Quantum repeaters based on individual electron spins and nuclear-spin-ensemble memories in quantum dots

Kenneth Sharman, Faezeh Kimiaee Asadi, Stephen C Wein, and Christoph Simon

Institute for Quantum Science and Technology, and Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Inspired by recent developments in the control and manipulation of quantum dot nuclear spins, which allow for the transfer of an electron spin state to the surrounding nuclear-spin ensemble for storage, we propose a quantum repeater scheme that combines individual quantum dot electron spins and nuclear-spin ensembles, which serve as spin-photon interfaces and quantum memories respectively. We consider the use of low-strain quantum dots embedded in high-cooperativity optical microcavities. Quantum dot nuclear-spin ensembles allow for the long-term storage of entangled states, and heralded entanglement swapping is performed using cavity-assisted gates. We highlight the advances in quantum dot technologies required to realize our quantum repeater scheme which promises the establishment of high-fidelity entanglement over long distances with a distribution rate exceeding that of the direct transmission of photons.

The establishment of a quantum internet is required to realize many promising applications of quantum science including quantum key distribution, dense coding, and distributed quantum computing. The long-distance transmission of information is typically subject to loss, which in classical communications can be overcome using optical amplifiers. A similar approach is not possible in quantum communication due to the no-cloning theorem, which states that it is impossible to create a copy of an unknown quantum state. Transmission loss can, however, be overcome in quantum communication using a method known as the quantum repeater approach. Quantum repeaters eliminate the need for direct transmission across the network by distributing entanglement over a series of locally established links. The links are then connected through entanglement swapping to extend the entanglement over the length of the communication channel. The resulting entanglement can be used for long distance quantum communication.

Long-lived quantum memories to store entanglement are essential components of many quantum repeater protocols. Inspired by recent developments in the control and manipulation of quantum dot nuclear spins, which allow for the possibility of transferring entanglement to the nuclear ensemble for storage, we propose a quantum repeater scheme that combines individual quantum dot electron spins and nuclear-spin ensembles with microcavities. Our research includes analysis of both the entanglement quality and the rate at which entanglement can be established over long distances using our proposed quantum repeater scheme.

► BibTeX data

► References

[1] H. J. Kimble, Nature 453, 1023 (2008).

[2] C. Simon, Nature Photonics 11, 678 (2017).

[3] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).

[4] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).

[5] C. H. Bennett and S. J. Wiesner, Physical Review Letters 69, 2881 (1992).

[6] X. Liu, G. Long, D. Tong, and F. Li, Physical Review A 65, 022304 (2002).

[7] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd, and M. Stather, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, 20120686 (2013).

[8] D. Dieks, Physics Letters A 92, 271 (1982).

[9] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Physical Review Letters 81, 5932 (1998).

[10] N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, Reviews of Modern Physics 83, 33 (2011).

[11] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Physical Review Letters 71, 4287 (1993).

[12] C. Simon, M. Afzelius, J. Appel, A. B. de La Giroday, S. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Kröll, J. Müller, et al., The European Physical Journal D 58, 1 (2010).

[13] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, Journal of Modern Optics 63, 2005 (2016).

[14] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).

[15] F. K. Asadi, N. Lauk, S. C. Wein, N. Sinclair, C. O'Brien, and C. Simon, Quantum 2, 93 (2018).

[16] F. K. Asadi, S. C. Wein, and C. Simon, Quantum Science and Technology 5, 045015 (2020a).

[17] L. Childress, J. Taylor, A. S. Sørensen, and M. Lukin, Physical Review Letters 96, 070504 (2006).

[18] C. Simon, Y.-M. Niquet, X. Caillet, J. Eymery, J.-P. Poizat, and J.-M. Gérard, Physical Review B 75, 081302 (2007).

[19] P. Senellart, G. Solomon, and A. White, Nature Nanotechnology 12, 1026 (2017).

[20] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, et al., Physical Review Letters 116, 020401 (2016).

[21] H. Wang, Y.-M. He, T.-H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.-C. Chen, J. Qin, X. Yang, et al., Nature Photonics 13, 770 (2019).

[22] H. Ollivier, I. Maillette de Buy Wenniger, S. Thomas, S. C. Wein, A. Harouri, G. Coppola, P. Hilaire, C. Millet, A. Lemaı̂tre, I. Sagnes, et al., ACS Photonics 7, 1050 (2020).

[23] W. Gao, P. Fallahi, E. Togan, J. Miguel-Sánchez, and A. Imamoglu, Nature 491, 426 (2012).

[24] J. Schaibley, A. Burgers, G. McCracken, L.-M. Duan, P. Berman, D. Steel, A. Bracker, D. Gammon, and L. Sham, Physical Review Letters 110, 167401 (2013).

[25] K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, et al., Nature 491, 421 (2012).

[26] R. Stockill, M. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. Miller, C. Matthiesen, C. Le Gall, and M. Atatüre, Physical Review Letters 119, 010503 (2017).

[27] A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoğlu, Nature Physics 12, 218 (2016).

[28] P. Lodahl, S. Mahmoodian, and S. Stobbe, Reviews of Modern Physics 87, 347 (2015).

[29] J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, Nature 432, 197 (2004).

[30] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, et al., Physical Review Letters 113, 093603 (2014).

[31] G. Pettinari, M. Felici, F. Biccari, M. Capizzi, and A. Polimeni, in Photonics, Vol. 5 (Multidisciplinary Digital Publishing Institute, 2018) p. 10.

[32] P. Yao, V. Manga Rao, and S. Hughes, Laser & Photonics Reviews 4, 499 (2010).

[33] M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, Nature Communications 8, 1 (2017).

[34] I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, Nano Letters 16, 2289 (2016).

[35] Z.-X. Gong, Z.-q. Yin, and L. Duan, New Journal of Physics 13, 033036 (2011).

[36] E. Chekhovich, M. Hopkinson, M. Skolnick, and A. Tartakovskii, Nature Communications 6, 1 (2015).

[37] G. Gillard, I. M. Griffiths, G. Ragunathan, A. Ulhaq, C. McEwan, E. Clarke, and E. A. Chekhovich, npj Quantum Information 7, 1 (2021).

[38] A. Ulhaq, Q. Duan, E. Zallo, F. Ding, O. G. Schmidt, A. Tartakovskii, M. Skolnick, and E. A. Chekhovich, Physical Review B 93, 165306 (2016).

[39] J. Taylor, C. Marcus, and M. Lukin, Physical Review Letters 90, 206803 (2003a).

[40] J. Taylor, A. Imamoglu, and M. Lukin, Physical Review Letters 91, 246802 (2003b).

[41] J. Taylor, G. Giedke, H. Christ, B. Paredes, J. Cirac, P. Zoller, M. Lukin, and A. Imamoglu, arXiv preprint cond-mat/​0407640 (2004).

[42] D. Gangloff, G. Éthier-Majcher, C. Lang, E. Denning, J. Bodey, D. Jackson, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre, Science 364, 62 (2019).

[43] P. Atkinson, E. Zallo, and O. Schmidt, Journal of Applied Physics 112, 054303 (2012).

[44] C. Emary, X. Xu, D. Steel, S. Saikin, and L. Sham, Physical Review Letters 98, 047401 (2007).

[45] C.-Y. Lu, Y. Zhao, A. Vamivakas, C. Matthiesen, S. Fält, A. Badolato, and M. Atatüre, Physical Review B 81, 035332 (2010).

[46] R. J. Warburton, Nature Materials 12, 483 (2013).

[47] B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin, P. Maletinsky, A. Högele, and A. Imamoglu, Reviews of Modern Physics 85, 79 (2013).

[48] E. Chekhovich, A. Ulhaq, E. Zallo, F. Ding, O. Schmidt, and M. Skolnick, Nature Materials 16, 982 (2017).

[49] A. Bracker, E. Stinaff, D. Gammon, M. Ware, J. Tischler, A. Shabaev, A. L. Efros, D. Park, D. Gershoni, V. Korenev, et al., Physical Review Letters 94, 047402 (2005).

[50] B. Urbaszek, P.-F. Braun, T. Amand, O. Krebs, T. Belhadj, A. Lemaítre, P. Voisin, and X. Marie, Physical Review B 76, 201301 (2007).

[51] J. Nannen, T. Kümmell, M. Bartsch, K. Brunner, and G. Bacher, Applied Physics Letters 97, 173108 (2010).

[52] S. D. Barrett and P. Kok, Physical Review A 71, 060310 (2005).

[53] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten, C. Abellán, et al., Nature 526, 682 (2015).

[54] D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature 456, 218 (2008).

[55] E. V. Denning, D. A. Gangloff, M. Atatüre, J. Mørk, and C. Le Gall, Physical Review Letters 123, 140502 (2019).

[56] E. Chekhovich, K. Kavokin, J. Puebla, A. Krysa, M. Hopkinson, A. Andreev, A. Sanchez, R. Beanland, M. Skolnick, and A. Tartakovskii, Nature Nanotechnology 7, 646 (2012).

[57] C. Bulutay, Physical Review B 85, 115313 (2012).

[58] R. Trotta, J. Martín-Sánchez, I. Daruka, C. Ortix, and A. Rastelli, Physical Review Letters 114, 150502 (2015).

[59] R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, Nature Communications 7, 1 (2016).

[60] I. Schwartz, J. Scheuer, B. Tratzmiller, S. Müller, Q. Chen, I. Dhand, Z.-Y. Wang, C. Müller, B. Naydenov, F. Jelezko, et al., Science Advances 4, eaat8978 (2018).

[61] L.-M. Duan, B. Wang, and H. Kimble, Physical Review A 72, 032333 (2005).

[62] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Physical Review X 8, 011018 (2018).

[63] M. Calic, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, and E. Kapon, Scientific Reports 7, 1 (2017).

[64] S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, Optics Express 24, 8539 (2016).

[65] F. Liu, A. J. Brash, J. O’Hara, L. M. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, et al., Nature Nanotechnology 13, 835 (2018).

[66] N. Somaschi, V. Giesz, L. De Santis, J. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, et al., Nature Photonics 10, 340 (2016).

[67] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, Nature 450, 857 (2007a).

[68] Z. Luo, S. Sun, A. Karasahin, A. S. Bracker, S. G. Carter, M. K. Yakes, D. Gammon, and E. Waks, Nano Letters 19, 7072 (2019).

[69] C. Cao, Y.-H. Han, L. Zhang, L. Fan, Y.-W. Duan, and R. Zhang, Advanced Quantum Technologies 2, 1900081 (2019).

[70] H.-R. Wei and F.-G. Deng, Scientific Reports 4, 7551 (2014).

[71] F. K. Asadi, S. C. Wein, and C. Simon, Physical Review A 102, 013703 (2020b).

[72] C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, Physical Review Letters 104, 160503 (2010).

[73] M. A. Nielsen and I. Chuang, ``Quantum computation and quantum information,'' (2002).

[74] E. B. Flagg and G. S. Solomon, Physical Review B 92, 245309 (2015).

[75] T. Wilkinson, D. Cottrill, J. Cramlet, C. Maurer, C. Flood, A. Bracker, M. Yakes, D. Gammon, and E. Flagg, in Quantum Nanophotonic Materials, Devices, and Systems 2019, Vol. 11091 (International Society for Optics and Photonics, 2019) p. 110910I.

[76] E. Chekhovich, M. Makhonin, A. Tartakovskii, A. Yacoby, H. Bluhm, K. Nowack, and L. Vandersypen, Nature Materials 12, 494 (2013).

[77] P. Maletinsky, A. Badolato, and A. Imamoglu, Physical Review Letters 99, 056804 (2007).

[78] B. Casabone, C. Deshmukh, S. Liu, D. Serrano, A. Ferrier, T. Hümmer, P. Goldner, D. Hunger, and H. de Riedmatten, Nature Communications 12, 1 (2021).

[79] D. Dalacu, P. J. Poole, and R. L. Williams, Nanotechnology 30, 232001 (2019).

[80] Y. Arakawa and M. J. Holmes, Applied Physics Reviews 7, 021309 (2020).

[81] Y. Wu, J. Liu, and C. Simon, Physical Review A 101, 042301 (2020).

[82] J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, et al., Nature Nanotechnology 14, 586 (2019).

[83] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, Nature Communications 2, 1 (2011).

[84] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, Nature Photonics 4, 174 (2010).

[85] A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, Applied Physics Letters 90, 073102 (2007).

[86] S. Liu, Y. Wei, R. Su, R. Su, B. Ma, Z. Chen, H. Ni, Z. Niu, Y. Yu, Y. Wei, X. Wang, and S. Yu, Scientific Reports 7, 1 (2017).

[87] O. Collins, S. Jenkins, A. Kuzmich, and T. Kennedy, Physical Review Letters 98, 060502 (2007).

[88] S. C. Wein, J.-W. Ji, Y.-F. Wu, F. K. Asadi, R. Ghobadi, and C. Simon, Physical Review A 102, 033701 (2020).

[89] U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, Physical Review B 80, 201311 (2009).

[90] A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, M. Amann, and J. Finley, New Journal of Physics 11, 023034 (2009).

[91] L. Zhai, M. C. Löbl, G. N. Nguyen, J. Ritzmann, A. Javadi, C. Spinnler, A. D. Wieck, A. Ludwig, and R. J. Warburton, Nature Communications 11, 1 (2020).

[92] B. Albrecht, P. Farrera, G. Heinze, M. Cristiani, and H. de Riedmatten, Physical Review Letters 115, 160501 (2015).

[93] A. Delteil, W.-b. Gao, P. Fallahi, J. Miguel-Sanchez, and A. Imamoğlu, Physical Review Letters 112, 116802 (2014).

[94] J.-W. Ji, Y.-F. Wu, S. C. Wein, F. K. Asadi, R. Ghobadi, and C. Simon, arXiv preprint arXiv:2012.06687 (2020).

[95] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Review of Scientific Instruments 82, 071101 (2011).

[96] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Physical Review A 59, 169 (1999).

[97] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Science 356, 928 (2017).

[98] Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, Nature Communications 9, 1 (2018).

[99] Y. Wei, T. Zhao, B. Yao, R. Su, Y. Yu, J. Liu, and X. Wang, Optical Materials Express 10, 170 (2020).

[100] E. Schöll, L. Schweickert, L. Hanschke, K. D. Zeuner, F. Sbresny, T. Lettner, R. Trivedi, M. Reindl, S. F. C. da Silva, R. Trotta, et al., Physical Review Letters 125, 233605 (2020).

[101] A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, Physical Review B 71, 241304 (2005).

[102] K. Kuruma, Y. Ota, M. Kakuda, S. Iwamoto, and Y. Arakawa, APL Photonics 5, 046106 (2020).

[103] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, et al., Nature 575, 622 (2019).

[104] D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, Optics Express 15, 5550 (2007b).

[105] I. Merkulov, A. L. Efros, and M. Rosen, Physical Review B 65, 205309 (2002).

[106] V. N. Golovach, A. Khaetskii, and D. Loss, Physical Review Letters 93, 016601 (2004).

[107] C. Deng and X. Hu, Physical Review B 73, 241303 (2006).

[108] S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, Physical Review Letters 102, 247601 (2009).

[109] L. Viola, E. Knill, and S. Lloyd, Physical Review Letters 82, 2417 (1999).

[110] K. Khodjasteh and D. Lidar, Physical Review Letters 95, 180501 (2005).

[111] G. Éthier-Majcher, D. Gangloff, R. Stockill, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre, Physical Review Letters 119, 130503 (2017).

[112] D. Stepanenko, G. Burkard, G. Giedke, and A. Imamoglu, Physical Review Letters 96, 136401 (2006).

[113] A. Greilich, A. Shabaev, D. Yakovlev, A. L. Efros, I. Yugova, D. Reuter, A. Wieck, and M. Bayer, Science 317, 1896 (2007).

[114] D. Reilly, J. Taylor, J. R. Petta, C. Marcus, M. Hanson, and A. Gossard, Science 321, 817 (2008).

[115] I. T. Vink, K. C. Nowack, F. H. Koppens, J. Danon, Y. V. Nazarov, and L. M. Vandersypen, Nature Physics 5, 764 (2009).

[116] T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, New Journal of Physics 17, 123025 (2015).

[117] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, et al., Nature Nanotechnology 16, 399 (2021).

[118] L. Zhai, G. N. Nguyen, C. Spinnler, J. Ritzmann, M. C. Löbl, A. D. Wieck, A. Ludwig, A. Javadi, and R. J. Warburton, arXiv preprint arXiv:2106.03871 (2021).

[119] J. Houel, A. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. Gerardot, P. Dalgarno, A. Badolato, P. Petroff, A. Ludwig, et al., Physical Review Letters 108, 107401 (2012).

[120] P. Tighineanu, C. L. Dreessen, C. Flindt, P. Lodahl, and A. S. Sørensen, Physical Review Letters 120, 257401 (2018).

[121] H. Vural, S. L. Portalupi, and P. Michler, Applied Physics Letters 117, 030501 (2020).

[122] S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, Physical Review Letters 109, 147405 (2012).

[123] S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, et al., Physical Review Letters 109, 147404 (2012).

[124] B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, Optics Express 24, 22250 (2016).

[125] A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, et al., Optica 6, 563 (2019).

[126] S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, et al., Nano Letters 18, 3047 (2018).

[127] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, IEEE Journal of Selected Topics in Quantum Electronics 21, 78 (2015).

[128] K. Azuma, K. Tamaki, and H.-K. Lo, Nature Communications 6, 6787 (2015).

[129] P. Hilaire, E. Barnes, and S. E. Economou, Quantum 5, 397 (2021).

Cited by

[1] Yisheng Lei, Faezeh Kimiaee Asadi, Tian Zhong, Alex Kuzmich, Christoph Simon, and Mahdi Hosseini, "Quantum optical memory for entanglement distribution", Optica 10 11, 1511 (2023).

[2] Tim Coopmans, Sebastiaan Brand, and David Elkouss, "Improved analytical bounds on delivery times of long-distance entanglement", Physical Review A 105 1, 012608 (2022).

[3] Martin Hayhurst Appel, Alexey Tiranov, Simon Pabst, Ming Lai Chan, Christian Starup, Ying Wang, Leonardo Midolo, Konstantin Tiurev, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Anders Søndberg Sørensen, and Peter Lodahl, "Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multiphoton Entanglement", Physical Review Letters 128 23, 233602 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 13:15:01) and SAO/NASA ADS (last updated successfully 2024-04-15 13:15:02). The list may be incomplete as not all publishers provide suitable and complete citation data.