1, . . . , n}, ck ∈ C, and

φk(x) =
d∏
j=1

φkj (xj), j ∈ [d]. (4.5)

We choose different basis functions for the case of periodic boundary conditions and for
the more general case of non-periodic boundary conditions. When the boundary conditions
are periodic, the algorithm implementation is more straightforward, and in some cases
(e.g., for the Poisson equation), can be faster. Specifically, for any kj ∈ [n+ 1]0 and
xj ∈ [−1, 1], we take

φkj (xj) =
{
ei(kj−bn/2c)πxj , periodic conditions,

Tkj (xj) := cos(kj arccosxj), non-periodic conditions.
(4.6)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 14

Here Tk is the degree-k Chebyshev polynomial of the first kind.
The coefficients ck are determined by demanding that u(x) satisfies the ODE and

boundary conditions at a set of interpolation nodes {χl = (χl1 , . . . , χld)}‖l‖∞≤n with lj ∈
[n+ 1]0, where

χlj =
{ 2lj
n+1 − 1, periodic conditions,

cos πljn , non-periodic conditions.
(4.7)

Here { 2l
n+1 − 1 : l ∈ [n+ 1]0} are called the uniform grid nodes, and {cos πln : l ∈ [n+ 1]0}

are called the Chebyshev-Gauss-Lobatto quadrature nodes.
We require the numerical solution u(x) to satisfy

L (u(χl)) = f(χl), ∀ lj ∈ [n+ 1]0, j ∈ [d]. (4.8)

We would like to be able to increase the accuracy of the approximation by increasing n,
so that

‖û(x)− u(x)‖ → 0 as n→∞. (4.9)

The convergence behavior of the spectral method is related to the smoothness of the
solution. For a solution in Cr+1, the spectral method approximates the solution with
n = poly(1/ε). Furthermore, if the solution is in C∞, the spectral method approximates
the solution to within ε using only n = poly(log(1/ε)) [28]. Since we require kj ∈ [n+ 1]0
for all j ∈ [d], we have (n + 1)d terms in total. Consequently, a classical pseudo-spectral
method solves multi-dimensional PDEs with complexity poly(logd(1/ε)). Such classical
spectral methods rapidly become infeasible since the number of coefficients (n+ 1)d grows
exponentially with d.

Here we develop a quantum algorithm for multi-dimensional PDEs. The algorithm
applies techniques from the quantum spectral method for ODEs [9]. However, in the case
of PDEs, the linear system to be solved is non-sparse. We address this difficulty using a
quantum transform that restores sparsity.

4.1 Quantum shifted Fourier transform and quantum cosine transform
The well-known quantum Fourier transform (QFT) can be regarded as an analogue of
the discrete Fourier transform (DFT) acting on the amplitudes of a quantum state. The
QFT maps the (n+ 1)-dimensional quantum state v = (v0, v1, . . . , vn) ∈ Cn+1 to the state
v̂ = (v̂0, v̂1, . . . , v̂n) ∈ Cn+1 with

v̂l = 1√
n+ 1

n∑
k=0

exp
(2πikl
n+ 1

)
vk, l ∈ [n+ 1]0. (4.10)

In other words, the QFT is the unitary transform

Fn := 1√
n+ 1

n∑
k,l=0

exp
(2πikl
n+ 1

)
|l〉〈k|. (4.11)

Here we also consider the quantum shifted Fourier transform (QSFT), an analogue of
the classical shifted discrete Fourier transform, which maps v ∈ Cn+1 to v̂ ∈ Cn+1 with

v̂l = 1√
n+ 1

n∑
k=0

exp
(2πi(k − bn/2c)(l − (n+ 1)/2)

n+ 1
)
vk, l ∈ [n+ 1]0. (4.12)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 15

In other words, the QSFT is the unitary transform

F sn := 1√
n+ 1

n∑
k,l=0

exp
(2πi(k − bn/2c)(l − (n+ 1)/2)

n+ 1
)
|l〉〈k|. (4.13)

We define the multi-dimensional QSFT by the tensor product, namely

F s
n := 1√

(n+ 1)d
∑

‖k‖∞,‖l‖∞≤n

d∏
j=1

exp
(2πi(kj−bn/2c)(lj−(n+1)/2)

n+1
)
|l1〉 . . . |ld〉〈k1| . . . 〈kd|,

(4.14)
where k = (k1, . . . , kd) and l = (l1, . . . , ld) are d-dimensional vectors with kj , lj ∈ [n]0.

The QSFT can be efficiently implemented as follows:

Lemma 5. The QSFT F sn defined by (4.13) can be performed with gate complexity O(logn
log logn). More generally, the d-dimensional QSFT F s

n defined by (4.14) can be performed
with gate complexity O(d logn log logn).

Proof. The unitary matrix F sn can be written as the product of three unitary matrices

F sn = SnFnRn, (4.15)

where
Rn =

n∑
k=0

exp
(
−2πik(n+ 1)/2

n+ 1
)
|k〉〈k| (4.16)

and
Sn =

n∑
l=0

exp
(
−2πibn/2c(l − (n+ 1)/2)

n+ 1
)
|l〉〈l|. (4.17)

It is well known that Fn can be implemented with gate complexity O(logn log logn), and
it is straightforward to implement Rn and Sn with gate complexity O(logn). Thus the
total complexity is O(logn log logn).

We rewrite v in the form

v =
∑

‖k‖∞≤n
vk|k1〉 . . . |kd〉, (4.18)

where vk ∈ C with k = (k1, . . . , kd), and each kj ∈ [n]0 for j ∈ [d]. The unitary matrix
F s
n can be written as the tensor product

F s
n =

d⊗
j=1

F sn. (4.19)

Performing the multi-dimensional QSFT is equivalent to performing the one-dimensional
QSFT on each register. Thus, the gate complexity of performing F s

n is O(d logn log logn).

Another efficient quantum transformation is the quantum cosine transform (QCT)
[19, 26]. The QCT can be regarded as an analogue of the discrete cosine transform (DCT).
The QCT maps v ∈ Cn+1 to v̂ ∈ Cn+1 with

v̂l =
√

2
n

n∑
k=0

δkδl cos klπ
n
vk, l ∈ [n+ 1]0, (4.20)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 16

where

δl :=


1√
2 l = 0, n

1 l ∈ [n− 1].
(4.21)

In other words, the QCT is the orthogonal transform

Cn :=
√

2
n

n∑
k,l=0

δlδk cos klπ
n
|l〉〈k|. (4.22)

Again we define the multi-dimensional QCT by the tensor product, namely

Cn :=

√(2
n

)d ∑
‖k‖∞,‖l‖∞≤n

d∏
j=1

δkjδlj cos kjljπ
n
|l1〉 . . . |ld〉〈k1| . . . 〈kd|, (4.23)

where k = (k1, . . . , kd) and l = (l1, . . . , ld) are d-dimensional vectors with kj , lj ∈ [n+ 1]0.
The classical DCT on (n+1)-dimensional vectors takes Θ(n logn) gates, while the QCT

on (n+ 1)-dimensional quantum states can be implemented with complexity poly(logn).
According to Theorem 1 of Reference [19], the gate complexity of performing Cn is
O(log2 n). We observe that this can be improved as follows.

Lemma 6. The quantum cosine transform Cn defined by (4.22) can be performed with
gate complexity O(logn log logn). More generally, the multi-dimensional QCT Cn defined
by (4.23) can be performed with gate complexity O(d logn log logn).

Proof. According to the quantum circuit in Figure 2 of Reference [19], Cn can be decom-
posed into a QFT Fn+1, a permutation

Pn =


1

1
1

. . .
1

, (4.24)

and additional operations with O(1) cost. The QFT Fn+1 has gate complexity O(logn
log logn). We then consider an alternative way to implement Pn that improves over the
approach in [24].

The permutation Pn can be decomposed as

Pn = FnTnF
−1
n , (4.25)

where Fn is the Fourier transform (4.11) and Tn =
∑n
k=0 e

− 2πik
n+1 |k〉〈k| is diagonal. The gate

complexities of performing Fn and Tn are O(logn log logn) and O(logn), respectively. It
follows that Cn can be implemented with circuit complexity O(logn log logn).

The matrix Cn can be written as the tensor product

Cn =
d⊗
j=1

Cn. (4.26)

As in Lemma 5, performing the multi-dimensional QCT is equivalent to performing a QCT
on each register. Thus, the gate complexity of performing Cn is O(d logn log logn).

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 17

4.2 Linear system
In this section we introduce the quantum PDE solver for the problem (2.1). We construct
a linear system that encodes the solution of (2.1) according to the pseudo-spectral method
introduced above, using the QSFT/QCT introduced in Section 4.1 to ensure sparsity.

We consider a linear PDE problem (Problem 1) with periodic boundary conditions

u(x+ 2v) = u(x) ∀x ∈ D , ∀v ∈ Zd (4.27)

or non-periodic Dirichlet boundary conditions

u(x) = γ(x) ∀x ∈ ∂D . (4.28)

According to the elliptic regularity theorem (Theorem 6 in Section 6.3 of Reference [13]),
there exists a unique solution û(x) in C∞ for Problem 1.

We now show how to apply the Fourier and Chebyshev pseudo-spectral methods to
this problem. Our goal is to obtain the quantum state

|u〉 ∝
∑

‖k‖∞,‖l‖∞≤n
ckφk(χl)|l1〉 . . . |ld〉, (4.29)

where φk(χl) is defined by (4.5) using (4.6) for the appropriate boundary conditions
(periodic or non-periodic). This state corresponds to a truncated Fourier/Chebyshev
approximation and is ε-close to the exact solution û(χl) with n = poly(log(1/ε)) [28].
Note that this state encodes the values of the solution at the interpolation nodes (4.7)
appropriate to the boundary conditions (the uniform grid nodes in the Fourier approach,
for periodic boundary conditions, and the Chebyshev-Gauss-Lobatto quadrature nodes in
the Chebyshev approach, for non-periodic boundary conditions).

Instead of developing our algorithm for the standard basis, we aim to produce a state

|c〉 ∝
∑

‖k‖∞≤n
ck|k1〉 . . . |kd〉 (4.30)

that is the inverse QSFT/QCT of |u〉. We then apply the QSFT/QCT to transform back
into the interpolation node basis.

The truncated spectral series of the inhomogeneity f(x) and the boundary conditions
γ(x) can be expressed as

f(x) =
∑

‖k‖∞≤n
f̂kφk(x) (4.31)

and
γ(x) =

∑
‖k‖∞≤n

γ̂kφk(x), (4.32)

respectively. We define quantum states |f〉 and |γ〉 by interpolating the nodes {χl} defined
by (4.7) as

|f〉 ∝
∑

‖k‖∞,‖l‖∞≤n
φkj (χl)f̂k|l1〉 . . . |ld〉, (4.33)

and
|γ〉 ∝

∑
‖k‖∞,‖l‖∞≤n

φkj (χl)γ̂k|l1〉 . . . |ld〉, (4.34)

respectively. These are the states that we assume we can produce using oracles. We
perform the multi-dimensional inverse QSFT/QCT to obtain the states

|f̂〉 ∝
∑

‖k‖∞≤n
f̂k|k1〉 . . . |kd〉, (4.35)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 18

and
|γ̂〉 ∝

∑
‖k‖∞≤n

γ̂k|k1〉 . . . |kd〉. (4.36)

Having defined these states, we now detail the construction of the linear system. At
a high level, we construct two linear systems: one system A~x = ~f (where ~x corresponds
to (4.30)) describes the differential equation, and another system B~x = ~g describes the
boundary conditions. We combine these into a linear system with the form

L~x = (A+B)~x = ~f + ~g. (4.37)

Even though we do not impose the two linear systems separately, we show that there exists
a unique solution of (4.37) (which is therefore the solution of the simultaneous equations
A~x = ~f and B~x = ~g), since we show that L has full rank, and indeed we upper bound its
condition number in Section 4.3.

Part of this linear system will correspond to just the differential equation

L (u(χl)) =
∑
‖j‖1=2

Aj
∂j

∂xj
u(χl) = f(χl), (4.38)

while another part will come from imposing the boundary conditions on ∂D =
⋃
j∈[d] ∂Dj ,

where ∂Dj := {x ∈ D | xj = ±1} is a (d− 1)-dimensional subspace. More specifically, the
boundary conditions

u(χl) = γ(χl) ∀χl ∈ ∂D (4.39)

can be expressed as conditions on each boundary:

u(x1, . . . , xj−1, 1, xj+1, . . . , xd) = γj+, x ∈ ∂Dj , j ∈ [d]
u(x1, . . . , xj−1,−1, xj+1, . . . , xd) = γj−, x ∈ ∂Dj , j ∈ [d].

(4.40)

4.2.1 Linear system from the differential equation

To evaluate the matrix corresponding to the differential operator from (4.38), it is conve-

nient to define coefficients c
(j)
k and ‖k‖∞ ≤ n such that

∂j

∂xj
u(x) =

∑
‖k‖∞≤n

c
(j)
k φk(x) (4.41)

for some fixed j ∈ Nd (as we explain below, such a decomposition exists for the choices of
basis functions in (4.6)). Using this expression, we obtain the following linear equations

for c
(j)
k :∑
‖j‖1=2

Aj

∑
‖k‖∞,‖l‖∞≤n

φk(χl)c
(j)
k |l1〉 . . . |ld〉 =

∑
‖k‖∞,‖l‖∞≤n

φk(χl)f̂k|l1〉 . . . |ld〉. (4.42)

To determine the transformation between c
(j)
k and ck, we can make use of the differential

properties of Fourier and Chebyshev series, namely

d
dxe

ikπx = ikπeikπx (4.43)

and

2Tk(t) =
T ′k+1(t)
k + 1 −

T ′k−1(t)
k − 1 , (4.44)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 19

respectively. We have

c
(j)
k =

∑
‖r‖∞≤n

[D(j)
n]krcr., ‖k‖∞ ≤ n, (4.45)

where D
(j)
n can be expressed as the tensor product

D(j)
n = Dj1

n ⊗Dj2
n ⊗ · · · ⊗Djd

n , (4.46)

with j = (j1, . . . , jd). The matrix Dn for the Fourier basis functions in (4.6) can be written
as the (n+ 1)× (n+ 1) diagonal matrix with entries

[Dn]kk = i(k − bn/2c)π. (4.47)

As detailed in Appendix A of Reference [9], the matrix Dn for the Chebyshev polynomials
in (4.6) can be expressed as the (n + 1) × (n + 1) upper triangular matrix with nonzero
entries

[Dn]kr = 2r
σk
, k + r odd, r > k, (4.48)

where

σk :=
{

2 k = 0
1 k ∈ [n].

(4.49)

Substituting (4.46) into (4.42), with Dn defined by (4.47) in the periodic case or (4.48)
in the non-periodic case, and performing the multi-dimensional inverse QSFT/QCT (for a
reason that will be explained in the next section), we obtain the following linear equations
for cr:∑

‖j‖1=2
Aj

∑
‖k‖∞,‖l‖∞,‖r‖∞≤n

[D(j)
n]krcr|l1〉 . . . |ld〉 =

∑
‖k‖∞,‖l‖∞≤n

f̂k|l1〉 . . . |ld〉. (4.50)

Notice that the matrices (4.47) and (4.48) are not full rank. More specifically, there
exists at least one zero row in the matrix of (4.50) when using either (4.47) (k = bn/2c)
or (4.48) (k = n). To obtain an invertible linear system, we next introduce the boundary
conditions.

4.2.2 Adding the linear system from the boundary conditions

When we use the form (4.29) of u(x) to write linear equations describing the boundary
conditions (4.40), we obtain a non-sparse linear system. Thus, for each x ∈ ∂Dj in (4.40),
we perform the (d− 1)-dimensional inverse QSFT/QCT on the d− 1 registers except the
jth register to obtain the linear equations∑

‖k‖∞≤n
kj=n

ck|k1〉 . . . |kd〉 =
∑

‖k‖∞≤n
kj=n

γ̂1+
k |k1〉 . . . |kd〉, γ̂j+k ∈ ∂Dj ,

∑
‖k‖∞≤n
kj=n−1

(−1)kjck|k1〉 . . . |kd〉 =
∑

‖k‖∞≤n
kj=n−1

γ̂1−
k |k1〉 . . . |kd〉, γ̂j−k ∈ ∂Dj

(4.51)

for all j ∈ [d], where the values of kj indicate that we place these constraints in the last
two rows with respect to the jth coordinate. We combine these equations with (4.50) to

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 20

obtain the linear system

∑
‖j‖1=2

Aj

∑
‖k‖∞,‖r‖∞≤n

[D(j)
n]krcr|k1〉 . . . |kd〉 =

∑
‖k‖∞≤n

d∑
j=1

(Aj,j γ̂j+k +Aj,j γ̂j−k +f̂k)|k1〉 . . . |kd〉,

(4.52)
where

D
(j)
n =

D
(j)
n +G(j)

n , ‖j‖1 = 2, ‖j‖∞ = 2;
D

(j)
n , ‖j‖1 = 2, ‖j‖∞ = 1

(4.53)

with G
(j)
n defined below. In other words, D

(j)
n = D

(j)
n +G(j)

n for each j that has exactly

one entry equal to 2 and all other entries 0, whereas D
(j)
n = D

(j)
n for each j that has

exactly two entries equal to 1 and all other entries 0. Here G
(j)
n can be expressed as the

tensor product
G(j)
n = I⊗r−1 ⊗Gn ⊗ I⊗d−r (4.54)

where the rth entry of j is 2 and all other entries are 0. For the Fourier case in (4.6) used
for periodic boundary conditions, Dn comes from (4.47), and the nonzero entries of Gn
are

[Gn]bn/2c,k = 1, k ∈ [n+ 1]0. (4.55)
Alternatively, for the Chebyshev case in (4.6) used for non-periodic boundary conditions,
Dn comes from (4.48), and the nonzero entries of Gn are

[Gn]n,k = 1, k ∈ [n+ 1]0,
[Gn]n−1,k = (−1)k, k ∈ [n+ 1]0.

(4.56)

The system (4.52) has the form of (4.37). For instance, the matrix in (4.37) for
Poisson’s equation (2.6) is

LPoisson := D
(2,0,...,0)
n +D(0,2,...,0)

n + · · ·+D(0,0,...,2)
n (4.57)

=
d⊕
j=1

D
(2)
n = D

(2)
n ⊗ I⊗d−1 + I ⊗D(2)

n ⊗ I⊗d−2 + · · ·+ I⊗d−1 ⊗D(2)
n . (4.58)

For periodic boundary conditions, using (4.45), (4.47), and (4.55), the second-order dif-

ferential matrix D
(2)
n has nonzero entries

[D(2)
n]k,k = −((k − bn/2c)π)2, k ∈ [n+ 1]0\{bn/2c},

[D(2)
n]bn/2c,k = 1, k ∈ [n+ 1]0.

(4.59)

For non-periodic boundary conditions, using (4.45), (4.48), and (4.56), D
(2)
n has nonzero

entries

[D(2)
n]kr =

r−1∑
l=k+1
k + l odd
l + r odd

[Dn]kl[Dn]lr = 2r
σk

r−1∑
l=k+1
k + l odd
l + r odd

2l
σl

= r(r2 − k2)
σk

, k + r even, r > k + 1,

[D(2)
n]n,k = 1, k ∈ [n+ 1]0,

[D(2)
n]n−1,k = (−1)k, k ∈ [n+ 1]0.

(4.60)
To explicitly illustrate this linear system, we present a simple example in Appendix A.

We discuss the invertible linear system (4.52) and upper bound its condition number in
the following section.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 21

4.3 Condition number
We now analyze the condition number of the linear system. We begin with two lemmas
bounding the singular values of the matrices (4.59) and (4.60) that appear in the linear
system.

Lemma 7. Consider the case of periodic boundary conditions. Then for n ≥ 4, the largest
and smallest singular values of D(2)

n defined in (4.59) satisfy

σmax(D(2)
n) ≤ (2n)2.5,

σmin(D(2)
n) ≥ 1√

2
.

(4.61)

Lemma 8. Consider the case of non-periodic boundary conditions. Then the largest and
smallest singular values of D(2)

n defined in (4.60) satisfy

σmax(D(2)
n) ≤ n4,

σmin(D(2)
n) ≥ 1

16 .
(4.62)

The proofs of Lemma 7 and Lemma 8 appear in Appendix B. Using these two lemmas,
we first upper bound the condition number of the linear system for Poisson’s equation,
and then extend the result to general elliptic PDEs.

For the case of the Poisson equation, we use the following simple bounds on the extreme
singular values of a Kronecker sum.

Lemma 9. Let

L =
d⊕
j=1

Mj = M1 ⊗ I⊗d−1 + I ⊗M2 ⊗ I⊗d−2 + · · ·+ I⊗d−1 ⊗Md, (4.63)

where {Mj}dj=1 are square matrices. If the largest and smallest singular values of Mj

satisfy
σmax(Mj) ≤ smax

j ,

σmin(Mj) ≥ smin
j ,

(4.64)

respectively, then the condition number of L satisfies

κL ≤
∑d
j=1 s

max
j∑d

j=1 s
min
j

. (4.65)

Proof. We bound the singular values of the matrix exponential exp(Mj) by

σmax(exp(Mj)) ≤ es
max
j ,

σmin(exp(Mj)) ≥ es
min
j

(4.66)

using (4.64). The singular values of the Kronecker product
⊗d

j=1 exp(Mj) are

σk1,...,kd

(d⊗
j=1

exp(Mj)
)

=
d∏
j=1

σkj (exp(Mj)) (4.67)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 22

where σkj (exp(Mj)) are the singular values of the matrix exp(Mj) for each j ∈ [d], where
kj runs from 1 to the dimension of Mj . Using the property of the Kronecker sum that

exp(L) = exp
(d⊕
j=1

Mj

)
=

d⊗
j=1

exp(Mj), (4.68)

we bound the singular values of the matrix exponential of (4.58) by

σmax(exp(L)) ≤ e
∑d

j=1 s
max
j ,

σmin(exp(L)) ≥ e
∑d

j=1 s
min
j .

(4.69)

Finally, we bound the singular values of the matrix logarithm of (4.69) by

σmax(L) ≤
d∑
j=1

smax
j ,

σmin(L) ≥
d∑
j=1

smin
j .

(4.70)

Thus the condition number of L satisfies

κL ≤
∑d
j=1 s

max
j∑d

j=1 s
min
j

(4.71)

as claimed.

This lemma easily implies a bound on the condition number of the linear system for
Poisson’s equation:

Corollary 1. Consider an instance of the quantum PDE problem as defined in Problem 1
for Poisson’s equation (2.6) with Dirichlet boundary conditions (4.28). Then for n ≥ 4,
the condition number of LPoisson in the linear system (4.37) satisfies

κLPoisson ≤ (2n)4. (4.72)

Proof. The matrix in (4.37) for Poisson’s equation (2.6) is LPoisson defined in (4.58). For
both the periodic and the non-periodic case, we have

σmax(D(2)
n) ≤ n4,

σmin(D(2)
n) ≥ 1

16
(4.73)

by Lemma 7 and Lemma 8. Let Mj = D
(2)
n for j ∈ [d] in (4.63), and apply Lemma 9 with

smax
j = n4 and smin

j = 1/16 in (4.65). Then the condition number of LPoisson is bounded
by

κLPoisson ≤
σmax(D(2)

n)
σmin(D(2)

n)
≤ (2n)4 (4.74)

as claimed.

We now consider the condition number of the linear system for general elliptic PDEs.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 23

Lemma 10. Consider an instance of the quantum PDE problem as defined in Problem 1
with Dirichlet boundary conditions (4.28). Then for n ≥ 4, the condition number of L in
the linear system (4.37) satisfies

κL ≤
‖A‖Σ
C‖A‖∗

(2n)4, (4.75)

where ‖A‖Σ :=
∑
‖j‖1≤2 |Aj | =

∑d
j1,j2=1 |Aj1,j2 |, ‖A‖∗ :=

∑d
j=1 |Aj,j |, and C > 0 is defined

in (2.8).

Recall that C quantifies the extent to which the global strict diagonal dominance
condition holds.

Proof. According to (4.52), the matrix in (4.37) is

L =
∑
‖j‖1=2

AjD
(j)
n . (4.76)

We upper bound the spectral norm of the matrix L by

‖L‖ ≤
∑
‖j‖1=2

|Aj |‖D
(j)
n ‖. (4.77)

For the matrix D(j)
n defined by (4.53), Lemma 7 (in the periodic case) and Lemma 8 (in

the non-periodic case) give the inequality

‖D(j)
n ‖ ≤ n4, (4.78)

so we have
‖L‖ ≤

∑
‖j‖1=2

|Aj |n4 = ‖A‖Σ n4. (4.79)

Next we lower bound ‖Lξ‖ for any ‖ξ‖ = 1.
It is non-trivial to directly compute the singular values of a sum of non-normal matrices.

Instead, we write L as a sum of terms L1 and L2, where L1 is a tensor sum similar to
(4.58) that can be bounded by Lemma 9, and L2 is a sum of tensor products that are
easily bounded. Specifically, we have

L1 = A1,1D
(2)
n ⊗ I⊗d−1 + · · ·+Ad,dI

⊗d−1 ⊗D(2)
n

L2 = L− L1.
(4.80)

The ellipticity condition (2.7), ∀ξ
∑
‖j‖1=hAj(x)ξj 6= 0, can only hold if the Aj,j for j ∈ [d]

are either all positive or all negative; we consider Aj,j > 0 without loss of generality, so

‖A‖∗ =
d∑
j=1
|Aj,j | =

d∑
j=1

Aj,j . (4.81)

Also, the global strict diagonal dominance condition (2.8) simplifies to

C = 1−
d∑

j1=1

1
Aj1,j1

∑
j2∈[d]\{j1}

|Aj1,j2 | > 0, (4.82)

where 0 < C ≤ 1.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 24

We now upper bound ‖L2L
−1
1 ‖ by bounding ‖D(j)

n L−1
1 ‖ for each j = (j1, . . . , jd) that

has exactly two entries equal to 1 and all other entries 0. Specifically, consider jr1 = jr2 = 1
for r1, r2 ∈ [d], r1 6= r2, and jr = 0 for r ∈ [d]\{r1, r2}. We denote

L(j) := I⊗r1−1 ⊗D2
n ⊗ I⊗d−r1 + I⊗r2−1 ⊗D2

n ⊗ I⊗d−r2 . (4.83)

We first upper bound ‖D(j)
n ‖ by 1

2‖L
(j)‖. Notice the matrices D(j)

n and L(j) share the
same singular vectors. For k ∈ [n+ 1]0, we let vk and λk denote the right singular vectors
and corresponding singular values of Dn, respectively. Then the right singular vectors of
D

(j)
n and L(j) are vk :=

⊗d
j=1 vkj , where k = (k1, . . . , kd) with kj ∈ [n+ 1]0 for j ∈ [d].

For any vector v =
∑
‖k‖∞≤n αkvk, we have

‖D(j)
n v‖2 =

∑
‖k‖∞≤n

|αk|2‖D(j)
n vk‖2 =

∑
‖k‖∞≤n

|αk|2(λkjr1 λkjr2)2, (4.84)

‖L(j)v‖2 =
∑

‖k‖∞≤n
|αk|2‖L(j)vk‖2 =

∑
‖k‖∞≤n

|αk|2(λ2
kjr1

+ λ2
kjr2

)2, (4.85)

which implies ‖D(j)
n v‖ ≤ 1

2‖L
(j)v‖ by the inequality of arithmetic and geometric means

(also known as the AM-GM inequality). Since this holds for any vector v, we have

‖D(j)
n L−1

1 ‖ ≤
1
2‖L

(j)L−1
1 ‖. (4.86)

Next we upper bound ‖D2
n‖ by ‖D(2)

n ‖. For any vector u = [u0, . . . , un]T , define two
vectors w = [w0, . . . , wn]T and w = [w0, . . . , wn]T such that

D2
n[u0, . . . , un]T = [w0, . . . , wn]T (4.87)

and
D

2
n[u0, . . . , un]T = [w0, . . . , wn]T . (4.88)

Notice that wbn/2c = 0 and wk = wk for k ∈ [n+ 1]0\{bn/2c} for periodic conditions,
and wn−1 = wn = 0 and wk = wk for k ∈ [n+ 1]0\{n− 1, n} for non-periodic conditions.
Thus, for any vector v,

‖D2
nv‖2 = ‖w‖2 =

n∑
k=0

w2
k ≤

n∑
k=0

w2
k = ‖w‖2 = ‖D(2)

n v‖2. (4.89)

Therefore,

‖L(j)L−1
1 ‖ ≤

2∑
s=1
‖I⊗rs−1 ⊗D2

n ⊗ I⊗d−rsL−1
1 ‖ ≤

2∑
s=1
‖I⊗rs−1 ⊗D(2)

n ⊗ I⊗d−rsL−1
1 ‖. (4.90)

We also have

‖D(j)
n L−1

1 ‖ ≤
1
2

2∑
s=1
‖I⊗rs−1 ⊗D(2)

n ⊗ I⊗d−rsL−1
1 ‖. (4.91)

We can rewrite I⊗rs−1 ⊗D(2)
n ⊗ I⊗d−rsL−1

1 in the form

I⊗rs−1 ⊗D(2)
n ⊗ I⊗d−rs

(
d∑

h=1
Ah,hI

⊗rh−1 ⊗D(2)
n ⊗ I⊗d−rh

)−1

. (4.92)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 25

The matrices I⊗rh−1⊗D(2)
n ⊗ I⊗d−rh share the same singular values and singular vectors,

so

‖I⊗rs−1 ⊗D(2)
n ⊗ I⊗d−rsL−1

1 ‖ = max
λkr

λkrs∑d
h=1Ah,hλkh

<
1

Ars,rs
, (4.93)

where λkh are singular values of I⊗rh−1⊗D(2)
n ⊗ I⊗d−rh for kh ∈ [n]0, h ∈ [d]. This implies

‖D(j)
n L−1

1 ‖ ≤
1
2(1
Ar1,r1

+ 1
Ar2,r2

). (4.94)

Using (4.82), considering each instance of D(j)
n in L2, we have

‖L2L
−1
1 ‖ ≤

∑
j1 6=j2

|Aj1,j2 |‖D(j)
n L−1

1 ‖ ≤
d∑

j1=1

1
Aj1,j1

∑
j2∈[d]\{j1}

|Aj1,j2 | ≤ 1− C. (4.95)

Since L and L1 are invertible, ‖L−1
1 L2‖ ≤ 1− C < 1, and by Lemma 9 applied to ‖L−1

1 ‖,
we have

‖L−1‖ = ‖(L1 +L2)−1‖ ≤ ‖(I+L2L
−1
1)−1‖‖L−1

1 ‖ ≤
‖L−1

1 ‖
1− ‖L2L

−1
1 ‖
≤

1/ 1
16‖A‖∗
C

= 16
C‖A‖∗

.

(4.96)
Thus we have

κL = ‖L‖‖L−1‖ ≤ ‖A‖Σ
C‖A‖∗

(2n)4 (4.97)

as claimed.

4.4 State preparation
We now describe a state preparation procedure for the vector ~f + ~g in the linear system
(4.37).

Lemma 11. Let Of be a unitary oracle that maps |0〉|0〉 to a state proportional to |0〉|f〉,
and |φ〉|0〉 to |φ〉|0〉 for any |φ〉 orthogonal to |0〉; let Ox be a unitary oracle that maps
|0〉|0〉 to |0〉|0〉, |j〉|0〉 to a state proportional to |j〉|γj+〉 for j ∈ [d], and |j + d〉|0〉 to a
state proportional to |j + d〉|γj−〉 for j ∈ [d]. Suppose ‖|f〉‖, ‖|γj+〉‖, ‖|γj−〉‖ and Aj,j for
j ∈ [d] are known. Define the parameter

q :=

√√√√∑‖k‖∞≤n∑d
j=1[f̂2

k + (Aj,j γ̂j+k)2 + (Aj,j γ̂j−k)2]∑
‖k‖∞≤n

∑d
j=1 |f̂k +Aj,j γ̂

j+
k +Aj,j γ̂

j−
k |2

. (4.98)

Then the normalized quantum state

|B〉 ∝
∑

‖k‖∞≤n

d∑
j=1

(f̂k +Aj,j γ̂
j+
k +Aj,j γ̂

j−
k)|k1〉 . . . |kd〉, (4.99)

with coefficients defined as in (4.35) and (4.36), can be prepared with gate and query
complexity O(qd2 logn log logn).

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 26

Proof. Starting from the initial state |0〉|0〉, we first perform a unitary transformation U
satisfying

U |0〉 = ‖|f〉‖√
‖|f〉‖2 +

∑d
j=1
(
A2
j,j‖|γj+〉‖2 +A2

j,j‖|γj−〉‖2
) |0〉

+
d∑
j=1

Aj,j‖|γj+〉‖√
‖|f〉‖2 +

∑d
j=1
(
A2
j,j‖|γj+〉‖2 +A2

j,j‖|γj−〉‖2
) |j〉

+
d∑
j=1

Aj,j‖|γj−〉‖√
‖|f〉‖2 +

∑d
j=1
(
A2
j,j‖|γj+〉‖2 +A2

j,j‖|γj−〉‖2
) |j + d〉

(4.100)

on the first register to obtain

‖|f〉‖|0〉+A1,1‖|γ1+〉‖|1〉+ · · ·+Ad,d‖|γd−〉‖|2d〉√
‖|f〉‖2 +

∑d
j=1
(
A2
j,j‖|γj+〉‖2 +A2

j,j‖|γj−〉‖2
) |0〉. (4.101)

This can be done in time O(2d+ 1) by standard techniques [31]. Then we apply Ox and
Of to obtain

|0〉|f〉+A1,1|1〉|γ1+〉+ · · ·+Ad,d|2d〉|γd−〉,
∝

∑
‖k‖∞,‖l‖∞≤n

φk(χl)(f̂k|0〉+A1,1γ̂
1+
k |1〉+ · · ·+Ad,dγ̂

d−
k |2d〉)|l1〉 . . . |ld〉, (4.102)

according to (4.33) and (4.34). We then perform the d-dimensional inverse QSFT (for
periodic boundary conditions) or inverse QCT (for non-periodic boundary conditions) on
the last d registers, obtaining∑

‖k‖∞≤n
(f̂k|0〉+A1,1γ̂

1+
k |1〉+ · · ·+Ad,dγ̂

d−
k |2d〉)|k1〉 . . . |kd〉. (4.103)

Finally, observe that if we measure the first register in a basis containing the uniform
superposition |0〉+ |1〉+ · · ·+ |2d〉 (say, the Fourier basis) and obtain the outcome corre-
sponding to the uniform superposition, we produce the state

∑
‖k‖∞≤n

d∑
j=1

(f̂k +Aj,j γ̂
j+
k +Aj,j γ̂

j−
k)|k1〉 . . . |kd〉. (4.104)

Since this outcome occurs with probability 1/q2, we can prepare this state with proba-
bility close to 1 using O(q) steps of amplitude amplification. According to Lemma 5 and
Lemma 6, the d-dimensional (inverse) QSFT or QCT can be performed with gate complex-
ity O(d logn log logn). Thus the total gate and query complexity is O(qd2 logn log logn).

Alternatively, if it is possible to directly prepare the quantum state |B〉, then we may
be able to avoid the factor of q in the complexity of the overall algorithm.

4.5 Main result
Having analyzed the condition number and state preparation procedure for our approach,
we are now ready to establish the main result. Theorem 2 as follows.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 27

Theorem 2. Consider an instance of the quantum PDE problem as defined in Problem 1
with Dirichlet boundary conditions (4.28). Then there exists a quantum algorithm that
produces a state in the form of (4.29) whose amplitudes are proportional to u(x) on a
set of interpolation nodes x (with respect to the uniform grid nodes for periodic boundary
conditions or the Chebyshev-Gauss-Lobatto quadrature nodes for non-periodic boundary
conditions, as defined in in (4.7)), where u(x)/‖u(x)‖ is ε-close to û(x)/‖û(x)‖ in l2
norm for all nodes x, succeeding with probability Ω(1), with a flag indicating success,
using (

d‖A‖Σ
C‖A‖∗

+ qd2
)

poly(log(g′/gε)) (4.1)

queries to oracles as defined in Section 4.4. Here ‖A‖Σ :=
∑
‖j‖1≤h ‖Aj‖, ‖A‖∗ :=∑d

j=1 |Aj,j |, C > 0 is defined in (2.8), and

g = min
x
‖û(x)‖, g′ := max

x
max
n∈N
‖û(n+1)(x)‖, (4.2)

q =

√√√√∑‖k‖∞≤n∑d
j=1 f̂

2
k + (Aj,j γ̂j+k)2 + (Aj,j γ̂j−k)2∑

‖k‖∞≤n
∑d
j=1(f̂k +Aj,j γ̂

j+
k +Aj,j γ̂

j−
k)2

. (4.3)

The gate complexity is larger than the query complexity by a factor of poly(log(d‖A‖Σ/ε)).

Proof. We analyze the complexity of the algorithm presented in Section 4.2.
First we choose

n :=
⌊ log(Ω)

log(log(Ω))

⌋
, (4.105)

where
Ω = g′(1 + ε)

gε
. (4.106)

By Eq. (1.8.28) of Reference [34], this choice guarantees

‖û(x)− u(x)‖ ≤ max
x
‖û(n+1)(x)‖ en

(2n)n ≤
g′

Ω = gε

1 + ε
=: δ. (4.107)

Now ‖û(x)− u(x)‖ ≤ δ implies∥∥∥∥ û(x)
‖û(x)‖ −

u(x)
‖u(x)‖

∥∥∥∥ ≤ δ

min{‖û(x)‖, ‖u(x)‖} ≤
δ

g − δ
= ε, (4.108)

so we can choose n to ensure that the normalized output state is ε-close to û(x)/‖û(x)‖.
As described in Section 4.2, the algorithm uses the high-precision QLSA from Refer-

ence [8] and the multi-dimensional QSFT/QCT (and its inverse). According to Lemma 5
and Lemma 6, the d-dimensional (inverse) QSFT or QCT can be performed with gate
complexity O(d logn log logn). According to Lemma 11, the query and gate complexity
for state preparation is O(qd2 logn log logn).

For the linear system L~x = ~f + ~g in (4.37), the matrix L is an (n + 1)d × (n + 1)d
matrix with (n + 1) or (n + 1)d nonzero entries in any row or column for periodic or
non-periodic conditions, respectively. According to Lemma 10, the condition number of L
is upper bounded by ‖A‖Σ

C‖A‖∗ (2n)4. Consequently, by Theorem 5 of Reference [8], the QLSA
produces a state proportional to ~x with O(d‖A‖ΣC‖A‖∗ (2n)5) queries to the oracles, and its gate

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 28

complexity is larger by a factor of poly(log(d‖A‖Σ n)). Using the value of n specified in
(4.105), the overall query complexity of our algorithm is(

d‖A‖Σ
C‖A‖∗

+ qd2
)

poly(log(g′/gε)), (4.109)

and the gate complexity is(
d‖A‖Σ
C‖A‖∗

poly(log(d‖A‖Σ/ε)) + qd2
)

poly(log(g′/gε)) (4.110)

which is larger by a factor of poly(log(d‖A‖Σ/ε)), as claimed.

Note that we can establish a more efficient algorithm in the special case of the Poisson
equation with homogenous boundary conditions. In this case, ‖A‖Σ = ‖A‖∗ = d and
C = 1. Under homogenous boundary conditions, the complexity of state preparation can
be reduced to dpoly(log(g′/gε)), since we can remove 2d applications of the QSFT or QCT
for preparing a state depending on the boundary conditions, and since γ = 0 there is no
need to postselect on the uniform superposition to incorporate the boundary conditions.
In summary, the query complexity of the Poisson equation with homogenous boundary
conditions is

dpoly(log(g′/gε)); (4.111)

again the gate complexity is larger by a factor of poly(log(d‖A‖Σ/ε)).

5 Discussion and open problems
We have presented high-precision quantum algorithms for d-dimensional PDEs using the
FDM and spectral methods. These algorithms use high-precision QLSAs to solve Poisson’s
equation and other second-order elliptic equations. Whereas previous algorithms scaled
as poly(d, 1/ε), our algorithms scale as poly(d, log(1/ε)).

This work raises several natural open problems. First, for the quantum adaptive
FDM, we only deal with Poisson’s equation with homogeneous boundary conditions. Can
we apply the adaptive FDM to other linear equations or to inhomogeneous boundary
conditions? The quantum spectral algorithm applies to second-order elliptic PDEs with
Dirichlet boundary conditions. Can we generalize it to other linear PDEs with Neumann
or mixed boundary conditions? Also, can we develop algorithms for space- and time-
dependent PDEs? These cases are more challenging since the quantum Fourier transform
cannot be directly applied to ensure sparsity. Finally, can we improve the dependence on
d?

Second, the complexity scales logarithmically with high-order derivatives (of the inho-
mogeneity or solution) for both the adaptive FDM and the spectral method. In particular,
Theorem 1 shows that the complexity of the quantum adaptive FDM scales logarithmi-
cally with

∣∣d2k+1u
dx2k+1

∣∣, and Theorem 2 shows that the complexity of the quantum spectral

method is poly(log g′), where g′ upper bounds ‖û(n+1)(x)‖ (see (4.2)). Such a logarithmic
dependence on high-order derivatives of the solution is typical for classical algorithms,
including the classical adaptive FDM (see for example Theorem 7 of Reference [18]) and
spectral methods (see for example Eq. (1.8.28) of Reference [34]), both of which have

the same logarithmic dependence on
∣∣d2k+1u
dx2k+1

∣∣ and g′. This logarithmic dependence means
that the algorithm is efficient even when faced with a highly oscillatory solution with an
exponentially large derivative.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 29

However, the query complexity of time-dependent Hamiltonian simulation only de-
pends on the first-order derivatives of the Hamiltonian [5, 23]. Can we develop quantum
algorithms for PDEs with query complexity independent of high-order derivatives, and
henceforth develop an unexpected advantage of quantum algorithms for PDEs?

Third, can we develop quantum algorithms for other types of PDEs, such as stochastic
or nonlinear PDEs?

Fourth, can we use quantum algorithms for PDEs as a subroutine of other quantum
algorithms? For example, some PDE algorithms have state preparation steps that require
inverting finite difference matrices (such as Reference [12] using certain oracles for the
initial conditions); are there other scenarios in which state preparation can be done using
the solution of another system of PDEs? Can quantum algorithms for PDEs be applied
to other algorithmic tasks, such as optimization?

Finally, how should these algorithms be applied? While PDEs have broad applications,
much more work remains to understand the extent to which quantum algorithms can be of
practical value. Answering this question will require careful consideration of various tech-
nical aspects of the algorithms. In particular: What measurements give useful information
about the solutions, and how can those measurements be efficiently implemented? How
should the oracles encoding the equations and boundary conditions be implemented in
practice? And with these aspects taken into account, what are the resource requirements
for quantum computers to solve classically intractable problems related to PDEs?

Acknowledgments
JPL thanks Jacob Bedrossian, Dominic Berry, Stephen Jordan, Ashley Montanaro, and
Konstantina Trivisa for valuable discussions. We also thank Tongyang Li for pointing out
an issue with the analysis of the adaptive FDM algorithm in a previous version of the
paper, and we thank anonymous referees for their comments on an earlier draft.

The authors acknowledge support from National Science Foundation grant CCF-1813814
and from the U.S. Department of Energy, Office of Science, Office of Advanced Scientific
Computing Research, Quantum Algorithms Teams and Accelerated Research in Quantum
Computing programs.

References
[1] Andris Ambainis, Variable time amplitude amplification and quantum algorithms for

linear algebra problems, 29th Symposium on Theoretical Aspects of Computer Sci-
ence, vol. 14, pp. 636–647, LIPIcs, 2012, doi:10.4230/LIPIcs.STACS.2012.636.

[2] Richard Bellman, Dynamic programming, Princeton University Press, 1957.
[3] Ivo Babuška and Manil Suri, The h − p version of the finite element method with

quasiuniform meshes, Mathematical Modelling and Numerical Analysis 21 (1987),
no. 2, 199–238, doi:10.1051/m2an/1987210201991.

[4] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D.
Somma, Simulating Hamiltonian dynamics with a truncated Taylor series, Physical
Review Letters 114 (2015), no. 9, 090502, doi:10.1103/PhysRevLett.114.090502.

[5] , Exponential improvement in precision for simulating sparse Hamiltonians,
Forum of Mathematics, Sigma 5 (2017), e8, doi:10.1145/2591796.2591854.

[6] Hans-Joachim Bungartz and Michael Griebel, Sparse grids, Acta Numerica 13 (2004),
147–269, doi:10.1017/S0962492904000182.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 30

https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://doi.org/10.1051/m2an/1987210201991
https://doi.org/10.1103/PhysRevLett.114.090502
https://doi.org/10.1145/2591796.2591854
https://doi.org/10.1017/S0962492904000182

[7] Yudong Cao, Anargyros Papageorgiou, Iasonas Petras, Joseph Traub, and Sabre Kais,
Quantum algorithm and circuit design solving the Poisson equation, New Journal of
Physics 15 (2013), no. 1, 013021, doi:10.1088/1367-2630/15/1/013021.

[8] Andrew M. Childs, Robin Kothari, and Rolando D. Somma, Quantum algorithm
for systems of linear equations with exponentially improved dependence on precision,
SIAM Journal on Computing 46 (2017), no. 6, 1920–1950, doi:10.1137/16M1087072.

[9] Andrew M. Childs and Jin-Peng Liu, Quantum spectral methods for differential equa-
tions, doi:10.1007/s00220-020-03699-z.

[10] B. David Clader, Bryan C. Jacobs, and Chad R. Sprouse, Preconditioned quan-
tum linear system algorithm, Physical Review Letters 110 (2013), no. 25, 250504,
doi:10.1103/PhysRevLett.110.250504.

[11] Daniel T. Colbert and William H. Miller, A novel discrete variable representation
for quantum mechanical reactive scattering via the S-matrix Kohn method, Journal of
Chemical Physics 96 (1992), no. 3, 1982–1991, doi:10.1063/1.462100.

[12] Pedro C. S. Costa, Stephen Jordan, and Aaron Ostrander, Quantum algorithm
for simulating the wave equation, Physical Review A 99 (2019), no. 1, 012323,
doi:10.1103/PhysRevA.99.012323.

[13] Lawrence C. Evans, Partial differential equations (2nd ed.), American Mathematical
Society, 2010, doi:10.1090/gsm/019.

[14] François Fillion-Gourdeau and Emmanuel Lorin, Simple digital quantum algorithm
for symmetric first-order linear hyperbolic systems, Numerical Algorithms 82 (2019),
1009–1045, doi:10.1007/s11075-018-0639-3.

[15] Călin Ioan Gheorghiu, Spectral methods for differential problems, Casa Cărţii de
Ştiinţă Cluj-Napoca, 2007.

[16] Aram W. Harrow, Avinatan Hassidim, and Seth Lloyd, Quantum algorithm for
linear systems of equations, Physical Review Letters 103 (2009), no. 15, 150502,
doi:10.1103/PhysRevLett.103.150502.

[17] Roger A. Horn and Charles R. Johnson, Matrix analysis, Cambridge University Press,
2012, doi:10.1017/CBO9780511810817.

[18] Ian D. Kivlichan, Nathan Wiebe, Ryan Babbush, and Alán Aspuru-Guzik, Bound-
ing the costs of quantum simulation of many-body physics in real space, Journal of
Physics A: Mathematical and Theoretical 50 (2017), no. 30, 305301, doi:10.1088/1751-
8121/aa77b8.

[19] Andreas Klappenecker and Martin Rotteler, Discrete cosine transforms on quantum
computers, Proceedings of the 2nd International Symposium on Image and Signal
Processing and Analysis, pp. 464–468, 2001, doi:10.1109/ISPA.2001.938674.

[20] Benjamin P. Lanyon, James D. Whitfield, Geoff G. Gillett, Michael E. Goggin,
Marcelo P. Almeida, Ivan Kassal, Jacob D. Biamonte, Masoud Mohseni, Ben J.
Powell, Marco Barbieri, Alán Aspuru-Guzik, and Andrew G. White, Towards quan-
tum chemistry on a quantum computer, Nature Chemistry 2 (2010), no. 2, 106,
doi:10.1038/nchem.483.

[21] Jianping Li, General explicit difference formulas for numerical differentiation,
Journal of Computational and Applied Mathematics 183 (2005), no. 1, 29–52,
doi:10.1016/j.cam.2004.12.026.

[22] Ashley Montanaro and Sam Pallister, Quantum algorithms and the fi-
nite element method, Physical Review A 93 (2016), no. 3, 032324,
doi:10.1103/PhysRevA.93.032324.

[23] David Poulin, Angie Qarry, Rolando D. Somma, and Frank Verstraete,
Quantum simulation of time-dependent Hamiltonians and the convenient illu-

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 31

https://doi.org/10.1088/1367-2630/15/1/013021
https://doi.org/10.1137/16M1087072
https://doi.org/10.1007/s00220-020-03699-z
https://doi.org/10.1103/PhysRevLett.110.250504
https://doi.org/10.1063/1.462100
https://doi.org/10.1103/PhysRevA.99.012323
https://doi.org/10.1090/gsm/019
https://doi.org/10.1007/s11075-018-0639-3
https://doi.org/10.1103/PhysRevLett.103.150502
https://doi.org/10.1017/CBO9780511810817
https://doi.org/10.1088/1751-8121/aa77b8
https://doi.org/10.1088/1751-8121/aa77b8
https://doi.org/10.1109/ISPA.2001.938674
https://doi.org/10.1038/nchem.483
https://doi.org/10.1016/j.cam.2004.12.026
https://doi.org/10.1103/PhysRevA.93.032324

sion of Hilbert space, Physical Review Letters 106 (2011), no. 17, 170501,
doi:10.1103/PhysRevLett.106.170501.

[24] Markus Püschel, Martin Rötteler, and Thomas Beth, Fast quantum Fourier trans-
forms for a class of non-abelian groups, International Symposium on Applied Algebra,
Algebraic Algorithms, and Error-Correcting Codes, pp. 148–159, 1999, doi:10.1007/3-
540-46796-3 15.

[25] Markus Reiher, Nathan Wiebe, Krysta M. Svore, Dave Wecker, and Matthias Troyer,
Elucidating reaction mechanisms on quantum computers, Proceedings of the National
Academy of Sciences 114 (2017), no. 29, 7555–7560, doi:10.1073/pnas.1619152114.

[26] Martin Rötteler, Markus Püschel, and Thomas Beth, Fast signal transforms for quan-
tum computers, Proceedings of the Workshop on Physics and Computer Science,
pp. 31–43, 1999.

[27] Norbert Schuch and Jens Siewert, Programmable networks for quan-
tum algorithms, Physical Review Letters 91 (2003), no. 2, 027902,
doi:10.1103/PhysRevLett.91.027902.

[28] Jie Shen, Tao Tang, and Li-Lian Wang, Spectral methods: algorithms, analysis and
applications, vol. 41, Springer Science & Business Media, 2011, doi:10.1007/978-3-
540-71041-7.

[29] Jie Shen and Haijun Yu, Efficient spectral sparse grid methods and applications to
high-dimensional elliptic problems, SIAM Journal on Scientific Computing 32 (2010),
no. 6, 3228–3250, doi:10.1137/100787842.

[30] Jie Shen and Haijun Yu, Efficient spectral sparse grid methods and applications to
high-dimensional elliptic equations II. Unbounded domains, SIAM Journal on Scien-
tific Computing 34 (2012), no. 2, A1141–A1164, doi:10.1137/110834950.

[31] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov, Synthesis of quantum-
logic circuits, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems 25 (2006), no. 6, 1000–1010, doi:10.1109/TCAD.2005.855930.

[32] Sergei Abramovich Smolyak, Quadrature and interpolation formulas for tensor prod-
ucts of certain classes of functions, Doklady Akademii Nauk, vol. 148, pp. 1042–1045,
1963.

[33] Daniel Spielman, Rings, paths, and Cayley graphs (course notes), 2014, http://www.
cs.yale.edu/homes/spielman/561/lect05-15.pdf.

[34] Jie Shen and Tao Tang, Spectral and high-order methods with applications, 2006,
Science Press Beijing, https://www.math.purdue.edu/∼shen7/sp intro12/book.pdf.

[35] Shengbin Wang, Zhimin Wang, Wendong Li, Lixin Fan, Zhiqiang Wei, and Yongjian
Gu, Quantum fast Poisson solver: the algorithm and modular circuit design, Quantum
Information Processing 19 (2020), no. 6, 1–25, doi:10.1007/s11128-020-02669-7.

[36] Jonathan Welch, Daniel Greenbaum, Sarah Mostame, and Alán Aspuru-Guzik, Effi-
cient quantum circuits for diagonal unitaries without ancillas, New Journal of Physics
16 (2014), no. 3, 033040, doi:10.1088/1367-2630/16/3/033040.

[37] Stephen Wiesner, Simulations of many-body quantum systems by a quantum com-
puter, arXiv:quant-ph/9603028 (1996).

[38] Christof Zalka, Efficient simulation of quantum systems by quantum comput-
ers, Fortschritte der Physik 46 (1998), no. 6-8, 877–879, doi:10.1002/(SICI)1521-
3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A.

[39] Christoph Zenger, Sparse grids, (1991), https://www5.in.tum.de/pub/zenger91sg.pdf.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 32

https://doi.org/10.1103/PhysRevLett.106.170501
https://doi.org/10.1007/3-540-46796-3_15
https://doi.org/10.1007/3-540-46796-3_15
https://doi.org/10.1073/pnas.1619152114
https://doi.org/10.1103/PhysRevLett.91.027902
https://doi.org/10.1007/978-3-540-71041-7
https://doi.org/10.1007/978-3-540-71041-7
https://doi.org/10.1137/100787842
https://doi.org/10.1137/110834950
https://doi.org/10.1109/TCAD.2005.855930
http://www.cs.yale.edu/homes/spielman/561/lect05-15.pdf
http://www.cs.yale.edu/homes/spielman/561/lect05-15.pdf
https://www.math.purdue.edu/~shen7/sp_intro12/book.pdf
https://doi.org/10.1007/s11128-020-02669-7
https://doi.org/10.1088/1367-2630/16/3/033040
https://arxiv.org/abs/quant-ph/9603028
https://doi.org/10.1002/(SICI)1521-3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A
https://doi.org/10.1002/(SICI)1521-3978(199811)46:6/8<877::AID-PROP877>3.0.CO;2-A
https://www5.in.tum.de/pub/zenger91sg.pdf

A An example for solving Poisson’s equation
In this appendix, we present an example of solving Poisson’s equation in two dimensions
using our algorithm. The Poisson equation is

∆u(x1, x2) =
(
∂2

∂x2
1

+ ∂2

∂x2
2

)
u(x1, x2) = f(x1, x2), (x1, x2) ∈ Ω = [−1, 1]2. (A.1)

We consider two kinds of boundary value problems, as follows.

• Periodic boundary conditions:

u(x1, x2) = u(x1 + 2v, x2) = u(x1, x2 + 2v), (x1, x2) ∈ Ω = [−1, 1]2, v ∈ Z
u(0, 0) = γ.

(A.2)

• Non-periodic boundary conditions:

u(x1, 1) = γN (x1), u(1, x2) = γE(x2),
u(x1,−1) = γS(x1), u(−1, x2) = γW (x2).

(A.3)

We first present the quantum Fourier spectral method to solve (A.1) with the periodic
conditions (A.2). In particular, we choose n = 2 in the specification of the linear system.
The truncated Fourier series can be written as

u(x1, x2) =
2∑

k1=0

2∑
k2=0

ck1,k2e
i(k1−1)πx1ei(k2−1)πx2 . (A.4)

We are given an oracle for preparing the state

2∑
l1=0

2∑
l2=0

f

(2l1
3 − 1, 2l2

3 − 1
)
|l1〉|l2〉 (A.5)

that interpolates the uniform grid nodes (4.7). We first perform a multi-dimensional
inverse QSFT on (A.5) to obtain

2∑
k1=0

2∑
k2=0

fk1,k2 |k1〉|k2〉, (A.6)

where bk1,k2 are defined by (4.35). Then we apply the quantum linear system algorithm
of Reference [8] to solve the linear system

Lp|X〉 = |B〉, (A.7)

where the solution is

|X〉 =
2∑

k1=0

2∑
k2=0

ck1,k2 |k1〉|k2〉. (A.8)

According to (4.52),the discretized linear system from (A.1) is

D2
n ⊗ I + I ⊗D2

n, (A.9)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 33

where the Fourier difference matrix Dn is defined by (4.47) with n = 2, namely

D2 =

−iπ 0 0
0 0 0
0 0 iπ

, (A.10)

so that

D2
2 =

−π2 0 0
0 0 0
0 0 −π2

. (A.11)

Therefore, the matrix (A.9) is

D2
2 ⊗ I + I ⊗D2

2 =



−2π2

−π2

−2π2

−π2

0
−π2

−2π2

−π2

−2π2


. (A.12)

The rank of this matrix is (n+ 1)d− 1 with d = 2, n = 2. We use the boundary condition
to complete the linear system:

−2π2

−π2

−2π2

−π2

1 1 1
−π2

−2π2

−π2

−2π2





c0,0
c0,1
c0,2
c1,0
c1,1
c1,2
c2,0
c2,1
c2,2


=



f0,0
f0,1
f0,2
f1,0
γ
f1,2
f2,0
f2,1
f2,2


, (A.13)

where the additional linear equation comes from u(0, 0) =
∑2
k1=0

∑2
k2=0 ck1,k2 = γ. In

some problems, we might be directly given the value of c1,1, say, c1,1 = γ. Then the linear
system would be

−2π2

−π2

−2π2

−π2

1
−π2

−2π2

−π2

−2π2





c0,0
c0,1
c0,2
c1,0
c1,1
c1,2
c2,0
c2,1
c2,2


=



f0,0
f0,1
f0,2
f1,0
γ
f1,2
f2,0
f2,1
f2,2


. (A.14)

We now present the quantum Chebyshev spectral method to solve (A.1) with non-
periodic conditions (A.3). Similarly, we choose n = 3 in the specification of the linear

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 34

system. The truncated Chebyshev series of the solution can be written as

u(x1, x2) =
3∑

k1=0

3∑
k2=0

ck1,k2Tk1(x1)Tk2(x2). (A.15)

We are given an oracle for preparing the state

3∑
l1=0

3∑
l2=0

f

(
cos πl13 , cos πl23

)
|l1〉|l2〉 (A.16)

that interpolates the Chebyshev-Gauss-Lobatto quadrature nodes specified in (4.7). We
first perform the multi-dimensional inverse QCT on (A.5) to obtain (A.6), where fk1,k2 are
defined by (4.35). Then we apply the quantum linear system algorithm of Reference [8] to
solve the linear system (A.7) with the solution (A.8). The discretized linear system from
(A.1) is (A.9), where the Chebyshev difference matrix Dn is defined by (4.48) with n = 3,
namely

D3 =


0 1 0 3
0 0 4 0
0 0 0 6
0 0 0 0

, (A.17)

and

D2
3 =


0 0 4 0
0 0 0 24
0 0 0 0
0 0 0 0

. (A.18)

Notice that the rank of D2
n is n− 1, which implies the second derivative for d = 1 can be

represented as
u′′(x) = c′′0T0(x) + c′′1T1(x) = 4c2T0(x) + 24c3T1(x), (A.19)

where the truncation order of u′′(x) is n−2, and the coefficients c′′0, . . . , c
′′
n−2 are determined

by c2, . . . , cn. Similarly for the case d = 2, the coefficients of ∆u(x) are determined by

c′′00 = 4c02 + 4c20, c′′01 = 24c03 + 4c21, c′′02 = 4c22, c′′03 = 4c23,

c′′10 = 4c12 + 24c30, c′′11 = 24c13 + 24c31, c′′12 = 24c32, c′′13 = 24c33,

c′′20 = 4c22, c′′21 = 24c23,

c′′30 = 4c32, c′′33 = 24c33,

(A.20)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 35

so the matrix D2
3 ⊗ I + I ⊗D2

3 gives the linear system



4 4
24 4

4
4

4 24
24 24

24
24

4
24

4
24





c0,0
c0,1
c0,2
c0,3
c1,0
c1,1
c1,2
c1,3
c2,0
c2,1
c2,2
c2,3
c3,0
c3,1
c3,2
c3,3



=



f0,0
f0,1
f0,2
f0,3
f1,0
f1,1
f1,2
f1,3
f2,0
f2,1
f3,0
f3,1



. (A.21)

We now use the boundary conditions to complete the linear system. The truncated Cheby-
shev series of the solution can be written as

γN (x1) =
2∑

k1=0
gNk1Tk1(x1),

γS(x1) =
2∑

k1=0
gSk1Tk1(x1),

γE(x2) =
2∑

k2=0
gEk1Tk1(x2),

γW (x2) =
2∑

k2=0
gWk1Tk1(x2).

(A.22)

We are given an oracle for preparing the state by interpolating the Chebyshev-Gauss-
Lobatto quadrature nodes specified in (4.7)

3∑
l1=0

γN

(
cos πl13

)
|l1〉,

3∑
l2=0

γE

(
cos πl23

)
|l2〉,

3∑
l1=0

γS

(
cos πl13

)
|l1〉,

3∑
l2=0

γW

(
cos πl23

)
|l2〉.

(A.23)

We perform the multi-dimensional inverse QCT on (A.23) to obtain

3∑
k1=0

gNk1 |k1〉,
3∑

k2=0
gEk2 |k2〉,

3∑
k1=0

gSk1 |k1〉,
3∑

k2=0
gWk2 |k2〉,

(A.24)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 36

where ak1,k2 are defined by (4.36). The linear system from the boundary conditions is

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 −1 1 −1
1 −1 1 −1

1 −1 1 −1
1 −1 1 −1

1 1 1 1
1 1 1 1

1 1 1 1
1 1 1 1

1 −1 1 −1
1 −1 1 −1

1 −1 1 −1
1 −1 1 −1





c0,0
c0,1
c0,2
c0,3
c1,0
c1,1
c1,2
c1,3
c2,0
c2,1
c2,2
c2,3
c3,0
c3,1
c3,2
c3,3



=



gN 0
gN 1
gN 2
gN 3
gS0
gS1
gS2
gS3
gE0
gE1
gE2
gE3
gW 0
gW 1
gW 2
gW 3



.

(A.25)
Adding the two linear systems (A.21) and (A.25) together, we obtain a full-rank linear
system

D
(2)
3 ⊗ I + I ⊗D(2)

3 , (A.26)

where

D
(2)
3 =


0 0 4 0
0 0 0 24
1 −1 1 −1
1 1 1 1

. (A.27)

In summary, the linear system including the differential equations and the boundary con-
ditions is

4 4
24 4

1 −1 1 −1 4
1 1 1 1 4

4 24
24 24

1 −1 1 −1 24
1 1 1 1 24

1 −1 1 4 −1
1 −1 1 24 −1

1 −1 1 −1 2 −1 −1
1 −1 1 1 1 2 −1

1 1 1 1 4
1 1 1 1 24

1 1 1 1 −1 2 −1
1 1 1 1 1 1 2





c0,0
c0,1
c0,2
c0,3
c1,0
c1,1
c1,2
c1,3
c2,0
c2,1
c2,2
c2,3
c3,0
c3,1
c3,2
c3,3



=



f0,0
f0,1

f0,2 + gS0
f0,3 + gN 0

f1,0
f1,1

f1,2 + gS1
f1,3 + gN 1
f2,0 + gW 0
f2,1 + gW 1
gW 2 + gS2
gW 3 + gN 2
f3,0 + gE0
f3,1 + gE1
gE2 + gS3
gE3 + gN 3



.

(A.28)

B Singular values of second-order differential matrices
Here we present a detailed proof of the singular value estimation in Lemma 7 and Lemma 8.

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 37

Lemma 7. Consider the case of periodic boundary conditions. Then for n ≥ 4, the largest
and smallest singular values of D(2)

n defined in (4.59) satisfy

σmax(D(2)
n) ≤ (2n)2.5,

σmin(D(2)
n) ≥ 1√

2
.

(4.61)

Proof. By direct calculation of the l∞ norm (i.e., the maximum absolute column sum) of
(4.59), for n ≥ 4, we have

‖D(2)
n ‖∞ ≤

((n+ 1)π
2

)2
≤ (2n)2. (B.1)

Then the inverse of the matrix (4.59) is

[(D(2)
n)−1]k,k = − 1

((k − bn/2c)π)2 , k ∈ [n+ 1]0\{bn/2c},

[(D(2)
n)−1]bn/2c,k = 1

((k − bn/2c)π)2 , k ∈ [n+ 1]0
(B.2)

as can easily be verified by a direct calculation.
By direct calculation of the Frobenius norm of (4.59), we have

‖(D2
n)−1‖2F ≤ 1 + 2

∞∑
k=1

1
k4π4 = 1 + 2

π4
π4

90 ≤ 2. (B.3)

Thus we have the result in (4.61):

σmax(D(2)
n) ≤

√
n+ 1‖D2

n‖∞ ≤ (2n)2.5,

σmin(D(2)
n) ≥ 1

‖(D2
n)−1‖F

≥ 1√
2

(B.4)

as claimed.

Lemma 8. Consider the case of non-periodic boundary conditions. Then the largest and
smallest singular values of D(2)

n defined in (4.60) satisfy

σmax(D(2)
n) ≤ n4,

σmin(D(2)
n) ≥ 1

16 .
(4.62)

Proof. By direct calculation of the Frobenius norm of (4.60), we have

‖D(2)
n ‖2F ≤ n2 max

k,r

(
r(r2 − k2)

σk

)2

≤ n2 · n6 = n8. (B.5)

Next we upper bound ‖(D(2)
n)−1‖. By definition,

‖(D(2)
n)−1‖ = sup

‖b‖≤1
‖(D2

n)−1b‖. (B.6)

Given any vector b satisfying ‖b‖ ≤ 1, we estimate ‖x‖ defined by the full-rank linear
system

D
(2)
n x = b. (B.7)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 38

Notice that D(2)
n is the sum of the upper triangular matrix D2

n and (4.56), the coordinates
x2, . . . , xn are only defined by coordinates b0, . . . , bn−2. So we only focus on the partial
system

D(2)
n [0, 0, x2, . . . , xn]T = [b0, . . . , bn−2, 0, 0]T . (B.8)

Given the same b, we also define the vector y by

Dn[0, y1, . . . , yn−1, 0]T = [b0, . . . , bn−2, 0, 0]T , (B.9)

where each coordinate of y can be expressed by

bk =
n−1∑
l=1

[Dn]klyl =
n−1∑
l=1

2l
σk
yl, k + l odd, l > k, k ∈ [n− 1]0. (B.10)

Using this equation with k = l − 1 and k = l + 1, we can express yl in terms of bl−1 and
bl+1:

2l
σl−1

yl = bl−1 −
1

σl−1
bl+1, l ∈ [n− 1], (B.11)

where we let bn−1 = bn = 0. Thus we have

n−1∑
l=1

y2
l =

n−1∑
l=1

(
σl−1
2l

(
bl−1 −

1
σl−1

bl+1

))2

≤
n−1∑
l=1

σ2
l−1
4l2

(
1 + 1

σ2
l−1

)
(b2l−1 + b2l+1)

≤ 5
4(b20 + b22) + 1

16

n−2∑
l=2

(b2l−1 + b2l+1)

≤ 2
n−2∑
l=0

b2l .

(B.12)

We notice that y also satisfies

[0, y1, . . . , yn−1, 0]T = Dn[0, 0, x2, . . . , xn]T , (B.13)

where each coordinate of y can be expressed by

yl =
n∑
r=1

[Dn]lrxr =
n∑
r=1

2r
σl
xr, l + r odd, r > l, l ∈ [n− 1]. (B.14)

Substituting the (r− 1)st and the (r+ 1)st equations of (B.14), we can express x in terms
of y:

2r
σr−1

xr = yr−1 −
1

σr−1
yr+1, r ∈ [n]\{1}, (B.15)

where we let yn = yn+1 = 0. Similarly, according to (B.15), we also have

n∑
l=2

x2
l ≤ 2

n−1∑
l=1

y2
l . (B.16)

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 39

Then we calculate x2
0 + x2

1 based on the last two equations of (B.7), (B.12), and (B.15),
giving

x2
0 + x2

1 = 1
2[(x0 + x1)2 + (x0 − x1)2]

= 1
2

(bn − n∑
l=2

xl

)2

+
(
bn−1 −

n∑
l=2

(−1)lxl

)2


= 1
2

(bn − n∑
l=2

σl−1
2l

(
yl−1 −

1
σl−1

yl+1

))2

+
(
bn−1 −

n∑
l=2

(−1)lσl−1
2l

(
yl−1 −

1
σl−1

yl+1

))2


≤ 1
2

(
1 +

n∑
l=2

σ2
l−1
4l2

)[
b2n +

n∑
l=2

(
yl−1 −

1
σl−1

yl+1

)2
+ b2n−1

+
n∑
l=2

(
yl−1 −

1
σl−1

yl+1

)2
]

≤ 1
2

(
1 + 1

4

∞∑
l=2

1
l2

)[
b2n + b2n−1 +

n∑
l=2

(
1 + 1

σ2
l−1

)
(y2
l−1 + y2

l+1)
]

≤ 1
2

(
1 + π2

24

)[
b2n + b2n−1 + 4

n−1∑
l=1

y2
l

]

≤ b2n + b2n−1 + 8
n−2∑
l=0

b2l .

(B.17)

Thus, based on (B.12), (B.16), and (B.17), the inequality

n∑
l=0

x2
l = x2

0 + x2
1 +

n∑
l=2

x2
l

≤ b2n + b2n−1 + 8
n−2∑
l=0

b2l + 4
n−2∑
l=0

b2l

≤ b2n + b2n−1 + 12
n−2∑
l=0

b2l ≤ 12

(B.18)

holds for any vectors b satisfying ‖b‖ ≤ 1. Thus

‖(D(2)
n)−1‖ = sup

‖b‖≤1
‖x‖ ≤ 12 < 16. (B.19)

Altogether, we have
σmax(D(2)

n) ≤ ‖D2
n‖F ≤ n4,

σmin(D(2)
n) ≥ 1

‖(D2
n)−1‖

≥ 1
16

(B.20)

as claimed in (4.62).

Accepted in Quantum 2021-10-12, click title to verify. Published under CC-BY 4.0. 40

	1 Introduction
	2 Linear PDEs
	3 Finite difference method
	3.1 Linear system
	3.2 Condition number
	3.3 Error analysis
	3.4 FDM algorithm
	3.5 Boundary conditions via the method of images

	4 Multi-dimensional spectral method
	4.1 Quantum shifted Fourier transform and quantum cosine transform
	4.2 Linear system
	4.2.1 Linear system from the differential equation
	4.2.2 Adding the linear system from the boundary conditions

	4.3 Condition number
	4.4 State preparation
	4.5 Main result

	5 Discussion and open problems
	A An example for solving Poisson's equation
	B Singular values of second-order differential matrices

