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Sharing correlated random variables is a resource for a number of informa-
tion theoretic tasks such as privacy amplification, simultaneous message passing,
secret sharing and many more. In this article, we show that to establish such
a resource called shared randomness, quantum systems provide an advantage
over their classical counterpart. Precisely, we show that appropriate albeit fixed
measurements on a shared two-qubit state can generate correlations which can-
not be obtained from any possible state on two classical bits. In a resource
theoretic set-up, this feature of quantum systems can be interpreted as an
advantage in winning a two players co-operative game, which we call the ‘non-
monopolize social subsidy’ game. It turns out that the quantum states leading
to the desired advantage must possess non-classicality in the form of quantum
discord. On the other hand, while distributing such sources of shared ran-
domness between two parties via noisy channels, quantum channels with zero
capacity as well as with classical capacity strictly less than unity perform more
efficiently than the perfect classical channel. Protocols presented here are noise-
robust and hence should be realizable with state-of-the-art quantum devices.

1 Introduction
Present day quantum technology is getting increasingly sophisticated with the aim to con-
trol individual quantum systems, enabling them in different practical tasks that otherwise
are not possible in classical world. This approach already finds several practical applic-
ations, such as secure communication [1–4], quantum imaging [5–8], quantum metrology
[9–12], and more excitingly promises opportunities for Near-Term Quantum Computing
Systems [13–18]. Thus, it is important to explore and identify more and more instances
where quantum theory can exhibit advantage over the corresponding classical systems. In
this work, we report such a novel quantum advantage. We consider the computational
scenario of generating correlated random variables between distant parties, also known as
shared randomness.

Shared randomness (SR) is known to be an important resource in a number of applica-
tions, viz privacy amplification [22–24], simultaneous message passing [25], secret sharing
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and secret key generation protocol [26, 27], classical simulation of quantum nonlocal statist-
ics [28, 30, 51], Bayesian game theory [31–34], and communication complexity [35]. Among
spatially separated parties, shared randomness can not be established free of cost. It re-
quires the distant parties to have access to noiseless communication channels, which, in
Shannon theory, are considered to be expensive [36]. Alternatively, one can ask whether
sharing multipartite quantum systems provide any advantage over the correlated classical
systems for shared randomness generation or not. A similar question can also be asked
concerning the advantage of using noisy quantum communication channels over classical
ones. In this work, we find affirmative answers to both of these questions by identifying
new instances where quantum theory yields provable advantage over its classical counter-
part. Importantly, the quantum advantage sustains even in presence of noise and hence is
achievable with the present day imperfect quantum devices.

To demonstrate the advantage of using quantum sources, we take resort to the language
of resource theory. In the recent past, researchers in quantum information community have
successfully applied this framework to identify, characterize, and quantify different useful
resources [37–48]. Such a framework is operationally motivated. Firstly, it identifies the
free states that are useless for performing certain tasks and specifies the free operations
that are unable to produce any resource from free states and hence are allowed to be
implemented at no cost. Given these sets of free states and operations, the framework
aims to find the resource conversion conditions (either necessary or sufficient, sometimes
both), commonly phrased as monotones, that characterize possible transformations among
the resource states under free operations.

In this article, we consider the resource theory of shared randomness. At the outset, it
is worth mentioning that our framework is distinct from the well known resource theory
of local operations with shared randomness (LOSR) [49, 50]. In the present work, shared
randomness is not considered as a free resource, which is the case in the resource theory of
LOSR. Here, we aim to quantify the resource for generating shared randomness between
distant parties by performing local operations on their subsystems. In that respect, the
works of Toner et al.[51] and Bowles et al.[30] are noteworthy, where it has been shown
that nonlocal correlations obtained from a bipartite entangled state can be simulated with
shared randomness when assisted with classical communication. While in [51] it requires
infinite amount of shared randomness, the authors in [30] propose a simulation of non-
local states with finite shared randomness and finite communication. The present article
establishes the utility of shared randomness even outside the nonlocality paradigm. First,
we identify the set of correlations that can be obtained from a shared 2-faced classical
coin (henceforth called two-2-coin) under the free local operations. Secondly we observe
that, within the proposed resource theoretic framework, every two-2-coin state can be
freely obtained from its quantum analogue, namely the two-2-quoin which corresponds to
a two-qubit quantum system with Hilbert space C2 ⊗ C2. Lastly, the quantum advantage
is established by a set inclusion relation, which involves identifying two-d-coin states that
can be obtained from a two-2-quoin under free operation but cannot be obtained from any
two-2-coin state.

We also show that the quantum advantage for generating shared randomness trans-
lates to higher success probability of winning a two-player co-operative game, namely the
‘non-monopolize social subsidy’ game with quantum resource, when compared to that of
corresponding classical strategies. More precisely, the players can achieve optimal payoff
when assisted with two-2-quoin states, whereas their payoffs remain suboptimal with two-
2-coin states. Further, we show that better than classical payoff necessitates use of two-2-
quoin states with non-zero discord – an intriguing non-classical feature present in bipartite



quantum systems even when the states are not entangled [52, 53]. We then consider the
scenario where one wishes to establish shared randomness with a distant party. We show
that a quantum channel can exhibit advantage over the corresponding classical channels.
Such an advantage is quite remarkable, as there exist no-go results [60, 61] that limit the
utilities of quantum systems as information carrier. Recall that in Shannon theory, efficacy
of a classical channel is characterized by its capacity, quantified as the mutual information
optimized over probability distributions of the input variables [36]. In quantum scenario,
different quantities of interest are used to characterize the utility of a quantum channel.
For instance, while quantum capacity of a quantum channel denotes the highest rate of
transmitting quantum information [64–66], its classical capacity [62, 63] characterizes util-
ity of transferring classical information. In shared randomness distribution, a quantum
channel can show advantage over a classical channel even when its classical capacity is
much less than that of the classical channel. At this point, it seems natural to think that
such advantage requires the noisy quantum channels to possess non-zero quantum capa-
city. However, it turns out that the quantum advantage persists even when the quantum
channel has zero quantum capacity. Evidently, these instances of noise robust advantage
of quantum strategies should be realizable with the state-of-the-art quantum devices.

2 Results
2.1 Resource theory of shared randomness
The framework of resource theory provides a novel approach to quantify the resources
of shared randomness. The generic framework of any resource theory characterizes the
followings: the class of free states or non-resources, the set of free operations, and resource
conversion conditions (either necessary or sufficient, sometimes both) that are commonly
phrased as monotones [67].

Free resources

A source of shared randomness is specified by a bipartite probability distribution P (X ,Y) ≡
{p(x, y) | x ∈ X , y ∈ Y}, where X and Y are the parts of the shared variable accessible
by spatially separated parties Alice and Bob, respectively. Probability distributions of
the product form P (X ,Y) = P (X )Q(Y) are considered as free resources/states as each
of the shared variables follows an independent probability distribution and consequently
information of one does not provide any knowledge about the other. Unlike the resource
theories of quantum entanglement [39] or quantum coherence [46] the set FSR of free states
does not form a convex set in this case.

In an operational theory, shared randomness between Alice and Bob can be obtained
from a shared bipartite system by performing local measurement on their respective parts.
The state space of such a system, in a convex operational theory, is given by ΩA ⊗ ΩB,
where ΩK be the convex compact marginal state space embedded in some real vector space
VK ; K ∈ {A,B} [68–70]. For instance, the state space of d-level classical system is the
d-simplex embedded in Rd−1, whereas for d-level quantum system it is D(Cd) ⊂ Rd2−1;
D(H) denotes the set of density operators acting on the Hilbert space H associated with
the system. While considering the state space for a composite system by taking tensor
product of component state space of the subsystems, it is important to note that the
choice of tensor product is unique for simplex, which is not the case for other convex sets
[71–74].



Figure 1: [Color on-line] Resource theory of shared randomness processing. By performing free
operations (local stochastic operations) on two-2-coin states C(2) one can obtain only a proper subset
SC(2 7→ d) of two-d-coin state space C(d). Such a transformation can never increase classical mutual
information of the coin state. For instance, the transformation C1/2(2) 7→ C1/6(6) is not allowed under
free operations, where C1/6(6) := 1/6

∑6
f=1 ff ∈ C(6).

Free operations

The set of free operations for SR consists of all possible local product operations LA ⊗LB
applied by Alice and Bob on their respective parts of the joint system. For classical systems,
such operations are most generally described by tensor product of local stochastic matrices
SA ⊗ SB, where SA maps Alice’s local probability vector P (X ) into a new probability
vector P ′(X ′) and SB does the similar on Bob’s part. Note that cardinality of X and X ′
can be different in general (see Fig.1). In the quantum scenario, the allowed operations
are local unitary operations and/or local measurements generally described by a positive
operator valued measure (POVM) [75]. At this point, a comparison with the resource
theory of quantum entanglement is worth mentioning. In entanglement theory classical
communication is considered as free, but it bears a cost in the present scenario as it can
create a non-product joint distribution, i.e., a resourceful state, starting from a product
one. In any operational theory, if Alice and Bob initially share a joint state ωAB ∈ ΩA⊗ΩB

of the product from, i.e., ωAB = ωA ⊗ ωB, then a free operation on it can never result in
an SR resource between them.

Resource monotone

A necessary condition of state conversion from a distribution P (X ,Y) to another Q(X ′,Y ′)
is given by I(Q) ≤ I(P ), where I(P ) is the classical mutual information defined as
I(P ) := H(X ) + H(Y) − H(X ,Y), with H(X ) being the Shannon entropy, H(X ) :=
−
∑
x∈X p(x) log2 p(x). Importantly, mutual information is a faithful resource quantifier,

as it takes zero value for every free state while non-zero for all the resourceful states. In
the subsequent section, however, we will see that it can not sufficiently characterize the
possible resource conversions.

Two-2-coin state space

Consider that Alice and Bob share a pair of 2-faced classical coins (two-2-coin), i.e., X ≡
{head(h), tail(t)} ≡ Y. A generic state of this system is described by a column vector
C(2) ≡ (p(hh), p(ht), p(th), p(tt))ᵀ ∈ C(2); with C(2) denoting the set of all two-2-coin
states. A state C(2) ≡ (x, y, z, 1−x−y−z)ᵀ is isomorphic to the vector V ≡ (x, y, z)ᵀ ∈ R3



Figure 2: [Color on-line] Two-2-coin state space C(2). All the four vertices are the free states. Green
(red) line denotes the α-correlated (α-anti-correlated) edges. The remaining four edges consist of free
states only. Dots in the left [right] figure denote the states obtained from C1/2(2) [C1/3(2)] by applying
randomly generated local stochastic maps. Action of such maps on α-correlated (or α-anti-correlated)
edge generate the whole state space C(2) (see Lemma 1).

with x, y, z ≥ 0 & x + y + z ≤ 1, forming a convex subset T in the positive octant (see
Fig.2). All the four vertices (0-faces) Chh(2), Cht(2), Cth(2), and Ctt(2) are free states. We
call the states Cα(2) := (α, 0, 0, 1 − α)ᵀ ≡ α hh + (1 − α)tt as α-correlated. Whenever
α /∈ {0, 1}, Cα(2) contains shared randomness even though they are obtained by convex
mixing of two free states, hence implies non-convexity of FSR. The α-correlated states live
in one of the edges (1-faces) of T and we call it α-correlated edge, which will be denoted
as E[α](2) := {Cα(2); α ∈ [0, 1]}. Under free operations, this edge can be transferred into
the α-anti-correlated edge Ẽ[α](2) ≡ {C̃α(2) := α ht + (1− α)th; α ∈ [0, 1]}. In fact, every
Cα(2) is connected to the corresponding C̃α(2) by local permutation, a free operation that
keeps the mutual information invariant. The remaining four edges of T contain only free
states. Except these states, no other state residing on any of the four 2-faces of T is free.
However, the volume (3-face) of T contains both free and resource states.

Consider a state C∆(2) := (1/3, 0, 1/3, 1/3)ᵀ residing on one of the 2-faces of T. The
state C∆(2) can be obtained from C1/2(2) under free operation. The two possible free
operations allowing this transformation are given by,{(

0 2/3
1 1/3

)
⊗
(

1/3 1
2/3 0

)
;
(

2/3 0
1/3 1

)
⊗
(

1 1/3
0 2/3

)}
.

The reverse transformation C∆(2) 7→ C1/2(2) is not possible under free operations as the
former has lesser mutual information than the latter. Importantly, such a transformation
may not be possible even if the initial state has more mutual information than the targeted
one. For instance, none of the states Cα(2) can be obtained from C1/2(2) whenever α 6∈
{0, 1/2, 1}, though I(C1/2(2)) ≥ I(Cα(2)), with strict inequality holding for α ∈ [0, 1/2) ∪
(1/2, 1]. It establishes insufficiency of mutual information in characterizing the possible
state conversions. It furthermore proves non-convexity of the set of states obtained from
a given resource under the free operations.

2.2 Quantum advantage
In this section we will present our main result which establishes quantum advantage in
shared randomness processing. To this aim, we first introduce a quantum analogue of the
two-2-coin.



2.2.1 Two-2-quoin state space

The quantum analogue of two-2-coin state, which we call two-2-quoin and denoted as
Q(2), corresponds to the states of a two-qubit quantum system. The state space is given
by Q(2) ≡ D(C2

A⊗C2
B), where subsystems A and B are held by Alice and Bob, respectively.

From the two-2-quoin states, Alice and Bob can prepare any state of C(2) by applying local
POVMs on their respective parts of the joint system. Therefore, the former can always
replace the latter for any shared randomness processing task. From these shared classical
and quantum 2-level coins, one can obtain shared d-level classical coin states by performing
suitable stochastic operations and measurements, respectively. The following proposition
establishes quantum advantage in generating shared randomness with higher outcomes.

Proposition 1. Let SC(2 7→ d) denote the set of two-d-coin states in C(d) that are
freely simulable (i.e., can be obtained under allowed free operations) with states from C(2).
Similarly, SQ(2 7→ d) denotes the subset of C(d) freely simulable from states in Q(2). It
holds that SC(2 7→ d) ⊂ SQ(2 7→ d), for d > 2.

Sketch of the proof. First we observe that both the sets SC(2 7→ d) and SQ(2 7→ d)
are non-convex, and for any state C(2 7→ d) ∈ SJ(2 7→ d), with J ∈ {C,Q}, we have
I(C(2 7→ d)) ≤ 1. Then we argue that ∀ C(2 7→ d) ∈ SC(2 7→ d), it also lies in SQ(2 7→ d).
Note that a 2−coin state C(2) ≡ (p, q, r, 1− p− q − r)ᵀ can be obtained from a two-qubit
state, ρAB = p |00〉〈00|+q |01〉〈01|+r |10〉〈10|+(1−p−q−r) |11〉〈11| by performing local
measurement in computational basis. Furthermore, corresponding to every 2×d stochastic
matrix, applied locally on C(2) there is a d−outcome POVM acting locally on the part
of ρAB, which implies that SC(2 7→ d) ⊆ SQ(2 7→ d). Proof of the strict set inclusion
relation is deferred till the end of Theorem 1 and Theorem 2 (see Remark 1). Rather, we
now show that the strict set inclusion can be rendered as quantum advantage in a practical
two-player game.

2.2.2 Non-monopolizing social subsidy game

The game G(n) involves two employees Alice & Bob working in an organization and n
different restaurants r1, · · · , rn. On every working day, each of the employees buys beverage
from the restaurant chosen at her/his will. The organization has a reimbursement policy
to pay back the beverage bill. For this purpose, each day’s bill is accounted for a long time
to calculate the probability P (ij) of Alice visiting ri restaurant and Bob rj restaurant.
Events (ij) where each employee ends up in different restaurants (i 6= j) are considered for
reimbursement / payoff1. Now it may be the case that the employees pick their favorite
restaurants which happen to be different and become regular visitors. But this will leave
the other restaurants out of business. To circumvent this situation a sub-clause is added
to the subsidy rule which says that the payoff will be defined as $R(n) = $ mini 6=j P (ij),
maximizing over all possible strategies with a source of shared randomness with fixed local
level, allowed by any physical theory. We further assume that the per day expense for
each of the employees is $1. Since the reimbursement policy encourages total trade to
be distributed among all the restaurants, we call it ‘non-monopolizing subsidy’ rule. The
employees are non-communicating and possess a bipartite state with subsystems described
by two-level systems, independent of the number of restaurants. They can choose local
strategies from the set of free operations. Following result bounds their achievable payoff.

1This condition mimics the physical distancing norm which people need to follow during the unfortunate
pandemic of COVID-19.



Alice Bob
(a)

Alice Bob
(b)

Figure 3: [Color on-line] Non-monopolizing social subsidy game. The choice of restaurants, as in
figure (a), is permissible by the organization to obtain a subsidy on the beverage costs of the employees,
while the situation depicted in figure (b) will not be entertained. Although a two-2-coin state is unable
to accomplish all possible combinations similar to (a), a shared two-2-quoin can do so.

Proposition 2. The maximum payoff achieved in the game G(n) by two spatially separated
employees is bounded from above and below by the following expression-

1
n2 ≤ R(n) ≤ 1

n(n− 1)
.

Proof. The lower bound is achieved, on an average, when a uniformly randomized local
strategy is followed by each of the employees. For maximal payoff, there are n(n − 1)
different cases where the employees’ bills get reimbursed. Since minimum probability of
these events will be considered for reimbursement, the optimal payoff will be achieved if
they choose these cases with equal probability, i.e., with probability 1

n(n−1) . Note that
the payoff of the employees will be zero if both the employees decide to go to the same
restaurant every day. Thus, the lower bound in the above proposition assumes rational
employees who want to maximize their payoff.

At this point, we define a specific kind of bipartite shared randomness, namely not-α-
correlated coin, which in a special case saturates the upper bound of the payoff in the G(n)
game.

Definition 1. A two-d-coin state is said to be ‘not-α-correlated’ if p(ff) = 0 and p(ff ′) 6=
0, ∀ f , f ′ ∈ {1, · · · , d}, and f 6= f ′.

In the rest of the manuscript, we will depict them as C 6=α(d) ∈ C(d). The maximum
achievable payoff in G(n) is assured if the employees share a particular not-α-correlated
coin state Ceq6=α(n), where p(ff ′) = 1/n(n− 1), ∀ f , f ′ ∈ {1, · · · , n}, & f 6= f ′. What follow
next are the two Lemmas regarding simulability of different sets of classical coin states
using free operations.

Lemma 1. Under the action of free operations, any coin state of C(2) can be obtained
from the α-correlated edge E[α](2), i.e., E[α](2) freely simulates the state space C(2).

Proof. A state C(2) ∈ C(2) can most generally be expressed as,

C(2) = (x, y, z, 1− x− y − z)ᵀ , (1)
0 ≤ x ≤ 1; 0 ≤ y ≤ 1− x; 0 ≤ z ≤ 1− x− y.

The range of y is determined by the value of x, i.e., ∀ x ∈ [0, 1] the value of y lies within
[0, 1 − x]. Similarly, the range of z is specified by x and y. Even though the variables



specify each other’s range, their values are mutually random, i.e., the variables fix the
range of each other but not the exact value. We wish to show that by applying local
stochastic operations on Cα(2) ∈ E[α](2) Alice and Bob can prepare any vector of the form
of Eq.(1). We therefore can write

K := S2 7→2
A ⊗ S27→2

B × Cα(2)

=
(
a1 1− a1
a2 1− a2

)ᵀ

⊗
(
b1 1− b1
b2 1− b2

)ᵀ

×


α
0
0

1− α



=


a1b1α+ a2b2(1− α) [:= k1]
a1α+ a2(1− α)− k1 [:= k2]
b1α+ b2(1− α)− k1 [:= k3]

1−
∑3
i=1 ki

 =


k1
k2
k3

1−
∑
ki

 ,
where a1, a2, b1, b2 ∈ [0, 1]. Since action of a local stochastic matrix SA ⊗ SB on Cα(2)
always result in a probability vector, therefore constraints as of Eq.(1) among k1, k2, and
k3 are always satisfied. Now, for every fixed values of a2, b2 ∈ [0, 1], ∃ α, a1, b1 ∈ [0, 1] s.t.
k1 can take all values in [0, 1]. Since the values of a2 and b2 can be chosen randomly, they
are independent of each other and also k1 is independent of them. Consequently, k2 and
k3 are independent of k1 and also of each other. This completes the proof.

Lemma 2. None of the coin states C 6=α(n) are freely simulable from E[α](2), whenever
n > 2.

Proof. A generic stochastic operation S27→n mapping a two-level probability vector into an
n level probability vector is of the form(

u11 u21 · · · 1−
∑n−1
i=1 ui1

u12 u22 · · · 1−
∑n−1
i=1 ui2

)ᵀ

,

where uij ∈ [0, 1] and
∑n−1
i=1 uij ≤ 1. Action of local operations by Alice and Bob on their

respective parts of the coin state Cα(2) yield a two-n-coin state,

C(n) = S27→n
A ⊗ S27→n

B × Cα(2)

=
(
a11 a21 · · · 1−

∑n−1
i=1 ai1

a12 a22 · · · 1−
∑n−1
i=1 ai2

)ᵀ

⊗

(
b11 b21 · · · 1−

∑n−1
i=1 bi1

b12 b22 · · · 1−
∑n−1
i=1 bi2

)ᵀ

×


α
0
0

1− α

 .
Whenever α ∈ {0, 1}, the initial state is free and hence the final one. To get the final
state as C 6=α(n) (see Definition1), we require αai1bi1 + (1− α)ai2bi2 = 0, ∀ i ∈ {1, ..., n}.
Since α ∈ (0, 1), therefore aijbij = 0, ∀ i ∈ {1, ..., n} & ∀ j ∈ {1, 2}. Presence of anti-
correlated terms in C 6=α(n) demands, αai1bk1 +(1−α)ai2bk2 6= 0, ∀ i, k ∈ {1, ..., n} & i 6= k.
Therefore, for every (i, k 6= i) pair ∃ at-least one j ∈ {1, 2} s.t. aijbkj 6= 0 =⇒ aij 6= 0 and
bkj 6= 0. Similarly, for the corresponding reverse pair, (k, i 6= k) ∃ at-least one j′ ∈ {1, 2}
s.t. akj′bij′ 6= 0 =⇒ akj′ 6= 0 and bij′ 6= 0. Now j and j′ should be different, otherwise a
correlated term of the resulting coin state will become non-vanishing. Since j, j′ ∈ {1, 2},
the requirement j 6= j′ can not be satisfied whenever i, k ∈ {1, ..., n}, with n > 2. This
completes the proof.



These two Lemmas lead us to the following result, describing the limitation of the
shared classical coins in achieving the maximum payoff in the game G(n).

Theorem 1. Given any coin state from C(2), the payoff R(n) is always suboptimal for all
n > 2.

Proof. Contrary to the hypothesis, let us assume that there exist a two-2-coin state Cnwin(2)
that provides perfect success in G(n). Since perfect success of G(n) requires the two-n-coin
state Ceq6=α(n), this implies that Ceq6=α(n) can be obtained from Cnwin(2) under free operation.
Invoking Lemma 1 we can say that the state Ceq6=α can be obtained freely from E[α](2). This,
however, contradicts Lemma 2.

At this point one can ask for maximum payoff RC(m)
max (n) that can be achieved in G(n)

given an assistance from C(m). This turns out to be an optimization problem. Given
a two-m-coin, C(m) ≡ (p(11), · · · , p(1m), · · · , p(mm))ᵀ Alice and Bob can obtain some
two-n-coin states C(n) ≡ (q(11), · · · , q(1n), · · · , q(nn))ᵀ by applying local stochastic maps
(free operation), i.e., C(n) = Sm7→nA ⊗ Sm7→nB · C(m). We therefore have

RC(m)
max (n) = maximize

C(m)∈C(m)
Sm 7→n
A

⊗Sm 7→n
B

q(i 6= j)

subject to q(i 6= j) ≤ q(i′ 6= j′)
i 6= i′ and/or j 6= j′. (2)

Here Sm7→nA/B is a stochastic map mapping m-level probability vectors into n-level ones.

While calculating RC(m)
max (n), for m = 2, Lemma 1 allows us to restrict the optimization

over the edge E[α](2), instead of the full two-2-coin state space C(2). In Table 1 we list
maximum payoffs for a few cases. There we also provide the optimal coin states of C(m)
and the applied free operations on it that maximize RC(m)

max (n). Our next result establishes
quantum advantage of shared randomness generation in non-monopolize social subsidy
game.

Theorem 2. The optimum payoff R(n) for n = 3, 4 can be obtained with a coin state from
Q(2).

Proof. Let the two-2-quoin state Qsinglet(2) := |ψ−〉AB = 1√
2 (|01〉AB − |10〉AB) is shared

between the players. Both of them perform the same three outcome Trine-POVM
MT ≡

{
Πk := 2

3 |ψk〉〈ψk|
}
, where |ψk〉 := cos(k−1)θ3|0〉+sin(k−1)θ3|1〉; k ∈ {1, 2, 3}, θ3 =

2π/3. This strategy leads to the coin state Ceq6=α(3) yielding the optimum payoff in
G(3). To obtain the optimum payoff in G(4), they consider the SIC-measurement
MS ≡ {1

2 |0〉〈0|,
1
2 |ψk〉〈ψk| | k = 0, 1, 2}, where |ψk〉 =

√
1
3 |0〉 + ei

2kπ
3

√
2
3 |1〉. This leads

to the coin state Ceq6=α(4), resulting in the optimum payoff in G(4). This completes the
proof.

Remark 1. Theorem 1 and Theorem 2 together provide a proof for the second part of
the Proposition 1 for d = 3, 4. According to Theorem 1, Ceq6=α(d) /∈ SC(2 7→ d) whenever
d > 2. In fact, from Lemma 2 we can say that C 6=α(d) /∈ SC(2 7→ d). On the other hand,
Theorem 2 tells that Ceq6=α(d) ∈ SQ(2 7→ d) for d = 3, 4 and hence proves the second part of
the Proposition 1. For higher values of d, consider the two-2-quoin state Qsinglet(2) and
consider the same d outcome POVMM(d) ≡

{
Πk := 2

d |ψk〉〈ψk|
}
for Alice and Bob, where

|ψk〉 := cos(k − 1)θd|0〉+ sin(k − 1)θd|1〉; k ∈ {1, · · · , d} and θd = 2π/d. This leads to a
state C 6=α(d) and completes the proof of Proposition 1 for arbitrary d > 2.



Table 1: Maximum payoff in G(n) given a coin state from C(m). Coin states C(m) and the free
operations Sm 7→n

A ⊗ Sm7→n
B yielding maximum success RC(m)

max (n) are not unique in general. Rmax(n) is
the maximum payoff of the game G(n) achievable if there is no limitation on the amount of shared
randomness.

RC(m)
max (n) C(m) Sm 7→nA Sm 7→nB Rmax(n)

RC(2)
max(3) = 1

8 C1/2(2)

0 1
2

1
2 0
1
2

1
2


1

2 0
0 1

2
1
2

1
2

 1
6

RC(2)
max(4) = 1

15 C1/2(2)


1
5

1
3

1
5

1
3

2
5 0
1
5

1
3




1
3

1
5

1
3

1
5

0 2
5

1
3

1
5

 1
12

RC(3)
max(4) = 2

27 Ceq6=α(3)


0 2

3 0
0 0 2

3
2
3 0 0
1
3

1
3

1
3




0 2
3 0

0 0 2
3

2
3 0 0
1
3

1
3

1
3

 1
12

Note that for higher d values the state Ceq6=α(d) can not be obtained from Qsinglet(2)
and hence perfect payoff in G(d) can not be obtained even when a coin state from Q(2) is
given as an assistance. Optimal classical vs quantum payoff(s) for the generic case G(d),
we leave here as an open question.

2.3 Noise-robust quantum advantage
The quantum advantage established above considers a two-qubit perfect entangled state.
However, entanglement is extremely fragile under noise and hence the advantage obtained
with such a perfect state seems impossible to archive in a practical scenario. Thus, a more
realistic question is whether the advantage manifested by quantum systems is robust to
noise or not. To this aim, let us consider a noisy two-2-quoin Qp(2) := p|ψ−〉AB〈ψ−|+(1−
p) I

2 ⊗
I
2 (i.e., a mixture of the singlet state and white noise)2. Note that RC(2)

max(3) = 1/8
and RC(2)

max(4) = 1/15 (see Table 1). Any quantum strategy providing a greater payoff can
be considered advantageous over the classical resources. With the two-2-quoin state Qp(2),
if we follow the same strategy as discussed in Theorem 2, they can be used to demonstrate
advantage over the classical strategies for p > 1/4 and p > 1/5 in the games G(3) and
G(4). At this point, it is noteworthy that the state Qp(2) is not even entangled whenever
p ≤ 1/3. This raises another fundamentally important question: which quantum feature
does underpin the aforementioned advantage in shared randomness generation? Next, we
make an attempt to provide a partial answer to this question. Recall that, a bipartite state
ρAB ∈ D(HA⊗HB) is called classically correlated (CC) if it has a diagonal representation
in some orthogonal product basis, i.e. ρAB =

∑
a,b pab|a〉A〈a| ⊗ |b〉B〈b|, where {|a〉A} is an

2Here we deal with a subclass (p ∈ [0, 1]) of Werner states, for which − 1
3 ≤ p ≤ 1



orthogonal basis for HA & {|b〉B} for HB and pab ≥ 0, &
∑
ab pab = 1. These states do not

possess quantum discord – a non-classical feature present in the correlation of bipartite
quantum states [52, 53]. Besides the entangled, all the separable states, which are not
CC, exhibit non-zero quantum discord. For instance, the two-2-quoin Qp(2) has non-zero
quantum discord for p ∈ (0, 1], whereas it is separable whenever p ≤ 1/3.

Theorem 3. Classically correlated bipartite quantum states will not provide any advantage
in shared randomness generation.

Proof. Without loss of any generality, we can consider the computational basis and hence
can represent a two-qubit CC state as ρAB =

∑
u,v puv |uv〉AB〈uv|; u, v ∈ {0, 1}, puv ≥

0 &
∑
u,v puv = 1. To obtain a two-d-coin state C(d), Alice and Bob perform some

d-outcome POVMs {MA
i |
∑d
i=1MA

i = I} and {MB
i |
∑d
i=1MB

i = I} on their respective
subsystems. Probability of clicking the POVM elementsMA

i ⊗MB
j on the state ρAB is

given by,

p(ij) =
1∑

u,v=0
puv 〈u|MA

i |u〉〈v|MB
j |v〉. (3)

Obviously, 〈ψ|MX
i |ψ〉 ≥ 0, &

∑d
i=1〈ψ|MX

i |ψ〉 = 1, ∀ |ψ〉; X ∈ {A,B}. This fact leads us
to construct stochastic matrices S2→d

X , with the elements,[
S2→d
X

]
kl

= 〈l|MX
k |l〉,where l ∈ {0, 1}. (4)

Evidently, action of S2→d
A ⊗S2→d

B on a classical coin Cp(2) ≡ p00 hh+p01 ht+p10 th+p11 tt
will produce the same probability statistics of Eq.[3]. Therefore, any C(d) coin state
generated from any zero-discord two-qubit state, can be freely simulated from a properly
chosen C(2) coin state. Hence, the quantum advantage in shared randomness generation
necessarily requires the Q(2) states to have non-zero discord.

The above theorem is quite important, as it establishes a fundamentally new application
of quantum discord [52, 53]. Notably, several other results have been derived to establish a
connection between quantum discord and entanglement transformations [54–56], coherence
resources [57], remote state preparations [58], random access codes [59] etc. Our result
finds a utility of quantum discord in the generation of shared randomness. It would be
interesting to explore further quantitative connections between the measure of discord with
the quantum advantage obtained in the noisy scenario. The noisy scenario becomes even
more interesting if we consider distribution of sources (classical or quantum) to establish
shared randomness between two parties.

2.3.1 Quantum advantage in distributing SR

In the non-monopolize social subsidy game, we have considered that both the shared
randomness and the strategies of the players are assisted by the referee. Let us consider
now a scenario where a paired-coin (bipartite state) is prepared by one of the players who
wish to distribute, through some communication channel, its one part to the other player
to maximize their payoff. Distribution of the coin state C1/2(2) in its exact form requires
a perfect binary channel of capacity 1-bit. In quantum scenario, a communication channel
can be most generally described by completely positive trace preserving maps [75]. Let
Alice prepare a two-2-quoin state Q(2) = ρAB ∈ D(C2 ⊗ C2) in her laboratory and then
she sends the B part to Bob through a qubit channel Λ. They end up with a two-2-quoin



state Q′(2) = I ⊗ Λ [ρAB], where I denotes the identity map (i.e. noiseless process) on
the A part. Then they obtain a classical shared coin from Q′(d) by applying allowed free
operations as suggested by the referee. In the following, we analyze two familiar noisy
qubit channels for achieving better payoff in G(n).

Qubit phase-flip channel: Its action on an arbitrary state ρ ∈ D(C2) is given by,
Λz
p(ρ) := p ρ + (1 − p) σzρσz, where p ∈ [0, 1]. If Alice sends one part of the coin state
Qψ−(2) = |ψ−〉〈ψ−| to Bob through Λz

p then they end up sharing the state Qzp(2) =
I2 ⊗ Λz

p

[
Qψ−(2)

]
= p Qψ−(2) + (1 − p) Qψ+(2). Applying the same Trine-POVM as in

Theorem 2, the probabilities p(ij) = Tr
[
(Πi ⊗Πj) .Qzp(2)

]
can be represented as a 3 × 3

matrix

Pzp (3) ≡

0 µ µ
µ (1− p) µ p µ
µ p µ (1− p) µ

 ,
where µ = 1/6. Since the maximum payoff for G(3) with a perfect classical channel is 1/8,
the Λz

p channel is advantageous whenever β > 3/4. For the G(4) case, following the same
SIC-POVM strategy we have,

Pzp (4) ≡


0 3ν 3ν 3ν

3ν ν ′ (1 + 2p)ν (1 + 2p)ν
3ν (1 + 2p)ν ν ′ (1 + 2p)ν
3ν (1 + 2p)ν (1 + 2p)ν ν ′

 ,
where ν = 1/36 and ν ′ = (1 − p)/9. In this case maximum classical payoff is 1/15 which
means Λzp is advantageous for cases with more noise, i.e. whenever p > 7/10.

Qubit depolarizing channel: Its action is given by, ΛD
p (ρ) := p ρ + (1 − p) I

2 . If Alice
prepares Qψ−(2), then they end up sharing the state QDp (2) = p Qψ−(2) + (1− p) I

2 ⊗
I
2 .

A straightforward calculation, in this case, yields

PDp (3) =

η η′ η′

η′ η η′

η′ η′ η

 & PDp (4) =


δ δ′ δ′ δ′

δ′ δ δ′ δ′

δ′ δ′ δ δ′

δ′ δ′ δ′ δ

 ,
where η = (1 − p)/9, η′ = (2 + p)/18, δ = (1 − p)/16. and δ′ = (3 + p)/48. Therefore,
the channel ΛD

p is advantageous in G(3) [G(4)] whenever p > 1/4 [p > 1/5]. Importantly,
ΛD
p is an entanglement breaking channel whenever p ≤ 1/3 [76]. Therefore, the channel

exhibits advantage in shared randomness distribution even when its quantum capacity is
zero [64–66]. Also recall that classical capacity of qubit depolarizing channel is given by
χ(ΛDp ) = 1−H

(
1+p

2

)
, where H(x) := −x log2 x− (1− x) log2(1− x) is the binary entropy

[77]. Therefore, quantum advantage is tangible even when the classical capacity of the
quantum channel is much less than unity.

3 Discussion
Considerable effort has been made by researchers in quantum information and founda-
tions community to identify a list of practical instances where application of quantum
rules provide advantage over the classical physics. The present work, where we establish
quantum advantage in generating higher degrees of shared randomness quantified within
a suitably formulated resource theoretic framework, is an addition to this list. We also



show precedence of quantum channel over its classical counterpart in distributing shared
randomness. Such advantage is quite relevant if we recall some of the fundamental no-go
results that limit the advantage of using quantum systems in classical information pro-
cessing. For instance, Holevo’s theorem limits the classical capacity of a quantum channel
[60] whereas the recent no-go result by Frenkel and Weiner [61] limits classical information
storage capacity in a quantum system. However, in the present work, it is established that
a class of noisy qubit channels with imperfect classical capacity can surpass noiseless clas-
sical channels in distributing shared randomness. Moreover, the quantum advantage turns
out to be robust to extreme noise that can erase its most prominent quantum signature, the
quantum capacity. A discussion of our Proposition 1 in connection with the seminal Bell’s
theorem is worth mentioning. Recall that Bell’s theorem establishes a non-classical feature
for quantum correlations, in the sense that some of these cannot have a classical (local
realistic) description [78]. In the same spirit, our results also point out a non-classical fea-
ture of quantum correlations in a setting where appropriate albeit fixed measurements are
performed locally on a shared bipartite state. Precisely, a two-2-quoin can yield correlated
random variables that cannot be obtained from a two-2-coin. Note that, while Bell’s the-
orem involves more than one measurement on each part of the spatially separated systems
and hence requires the assumption of ‘measurement independence’ [79, 80], our result only
invokes a fixed measurement on each side and thus is free of this particular assumption.
On the other hand, unlike Bell’s theorem, the depiction of non-classical correlations in the
present work requires the local dimension of the systems to be known.

Our work raises a number of important questions regarding the utility of non-classical
origin of randomness, which will be of interest to the broader community of researchers in
quantum foundations and quantum information. First, a class of monotones, completely
characterizing the (im)possibility of conversion between two shared randomness resources,
is still missing. Second, the advantage of two-2-quoins and noisy qubit channels in the
generation and distribution of higher level shared randomness, demonstrated in this work,
necessitate further characterization of quantum resources providing such preeminence. Our
work serves as a stepping stone towards unveiling the rich potentiality of accomplishing
quantum advantage in shared randomness generation from higher level systems and multi-
partite scenarios.
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