Quantum repeaters based on individual electron spins and nuclear-spin-ensemble memories in quantum dots
Institute for Quantum Science and Technology, and Department of Physics & Astronomy, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada
Published: | 2021-11-02, volume 5, page 570 |
Eprint: | arXiv:2010.13863v4 |
Doi: | https://doi.org/10.22331/q-2021-11-02-570 |
Citation: | Quantum 5, 570 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Inspired by recent developments in the control and manipulation of quantum dot nuclear spins, which allow for the transfer of an electron spin state to the surrounding nuclear-spin ensemble for storage, we propose a quantum repeater scheme that combines individual quantum dot electron spins and nuclear-spin ensembles, which serve as spin-photon interfaces and quantum memories respectively. We consider the use of low-strain quantum dots embedded in high-cooperativity optical microcavities. Quantum dot nuclear-spin ensembles allow for the long-term storage of entangled states, and heralded entanglement swapping is performed using cavity-assisted gates. We highlight the advances in quantum dot technologies required to realize our quantum repeater scheme which promises the establishment of high-fidelity entanglement over long distances with a distribution rate exceeding that of the direct transmission of photons.

Featured image: (a) To establish entanglement over a communication channel, entanglement generation is attempted between electron spins in neighboring nodes (dashed lines). Each electron-spin state is transferred to its corresponding nuclear-spin ensemble. (b) Photon detection heralds the establishment of entanglement between nuclear ensembles (solid lines), and entanglement generation is re-attempted where unsuccessful. (c) The result is an entangled state stored in the nuclear ensembles, in each of the local links. (d) The entangled state is transferred back to the electron spins, and entanglement is sequentially swapped using a cavity-enabled gate (dashed line), to extend the entanglement over the length of the neighboring local link.
Popular summary
Long-lived quantum memories to store entanglement are essential components of many quantum repeater protocols. Inspired by recent developments in the control and manipulation of quantum dot nuclear spins, which allow for the possibility of transferring entanglement to the nuclear ensemble for storage, we propose a quantum repeater scheme that combines individual quantum dot electron spins and nuclear-spin ensembles with microcavities. Our research includes analysis of both the entanglement quality and the rate at which entanglement can be established over long distances using our proposed quantum repeater scheme.
► BibTeX data
► References
[1] H. J. Kimble, Nature 453, 1023 (2008).
https://doi.org/10.1038/nature07127
[2] C. Simon, Nature Photonics 11, 678 (2017).
https://doi.org/10.1038/s41566-017-0032-0
[3] S. Wehner, D. Elkouss, and R. Hanson, Science 362, eaam9288 (2018).
https://doi.org/10.1126/science.aam9288
[4] C. H. Bennett and D. P. DiVincenzo, Nature 404, 247 (2000).
https://doi.org/10.1038/35005001
[5] C. H. Bennett and S. J. Wiesner, Physical Review Letters 69, 2881 (1992).
https://doi.org/10.1103/PhysRevLett.69.2881
[6] X. Liu, G. Long, D. Tong, and F. Li, Physical Review A 65, 022304 (2002).
https://doi.org/10.1103/PhysRevA.65.022304
[7] R. Beals, S. Brierley, O. Gray, A. W. Harrow, S. Kutin, N. Linden, D. Shepherd, and M. Stather, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 469, 20120686 (2013).
https://doi.org/10.1098/rspa.2012.0686
[8] D. Dieks, Physics Letters A 92, 271 (1982).
https://doi.org/10.1016/0375-9601(82)90084-6
[9] H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, Physical Review Letters 81, 5932 (1998).
https://doi.org/10.1103/PhysRevLett.81.5932
[10] N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, Reviews of Modern Physics 83, 33 (2011).
https://doi.org/10.1103/RevModPhys.83.33
[11] M. Zukowski, A. Zeilinger, M. A. Horne, and A. K. Ekert, Physical Review Letters 71, 4287 (1993).
https://doi.org/10.1103/PhysRevLett.71.4287
[12] C. Simon, M. Afzelius, J. Appel, A. B. de La Giroday, S. Dewhurst, N. Gisin, C. Hu, F. Jelezko, S. Kröll, J. Müller, et al., The European Physical Journal D 58, 1 (2010).
https://doi.org/10.1140/epjd/e2010-00103-y
[13] K. Heshami, D. G. England, P. C. Humphreys, P. J. Bustard, V. M. Acosta, J. Nunn, and B. J. Sussman, Journal of Modern Optics 63, 2005 (2016).
https://doi.org/10.1080/09500340.2016.1148212
[14] L.-M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller, Nature 414, 413 (2001).
https://doi.org/10.1038/35106500
[15] F. K. Asadi, N. Lauk, S. C. Wein, N. Sinclair, C. O'Brien, and C. Simon, Quantum 2, 93 (2018).
https://doi.org/10.22331/q-2018-09-13-93
[16] F. K. Asadi, S. C. Wein, and C. Simon, Quantum Science and Technology 5, 045015 (2020a).
https://doi.org/10.1088/2058-9565/abae7c
[17] L. Childress, J. Taylor, A. S. Sørensen, and M. Lukin, Physical Review Letters 96, 070504 (2006).
https://doi.org/10.1103/PhysRevLett.96.070504
[18] C. Simon, Y.-M. Niquet, X. Caillet, J. Eymery, J.-P. Poizat, and J.-M. Gérard, Physical Review B 75, 081302 (2007).
https://doi.org/10.1103/PhysRevB.75.081302
[19] P. Senellart, G. Solomon, and A. White, Nature Nanotechnology 12, 1026 (2017).
https://doi.org/10.1038/nnano.2017.218
[20] X. Ding, Y. He, Z.-C. Duan, N. Gregersen, M.-C. Chen, S. Unsleber, S. Maier, C. Schneider, M. Kamp, S. Höfling, et al., Physical Review Letters 116, 020401 (2016).
https://doi.org/10.1103/PhysRevLett.116.020401
[21] H. Wang, Y.-M. He, T.-H. Chung, H. Hu, Y. Yu, S. Chen, X. Ding, M.-C. Chen, J. Qin, X. Yang, et al., Nature Photonics 13, 770 (2019).
https://doi.org/10.1038/s41566-019-0494-3
[22] H. Ollivier, I. Maillette de Buy Wenniger, S. Thomas, S. C. Wein, A. Harouri, G. Coppola, P. Hilaire, C. Millet, A. Lemaı̂tre, I. Sagnes, et al., ACS Photonics 7, 1050 (2020).
https://doi.org/10.1021/acsphotonics.9b01805
[23] W. Gao, P. Fallahi, E. Togan, J. Miguel-Sánchez, and A. Imamoglu, Nature 491, 426 (2012).
https://doi.org/10.1038/nature11573
[24] J. Schaibley, A. Burgers, G. McCracken, L.-M. Duan, P. Berman, D. Steel, A. Bracker, D. Gammon, and L. Sham, Physical Review Letters 110, 167401 (2013).
https://doi.org/10.1103/PhysRevLett.110.167401
[25] K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, et al., Nature 491, 421 (2012).
https://doi.org/10.1038/nature11577
[26] R. Stockill, M. Stanley, L. Huthmacher, E. Clarke, M. Hugues, A. Miller, C. Matthiesen, C. Le Gall, and M. Atatüre, Physical Review Letters 119, 010503 (2017).
https://doi.org/10.1103/PhysRevLett.119.010503
[27] A. Delteil, Z. Sun, W.-b. Gao, E. Togan, S. Faelt, and A. Imamoğlu, Nature Physics 12, 218 (2016).
https://doi.org/10.1038/nphys3605
[28] P. Lodahl, S. Mahmoodian, and S. Stobbe, Reviews of Modern Physics 87, 347 (2015).
https://doi.org/10.1103/RevModPhys.87.347
[29] J. P. Reithmaier, G. Sȩk, A. Löffler, C. Hofmann, S. Kuhn, S. Reitzenstein, L. Keldysh, V. Kulakovskii, T. Reinecke, and A. Forchel, Nature 432, 197 (2004).
https://doi.org/10.1038/nature02969
[30] M. Arcari, I. Söllner, A. Javadi, S. L. Hansen, S. Mahmoodian, J. Liu, H. Thyrrestrup, E. H. Lee, J. D. Song, S. Stobbe, et al., Physical Review Letters 113, 093603 (2014).
https://doi.org/10.1103/PhysRevLett.113.093603
[31] G. Pettinari, M. Felici, F. Biccari, M. Capizzi, and A. Polimeni, in Photonics, Vol. 5 (Multidisciplinary Digital Publishing Institute, 2018) p. 10.
https://doi.org/10.3390/photonics5020010
[32] P. Yao, V. Manga Rao, and S. Hughes, Laser & Photonics Reviews 4, 499 (2010).
https://doi.org/10.1002/lpor.200810081
[33] M. Davanco, J. Liu, L. Sapienza, C.-Z. Zhang, J. V. D. M. Cardoso, V. Verma, R. Mirin, S. W. Nam, L. Liu, and K. Srinivasan, Nature Communications 8, 1 (2017).
https://doi.org/10.1038/s41467-017-00987-6
[34] I. E. Zadeh, A. W. Elshaari, K. D. Jöns, A. Fognini, D. Dalacu, P. J. Poole, M. E. Reimer, and V. Zwiller, Nano Letters 16, 2289 (2016).
https://doi.org/10.1021/acs.nanolett.5b04709
[35] Z.-X. Gong, Z.-q. Yin, and L. Duan, New Journal of Physics 13, 033036 (2011).
https://doi.org/10.1088/1367-2630/13/3/033036
[36] E. Chekhovich, M. Hopkinson, M. Skolnick, and A. Tartakovskii, Nature Communications 6, 1 (2015).
https://doi.org/10.1038/ncomms7348
[37] G. Gillard, I. M. Griffiths, G. Ragunathan, A. Ulhaq, C. McEwan, E. Clarke, and E. A. Chekhovich, npj Quantum Information 7, 1 (2021).
https://doi.org/10.1038/s41534-021-00378-2
[38] A. Ulhaq, Q. Duan, E. Zallo, F. Ding, O. G. Schmidt, A. Tartakovskii, M. Skolnick, and E. A. Chekhovich, Physical Review B 93, 165306 (2016).
https://doi.org/10.1103/PhysRevB.93.165306
[39] J. Taylor, C. Marcus, and M. Lukin, Physical Review Letters 90, 206803 (2003a).
https://doi.org/10.1103/PhysRevLett.90.206803
[40] J. Taylor, A. Imamoglu, and M. Lukin, Physical Review Letters 91, 246802 (2003b).
https://doi.org/10.1103/PhysRevLett.91.246802
[41] J. Taylor, G. Giedke, H. Christ, B. Paredes, J. Cirac, P. Zoller, M. Lukin, and A. Imamoglu, arXiv preprint cond-mat/0407640 (2004).
arXiv:cond-mat/0407640
[42] D. Gangloff, G. Éthier-Majcher, C. Lang, E. Denning, J. Bodey, D. Jackson, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre, Science 364, 62 (2019).
https://doi.org/10.1126/science.aaw2906
[43] P. Atkinson, E. Zallo, and O. Schmidt, Journal of Applied Physics 112, 054303 (2012).
https://doi.org/10.1063/1.4748183
[44] C. Emary, X. Xu, D. Steel, S. Saikin, and L. Sham, Physical Review Letters 98, 047401 (2007).
https://doi.org/10.1103/PhysRevLett.98.047401
[45] C.-Y. Lu, Y. Zhao, A. Vamivakas, C. Matthiesen, S. Fält, A. Badolato, and M. Atatüre, Physical Review B 81, 035332 (2010).
https://doi.org/10.1103/PhysRevB.81.035332
[46] R. J. Warburton, Nature Materials 12, 483 (2013).
https://doi.org/10.1038/nmat3585
[47] B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin, P. Maletinsky, A. Högele, and A. Imamoglu, Reviews of Modern Physics 85, 79 (2013).
https://doi.org/10.1103/RevModPhys.85.79
[48] E. Chekhovich, A. Ulhaq, E. Zallo, F. Ding, O. Schmidt, and M. Skolnick, Nature Materials 16, 982 (2017).
https://doi.org/10.1038/nmat4959
[49] A. Bracker, E. Stinaff, D. Gammon, M. Ware, J. Tischler, A. Shabaev, A. L. Efros, D. Park, D. Gershoni, V. Korenev, et al., Physical Review Letters 94, 047402 (2005).
https://doi.org/10.1103/PhysRevLett.94.047402
[50] B. Urbaszek, P.-F. Braun, T. Amand, O. Krebs, T. Belhadj, A. Lemaítre, P. Voisin, and X. Marie, Physical Review B 76, 201301 (2007).
https://doi.org/10.1103/PhysRevB.76.201301
[51] J. Nannen, T. Kümmell, M. Bartsch, K. Brunner, and G. Bacher, Applied Physics Letters 97, 173108 (2010).
https://doi.org/10.1063/1.3505358
[52] S. D. Barrett and P. Kok, Physical Review A 71, 060310 (2005).
https://doi.org/10.1103/PhysRevA.71.060310
[53] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. Vermeulen, R. N. Schouten, C. Abellán, et al., Nature 526, 682 (2015).
https://doi.org/10.1038/nature15759
[54] D. Press, T. D. Ladd, B. Zhang, and Y. Yamamoto, Nature 456, 218 (2008).
https://doi.org/10.1038/nature07530
[55] E. V. Denning, D. A. Gangloff, M. Atatüre, J. Mørk, and C. Le Gall, Physical Review Letters 123, 140502 (2019).
https://doi.org/10.1103/PhysRevLett.123.140502
[56] E. Chekhovich, K. Kavokin, J. Puebla, A. Krysa, M. Hopkinson, A. Andreev, A. Sanchez, R. Beanland, M. Skolnick, and A. Tartakovskii, Nature Nanotechnology 7, 646 (2012).
https://doi.org/10.1038/nnano.2012.142
[57] C. Bulutay, Physical Review B 85, 115313 (2012).
https://doi.org/10.1103/PhysRevB.85.115313
[58] R. Trotta, J. Martín-Sánchez, I. Daruka, C. Ortix, and A. Rastelli, Physical Review Letters 114, 150502 (2015).
https://doi.org/10.1103/PhysRevLett.114.150502
[59] R. Trotta, J. Martín-Sánchez, J. S. Wildmann, G. Piredda, M. Reindl, C. Schimpf, E. Zallo, S. Stroj, J. Edlinger, and A. Rastelli, Nature Communications 7, 1 (2016).
https://doi.org/10.1038/ncomms10375
[60] I. Schwartz, J. Scheuer, B. Tratzmiller, S. Müller, Q. Chen, I. Dhand, Z.-Y. Wang, C. Müller, B. Naydenov, F. Jelezko, et al., Science Advances 4, eaat8978 (2018).
https://doi.org/10.1126/sciadv.aat8978
[61] L.-M. Duan, B. Wang, and H. Kimble, Physical Review A 72, 032333 (2005).
https://doi.org/10.1103/PhysRevA.72.032333
[62] S. Welte, B. Hacker, S. Daiss, S. Ritter, and G. Rempe, Physical Review X 8, 011018 (2018).
https://doi.org/10.1103/PhysRevX.8.011018
[63] M. Calic, C. Jarlov, P. Gallo, B. Dwir, A. Rudra, and E. Kapon, Scientific Reports 7, 1 (2017).
https://doi.org/10.1038/s41598-017-03989-y
[64] S. Unsleber, Y.-M. He, S. Gerhardt, S. Maier, C.-Y. Lu, J.-W. Pan, N. Gregersen, M. Kamp, C. Schneider, and S. Höfling, Optics Express 24, 8539 (2016).
https://doi.org/10.1364/OE.24.008539
[65] F. Liu, A. J. Brash, J. O’Hara, L. M. Martins, C. L. Phillips, R. J. Coles, B. Royall, E. Clarke, C. Bentham, N. Prtljaga, et al., Nature Nanotechnology 13, 835 (2018).
https://doi.org/10.1038/s41565-018-0188-x
[66] N. Somaschi, V. Giesz, L. De Santis, J. Loredo, M. P. Almeida, G. Hornecker, S. L. Portalupi, T. Grange, C. Antón, J. Demory, et al., Nature Photonics 10, 340 (2016).
https://doi.org/10.1038/nphoton.2016.23
[67] D. Englund, A. Faraon, I. Fushman, N. Stoltz, P. Petroff, and J. Vučković, Nature 450, 857 (2007a).
https://doi.org/10.1038/nature06234
[68] Z. Luo, S. Sun, A. Karasahin, A. S. Bracker, S. G. Carter, M. K. Yakes, D. Gammon, and E. Waks, Nano Letters 19, 7072 (2019).
https://doi.org/10.1021/acs.nanolett.9b02443
[69] C. Cao, Y.-H. Han, L. Zhang, L. Fan, Y.-W. Duan, and R. Zhang, Advanced Quantum Technologies 2, 1900081 (2019).
https://doi.org/10.1002/qute.201900081
[70] H.-R. Wei and F.-G. Deng, Scientific Reports 4, 7551 (2014).
https://doi.org/10.1038/srep07551
[71] F. K. Asadi, S. C. Wein, and C. Simon, Physical Review A 102, 013703 (2020b).
https://doi.org/10.1103/PhysRevA.102.013703
[72] C. Bonato, F. Haupt, S. S. Oemrawsingh, J. Gudat, D. Ding, M. P. van Exter, and D. Bouwmeester, Physical Review Letters 104, 160503 (2010).
https://doi.org/10.1103/PhysRevLett.104.160503
[73] M. A. Nielsen and I. Chuang, ``Quantum computation and quantum information,'' (2002).
https://doi.org/10.1017/CBO9780511976667
[74] E. B. Flagg and G. S. Solomon, Physical Review B 92, 245309 (2015).
https://doi.org/10.1103/PhysRevB.92.245309
[75] T. Wilkinson, D. Cottrill, J. Cramlet, C. Maurer, C. Flood, A. Bracker, M. Yakes, D. Gammon, and E. Flagg, in Quantum Nanophotonic Materials, Devices, and Systems 2019, Vol. 11091 (International Society for Optics and Photonics, 2019) p. 110910I.
https://doi.org/10.1117/12.2529455
[76] E. Chekhovich, M. Makhonin, A. Tartakovskii, A. Yacoby, H. Bluhm, K. Nowack, and L. Vandersypen, Nature Materials 12, 494 (2013).
https://doi.org/10.1038/nmat3652
[77] P. Maletinsky, A. Badolato, and A. Imamoglu, Physical Review Letters 99, 056804 (2007).
https://doi.org/10.1103/PhysRevLett.99.056804
[78] B. Casabone, C. Deshmukh, S. Liu, D. Serrano, A. Ferrier, T. Hümmer, P. Goldner, D. Hunger, and H. de Riedmatten, Nature Communications 12, 1 (2021).
https://doi.org/10.1038/s41467-021-23632-9
[79] D. Dalacu, P. J. Poole, and R. L. Williams, Nanotechnology 30, 232001 (2019).
https://doi.org/10.1088/1361-6528/ab0393
[80] Y. Arakawa and M. J. Holmes, Applied Physics Reviews 7, 021309 (2020).
https://doi.org/10.1063/5.0010193
[81] Y. Wu, J. Liu, and C. Simon, Physical Review A 101, 042301 (2020).
https://doi.org/10.1103/PhysRevA.101.042301
[82] J. Liu, R. Su, Y. Wei, B. Yao, S. F. C. da Silva, Y. Yu, J. Iles-Smith, K. Srinivasan, A. Rastelli, J. Li, et al., Nature Nanotechnology 14, 586 (2019).
https://doi.org/10.1038/s41565-019-0435-9
[83] M. Hosseini, B. M. Sparkes, G. Campbell, P. K. Lam, and B. C. Buchler, Nature Communications 2, 1 (2011).
https://doi.org/10.1038/ncomms1175
[84] J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, and J.-M. Gérard, Nature Photonics 4, 174 (2010).
https://doi.org/10.1038/nphoton.2009.287x
[85] A. Faraon, E. Waks, D. Englund, I. Fushman, and J. Vučković, Applied Physics Letters 90, 073102 (2007).
https://doi.org/10.1063/1.2472534
[86] S. Liu, Y. Wei, R. Su, R. Su, B. Ma, Z. Chen, H. Ni, Z. Niu, Y. Yu, Y. Wei, X. Wang, and S. Yu, Scientific Reports 7, 1 (2017).
https://doi.org/10.1038/s41598-017-13433-w
[87] O. Collins, S. Jenkins, A. Kuzmich, and T. Kennedy, Physical Review Letters 98, 060502 (2007).
https://doi.org/10.1103/PhysRevLett.98.060502
[88] S. C. Wein, J.-W. Ji, Y.-F. Wu, F. K. Asadi, R. Ghobadi, and C. Simon, Physical Review A 102, 033701 (2020).
https://doi.org/10.1103/PhysRevA.102.033701
[89] U. Hohenester, A. Laucht, M. Kaniber, N. Hauke, A. Neumann, A. Mohtashami, M. Seliger, M. Bichler, and J. J. Finley, Physical Review B 80, 201311 (2009).
https://doi.org/10.1103/PhysRevB.80.201311
[90] A. Laucht, F. Hofbauer, N. Hauke, J. Angele, S. Stobbe, M. Kaniber, G. Böhm, P. Lodahl, M. Amann, and J. Finley, New Journal of Physics 11, 023034 (2009).
https://doi.org/10.1088/1367-2630/11/2/023034
[91] L. Zhai, M. C. Löbl, G. N. Nguyen, J. Ritzmann, A. Javadi, C. Spinnler, A. D. Wieck, A. Ludwig, and R. J. Warburton, Nature Communications 11, 1 (2020).
https://doi.org/10.1038/s41467-020-18625-z
[92] B. Albrecht, P. Farrera, G. Heinze, M. Cristiani, and H. de Riedmatten, Physical Review Letters 115, 160501 (2015).
https://doi.org/10.1103/PhysRevLett.115.160501
[93] A. Delteil, W.-b. Gao, P. Fallahi, J. Miguel-Sanchez, and A. Imamoğlu, Physical Review Letters 112, 116802 (2014).
https://doi.org/10.1103/PhysRevLett.112.116802
[94] J.-W. Ji, Y.-F. Wu, S. C. Wein, F. K. Asadi, R. Ghobadi, and C. Simon, arXiv preprint arXiv:2012.06687 (2020).
arXiv:2012.06687
[95] M. D. Eisaman, J. Fan, A. Migdall, and S. V. Polyakov, Review of Scientific Instruments 82, 071101 (2011).
https://doi.org/10.1063/1.3610677
[96] W. Dür, H.-J. Briegel, J. I. Cirac, and P. Zoller, Physical Review A 59, 169 (1999).
https://doi.org/10.1103/PhysRevA.59.169
[97] N. Kalb, A. A. Reiserer, P. C. Humphreys, J. J. Bakermans, S. J. Kamerling, N. H. Nickerson, S. C. Benjamin, D. J. Twitchen, M. Markham, and R. Hanson, Science 356, 928 (2017).
https://doi.org/10.1126/science.aan0070
[98] Y. Chen, M. Zopf, R. Keil, F. Ding, and O. G. Schmidt, Nature Communications 9, 1 (2018).
https://doi.org/10.1038/s41467-018-05456-2
[99] Y. Wei, T. Zhao, B. Yao, R. Su, Y. Yu, J. Liu, and X. Wang, Optical Materials Express 10, 170 (2020).
https://doi.org/10.1364/OME.379424
[100] E. Schöll, L. Schweickert, L. Hanschke, K. D. Zeuner, F. Sbresny, T. Lettner, R. Trivedi, M. Reindl, S. F. C. da Silva, R. Trotta, et al., Physical Review Letters 125, 233605 (2020).
https://doi.org/10.1103/PhysRevLett.125.233605
[101] A. Kress, F. Hofbauer, N. Reinelt, M. Kaniber, H. J. Krenner, R. Meyer, G. Böhm, and J. J. Finley, Physical Review B 71, 241304 (2005).
https://doi.org/10.1103/PhysRevB.71.241304
[102] K. Kuruma, Y. Ota, M. Kakuda, S. Iwamoto, and Y. Arakawa, APL Photonics 5, 046106 (2020).
https://doi.org/10.1063/1.5144959
[103] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, et al., Nature 575, 622 (2019).
https://doi.org/10.1038/s41586-019-1709-y
[104] D. Englund, A. Faraon, B. Zhang, Y. Yamamoto, and J. Vučković, Optics Express 15, 5550 (2007b).
https://doi.org/10.1364/OE.15.005550
[105] I. Merkulov, A. L. Efros, and M. Rosen, Physical Review B 65, 205309 (2002).
https://doi.org/10.1103/PhysRevB.65.205309
[106] V. N. Golovach, A. Khaetskii, and D. Loss, Physical Review Letters 93, 016601 (2004).
https://doi.org/10.1103/PhysRevLett.93.016601
[107] C. Deng and X. Hu, Physical Review B 73, 241303 (2006).
https://doi.org/10.1103/PhysRevB.73.241303
[108] S. M. Clark, K.-M. C. Fu, Q. Zhang, T. D. Ladd, C. Stanley, and Y. Yamamoto, Physical Review Letters 102, 247601 (2009).
https://doi.org/10.1103/PhysRevLett.102.247601
[109] L. Viola, E. Knill, and S. Lloyd, Physical Review Letters 82, 2417 (1999).
https://doi.org/10.1103/PhysRevLett.82.2417
[110] K. Khodjasteh and D. Lidar, Physical Review Letters 95, 180501 (2005).
https://doi.org/10.1103/PhysRevLett.95.180501
[111] G. Éthier-Majcher, D. Gangloff, R. Stockill, E. Clarke, M. Hugues, C. Le Gall, and M. Atatüre, Physical Review Letters 119, 130503 (2017).
https://doi.org/10.1103/PhysRevLett.119.130503
[112] D. Stepanenko, G. Burkard, G. Giedke, and A. Imamoglu, Physical Review Letters 96, 136401 (2006).
https://doi.org/10.1103/PhysRevLett.96.136401
[113] A. Greilich, A. Shabaev, D. Yakovlev, A. L. Efros, I. Yugova, D. Reuter, A. Wieck, and M. Bayer, Science 317, 1896 (2007).
https://doi.org/10.1126/science.1146850
[114] D. Reilly, J. Taylor, J. R. Petta, C. Marcus, M. Hanson, and A. Gossard, Science 321, 817 (2008).
https://doi.org/10.1126/science.1159221
[115] I. T. Vink, K. C. Nowack, F. H. Koppens, J. Danon, Y. V. Nazarov, and L. M. Vandersypen, Nature Physics 5, 764 (2009).
https://doi.org/10.1038/nphys1366
[116] T. Huber, A. Predojević, D. Föger, G. Solomon, and G. Weihs, New Journal of Physics 17, 123025 (2015).
https://doi.org/10.1088/1367-2630/17/12/123025
[117] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, et al., Nature Nanotechnology 16, 399 (2021).
https://doi.org/10.1038/s41565-020-00831-x
[118] L. Zhai, G. N. Nguyen, C. Spinnler, J. Ritzmann, M. C. Löbl, A. D. Wieck, A. Ludwig, A. Javadi, and R. J. Warburton, arXiv preprint arXiv:2106.03871 (2021).
arXiv:2106.03871
[119] J. Houel, A. Kuhlmann, L. Greuter, F. Xue, M. Poggio, B. Gerardot, P. Dalgarno, A. Badolato, P. Petroff, A. Ludwig, et al., Physical Review Letters 108, 107401 (2012).
https://doi.org/10.1103/PhysRevLett.108.107401
[120] P. Tighineanu, C. L. Dreessen, C. Flindt, P. Lodahl, and A. S. Sørensen, Physical Review Letters 120, 257401 (2018).
https://doi.org/10.1103/PhysRevLett.120.257401
[121] H. Vural, S. L. Portalupi, and P. Michler, Applied Physics Letters 117, 030501 (2020).
https://doi.org/10.1063/5.0010782
[122] S. Ates, I. Agha, A. Gulinatti, I. Rech, M. T. Rakher, A. Badolato, and K. Srinivasan, Physical Review Letters 109, 147405 (2012).
https://doi.org/10.1103/PhysRevLett.109.147405
[123] S. Zaske, A. Lenhard, C. A. Keßler, J. Kettler, C. Hepp, C. Arend, R. Albrecht, W.-M. Schulz, M. Jetter, P. Michler, et al., Physical Review Letters 109, 147404 (2012).
https://doi.org/10.1103/PhysRevLett.109.147404
[124] B. Kambs, J. Kettler, M. Bock, J. N. Becker, C. Arend, A. Lenhard, S. L. Portalupi, M. Jetter, P. Michler, and C. Becher, Optics Express 24, 22250 (2016).
https://doi.org/10.1364/OE.24.022250
[125] A. Singh, Q. Li, S. Liu, Y. Yu, X. Lu, C. Schneider, S. Höfling, J. Lawall, V. Verma, R. Mirin, et al., Optica 6, 563 (2019).
https://doi.org/10.1364/OPTICA.6.000563
[126] S. Haffouz, K. D. Zeuner, D. Dalacu, P. J. Poole, J. Lapointe, D. Poitras, K. Mnaymneh, X. Wu, M. Couillard, M. Korkusinski, et al., Nano Letters 18, 3047 (2018).
https://doi.org/10.1021/acs.nanolett.8b00550
[127] W. J. Munro, K. Azuma, K. Tamaki, and K. Nemoto, IEEE Journal of Selected Topics in Quantum Electronics 21, 78 (2015).
https://doi.org/10.1109/JSTQE.2015.2392076
[128] K. Azuma, K. Tamaki, and H.-K. Lo, Nature Communications 6, 6787 (2015).
https://doi.org/10.1038/ncomms7787
[129] P. Hilaire, E. Barnes, and S. E. Economou, Quantum 5, 397 (2021).
https://doi.org/10.22331/q-2021-02-15-397
Cited by
[1] Tim Coopmans, Sebastiaan Brand, and David Elkouss, "Improved analytical bounds on delivery times of long-distance entanglement", Physical Review A 105 1, 012608 (2022).
[2] Martin Hayhurst Appel, Alexey Tiranov, Simon Pabst, Ming Lai Chan, Christian Starup, Ying Wang, Leonardo Midolo, Konstantin Tiurev, Sven Scholz, Andreas D. Wieck, Arne Ludwig, Anders Søndberg Sørensen, and Peter Lodahl, "Entangling a Hole Spin with a Time-Bin Photon: A Waveguide Approach for Quantum Dot Sources of Multiphoton Entanglement", Physical Review Letters 128 23, 233602 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-09-28 04:07:21) and SAO/NASA ADS (last updated successfully 2023-09-28 04:07:22). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.