Multidimensional cluster states using a single spin-photon interface coupled strongly to an intrinsic nuclear register

Cathryn P. Michaels, Jesús Arjona Martínez, Romain Debroux, Ryan A. Parker, Alexander M. Stramma, Luca I. Huber, Carola M. Purser, Mete Atatüre, and Dorian A. Gangloff

Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Photonic cluster states are a powerful resource for measurement-based quantum computing and loss-tolerant quantum communication. Proposals to generate multi-dimensional lattice cluster states have identified coupled spin-photon interfaces, spin-ancilla systems, and optical feedback mechanisms as potential schemes. Following these, we propose the generation of multi-dimensional lattice cluster states using a single, efficient spin-photon interface coupled strongly to a nuclear register. Our scheme makes use of the contact hyperfine interaction to enable universal quantum gates between the interface spin and a local nuclear register and funnels the resulting entanglement to photons via the spin-photon interface. Among several quantum emitters, we identify the silicon-29 vacancy centre in diamond, coupled to a nanophotonic structure, as possessing the right combination of optical quality and spin coherence for this scheme. We show numerically that using this system a 2×5-sized cluster state with a lower-bound fidelity of 0.5 and repetition rate of 65 kHz is achievable under currently realised experimental performances and with feasible technical overhead. Realistic gate improvements put 100-photon cluster states within experimental reach.

Quantum states composed of multiple entangled photons are a key resource in quantum computing networks, both for robust communication and for implementing computational tasks. Photonic cluster states whose entanglement is multidimensional are required for universal quantum protocols. Such cluster states can be obtained from a highly efficient single-photon source, together with entangling gates between distinct emitters or between local spins. We propose to use the multidimensional entanglement naturally available to a single diamond colour center strongly coupled to an intrinsic nuclear spin to create multi-dimensional cluster states of photons. Our simulations show that 100-photon cluster states are realisable within achievable experimental parameters.

► BibTeX data

► References

[1] A. Aspect, P. Grangier, G. Roger, Experimental Tests of Realistic Local Theories via Bell's Theorem, Phys. Rev. Lett. 47 (7) (1981) 460–463. doi:10.1103/​PhysRevLett.47.460.
https:/​/​doi.org/​10.1103/​PhysRevLett.47.460

[2] A. K. Ekert, Quantum cryptography based on Bell's theorem, Phys. Rev. Lett. 67 (6) (1991) 661–663. doi:10.1103/​PhysRevLett.67.661.
https:/​/​doi.org/​10.1103/​PhysRevLett.67.661

[3] D. Bouwmeester, J.-W. Pan, K. Mattle, M. Eibl, H. Weinfurter, A. Zeilinger, Experimental quantum teleportation, Nature 390 (6660) (1997) 575–579. doi:10.1038/​37539.
https:/​/​doi.org/​10.1038/​37539

[4] R. Raussendorf, H. J. Briegel, A One-Way Quantum Computer, Phys. Rev. Lett. 86 (22) (2001) 5188–5191. doi:10.1103/​physrevlett.86.5188.
https:/​/​doi.org/​10.1103/​physrevlett.86.5188

[5] R. Raussendorf, D. E. Browne, H. J. Briegel, Measurement-based quantum computation on cluster states, Phys. Rev. A 68 (2) (2003) 022312. doi:10.1103/​PhysRevA.68.022312.
https:/​/​doi.org/​10.1103/​PhysRevA.68.022312

[6] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, M. V. den Nest, Measurement-based quantum computation, Nat. Phys. 5 (1) (2009) 19–26. doi:10.1038/​nphys1157.
https:/​/​doi.org/​10.1038/​nphys1157

[7] H. J. Kimble, The quantum internet, Nature 453 (7198) (2008) 1023–1030. doi:10.1038/​nature07127.
https:/​/​doi.org/​10.1038/​nature07127

[8] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J. L. O'Brien, Quantum computers., Nature 464 (7285) (2010) 45–53. doi:10.1038/​nature08812.
https:/​/​doi.org/​10.1038/​nature08812

[9] N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74 (1) (2002) 145–195. doi:10.1103/​RevModPhys.74.145.
https:/​/​doi.org/​10.1103/​RevModPhys.74.145

[10] H.-S. Zhong, H. Wang, Y.-H. Deng, M.-C. Chen, L.-C. Peng, Y.-H. Luo, J. Qin, D. Wu, X. Ding, Y. Hu, P. Hu, X.-Y. Yang, W.-J. Zhang, H. Li, Y. Li, X. Jiang, L. Gan, G. Yang, L. You, Z. Wang, L. Li, N.-L. Liu, C.-Y. Lu, J.-W. Pan, Quantum computational advantage using photons, Science 370 (6523) (2020) 1460–1463. doi:10.1126/​science.abe8770.
https:/​/​doi.org/​10.1126/​science.abe8770

[11] F. Xu, X. Ma, Q. Zhang, H.-K. Lo, J.-W. Pan, Secure quantum key distribution with realistic devices, Rev. Mod. Phys. 92 (2) (2020) 025002. doi:10.1103/​RevModPhys.92.025002.
https:/​/​doi.org/​10.1103/​RevModPhys.92.025002

[12] H. J. Briegel, R. Raussendorf, Persistent entanglement in arrays of interacting particles, Phys. Rev. Lett. 86 (5) (2001) 910–913. doi:10.1103/​PhysRevLett.86.910.
https:/​/​doi.org/​10.1103/​PhysRevLett.86.910

[13] M. Varnava, D. E. Browne, T. Rudolph, How Good Must Single Photon Sources and Detectors Be for Efficient Linear Optical Quantum Computation?, Phys. Rev. Lett. 100 (6) (2008) 060502. doi:10.1103/​PhysRevLett.100.060502.
https:/​/​doi.org/​10.1103/​PhysRevLett.100.060502

[14] M. Zwerger, H. J. Briegel, W. Dür, Measurement-based quantum communication, Appl. Phys. B 122 (3) (2016) 50. doi:10.1007/​s00340-015-6285-8.
https:/​/​doi.org/​10.1007/​s00340-015-6285-8

[15] K. Azuma, K. Tamaki, H.-K. Lo, All-photonic quantum repeaters, Nat. Commun. 6 (1) (2015) 6787. doi:10.1038/​ncomms7787.
https:/​/​doi.org/​10.1038/​ncomms7787

[16] W. P. Grice, Arbitrarily complete Bell-state measurement using only linear optical elements, Phys. Rev. A 84 (4) (2011) 042331. doi:10.1103/​PhysRevA.84.042331.
https:/​/​doi.org/​10.1103/​PhysRevA.84.042331

[17] T. Kilmer, S. Guha, Boosting linear-optical Bell measurement success probability with predetection squeezing and imperfect photon-number-resolving detectors, Phys. Rev. A 99 (3) (2019) 032302. doi:10.1103/​PhysRevA.99.032302.
https:/​/​doi.org/​10.1103/​PhysRevA.99.032302

[18] F. Ewert, P. van Loock, 3/​4-Efficient Bell Measurement with Passive Linear Optics and Unentangled Ancillae, Phys. Rev. Lett. 113 (14) (2014) 140403. doi:10.1103/​PhysRevLett.113.140403.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.140403

[19] D. E. Browne, T. Rudolph, Resource-Efficient Linear Optical Quantum Computation, Phys. Rev. Lett. 95 (1) (2005) 010501. doi:10.1103/​PhysRevLett.95.010501.
https:/​/​doi.org/​10.1103/​PhysRevLett.95.010501

[20] Z. Zhao, Y.-A. Chen, A.-N. Zhang, T. Yang, H. J. Briegel, J.-W. Pan, Experimental demonstration of five-photon entanglement and open-destination teleportation, Nature 430 (6995) (2004) 54–58. doi:10.1038/​nature02643.
https:/​/​doi.org/​10.1038/​nature02643

[21] W. B. Gao, C. Y. Lu, X. C. Yao, P. Xu, O. Gühne, A. Goebel, Y. A. Chen, C. Z. Peng, Z. B. Chen, J. W. Pan, Experimental demonstration of a hyper-entangled ten-qubit Schrödinger cat state, Nat. Phys. 6 (5) (2010) 331–335. doi:10.1038/​nphys1603.
https:/​/​doi.org/​10.1038/​nphys1603

[22] X.-L. Wang, L.-K. Chen, W. Li, H.-L. Huang, C. Liu, C. Chen, Y.-H. Luo, Z.-E. Su, D. Wu, Z.-D. Li, H. Lu, Y. Hu, X. Jiang, C.-Z. Peng, L. Li, N.-L. Liu, Y.-A. Chen, C.-Y. Lu, J.-W. Pan, Experimental Ten-Photon Entanglement, Phys. Rev. Lett. 117 (21) (2016) 210502. doi:10.1103/​PhysRevLett.117.210502.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.210502

[23] D. Istrati, Y. Pilnyak, J. C. Loredo, C. Antón, N. Somaschi, P. Hilaire, H. Ollivier, M. Esmann, L. Cohen, L. Vidro, C. Millet, A. Lemaı̂tre, I. Sagnes, A. Harouri, L. Lanco, P. Senellart, H. S. Eisenberg, Sequential generation of linear cluster states from a single photon emitter, Nat. Commun. 11 (1) (2020) 5501. doi:10.1038/​s41467-020-19341-4.
https:/​/​doi.org/​10.1038/​s41467-020-19341-4

[24] W. Asavanant, Y. Shiozawa, S. Yokoyama, B. Charoensombutamon, H. Emura, R. N. Alexander, S. Takeda, J.-i. Yoshikawa, N. C. Menicucci, H. Yonezawa, A. Furusawa, Generation of time-domain-multiplexed two-dimensional cluster state, Science 366 (6463) (2019) 373–376. doi:10.1126/​science.aay2645.
https:/​/​doi.org/​10.1126/​science.aay2645

[25] N. H. Lindner, T. Rudolph, Proposal for Pulsed On-Demand Sources of Photonic Cluster State Strings, Phys. Rev. Lett. 103 (11) (2009) 113602. doi:10.1103/​PhysRevLett.103.113602.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.113602

[26] I. Schwartz, D. Cogan, E. R. Schmidgall, Y. Don, L. Gantz, O. Kenneth, N. H. Lindner, D. Gershoni, Deterministic generation of a cluster state of entangled photons, Science 354 (6311) (2016) 434–437. doi:10.1126/​science.aah4758.
https:/​/​doi.org/​10.1126/​science.aah4758

[27] D. Gonţa, T. Radtke, S. Fritzsche, Generation of two-dimensional cluster states by using high-finesse bimodal cavities, Phys. Rev. A 79 (6) (2009) 062319. doi:10.1103/​PhysRevA.79.062319.
https:/​/​doi.org/​10.1103/​PhysRevA.79.062319

[28] S. E. Economou, N. Lindner, T. Rudolph, Optically Generated 2-Dimensional Photonic Cluster State from Coupled Quantum Dots, Phys. Rev. Lett. 105 (9) (2010) 093601. doi:10.1103/​PhysRevLett.105.093601.
https:/​/​doi.org/​10.1103/​PhysRevLett.105.093601

[29] A. Mantri, T. F. Demarie, J. F. Fitzsimons, Universality of quantum computation with cluster states and (X, Y)-plane measurements, Sci. Rep. 7 (1) (2017) 42861. doi:10.1038/​srep42861.
https:/​/​doi.org/​10.1038/​srep42861

[30] M. Gimeno-Segovia, T. Rudolph, S. E. Economou, Deterministic Generation of Large-Scale Entangled Photonic Cluster State from Interacting Solid State Emitters, Phys. Rev. Lett. 123 (7) (2019) 070501. doi:10.1103/​PhysRevLett.123.070501.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.070501

[31] A. Russo, E. Barnes, S. E. Economou, Generation of arbitrary all-photonic graph states from quantum emitters, New J. Phys. 21 (5) (2019) 055002. doi:10.1088/​1367-2630/​ab193d.
https:/​/​doi.org/​10.1088/​1367-2630/​ab193d

[32] A. Russo, E. Barnes, S. E. Economou, Photonic graph state generation from quantum dots and color centers for quantum communications, Phys. Rev. B 98 (8) (2018) 085303. doi:10.1103/​PhysRevB.98.085303.
https:/​/​doi.org/​10.1103/​PhysRevB.98.085303

[33] D. Buterakos, E. Barnes, S. E. Economou, Deterministic Generation of All-Photonic Quantum Repeaters from Solid-State Emitters, Phys. Rev. X 7 (4) (2017) 041023. doi:10.1103/​PhysRevX.7.041023.
https:/​/​doi.org/​10.1103/​PhysRevX.7.041023

[34] G. Waldherr, Y. Wang, S. Zaiser, M. Jamali, T. Schulte-Herbrüggen, H. Abe, T. Ohshima, J. Isoya, J. F. Du, P. Neumann, J. Wrachtrup, Quantum error correction in a solid-state hybrid spin register, Nature 506 (7487) (2014) 204–207. doi:10.1038/​nature12919.
https:/​/​doi.org/​10.1038/​nature12919

[35] D. A. Gangloff, G. Éthier-Majcher, C. Lang, E. V. Denning, J. H. Bodey, D. M. Jackson, E. Clarke, M. Hugues, C. Le Gall, M. Atatüre, Quantum interface of an electron and a nuclear ensemble, Science 364 (6435) (2019) 62–66. doi:10.1126/​science.aaw2906.
https:/​/​doi.org/​10.1126/​science.aaw2906

[36] M. H. Metsch, K. Senkalla, B. Tratzmiller, J. Scheuer, M. Kern, J. Achard, A. Tallaire, M. B. Plenio, P. Siyushev, F. Jelezko, Initialization and Readout of Nuclear Spins via a Negatively Charged Silicon-Vacancy Center in Diamond, Phys. Rev. Lett. 122 (19) (2019) 190503. doi:10.1103/​PhysRevLett.122.190503.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.190503

[37] M. Atatüre, D. Englund, N. Vamivakas, S.-Y. Lee, J. Wrachtrup, Material platforms for spin-based photonic quantum technologies, Nat. Rev. Mater. 3 (5) (2018) 38–51. doi:10.1038/​s41578-018-0008-9.
https:/​/​doi.org/​10.1038/​s41578-018-0008-9

[38] E. Janitz, M. K. Bhaskar, L. Childress, Cavity quantum electrodynamics with color centers in diamond, Optica 7 (10) (2020) 1232. doi:10.1364/​OPTICA.398628.
https:/​/​doi.org/​10.1364/​OPTICA.398628

[39] J. L. O'Brien, A. Furusawa, J. Vučković, Photonic quantum technologies, Nat. Photonics 3 (12) (2009) 687–695. doi:10.1038/​nphoton.2009.229.
https:/​/​doi.org/​10.1038/​nphoton.2009.229

[40] M. Paillard, X. Marie, E. Vanelle, T. Amand, V. K. Kalevich, A. R. Kovsh, A. E. Zhukov, V. M. Ustinov, Time-resolved photoluminescence in self-assembled InAs/​GaAs quantum dots under strictly resonant excitation, Appl. Phys. Lett. 76 (1) (2000) 76–78. doi:10.1063/​1.125661.
https:/​/​doi.org/​10.1063/​1.125661

[41] D. Najer, I. Söllner, P. Sekatski, V. Dolique, M. C. Löbl, D. Riedel, R. Schott, S. Starosielec, S. R. Valentin, A. D. Wieck, N. Sangouard, A. Ludwig, R. J. Warburton, A gated quantum dot strongly coupled to an optical microcavity, Nature 575 (7784) (2019) 622–627. doi:10.1038/​s41586-019-1709-y.
https:/​/​doi.org/​10.1038/​s41586-019-1709-y

[42] P. Senellart, G. Solomon, A. White, High-performance semiconductor quantum-dot single-photon sources, Nat. Nanotechnol. 12 (11) (2017) 1026–1039. doi:10.1038/​nnano.2017.218.
https:/​/​doi.org/​10.1038/​nnano.2017.218

[43] E. Peter, J. Hours, P. Senellart, A. Vasanelli, A. Cavanna, J. Bloch, J. M. Gérard, Phonon sidebands in exciton and biexciton emission from single GaAs quantum dots, Phys. Rev. B 69 (4) (2004) 041307. doi:10.1103/​PhysRevB.69.041307.
https:/​/​doi.org/​10.1103/​PhysRevB.69.041307

[44] C. Matthiesen, M. Geller, C. H. H. Schulte, C. Le Gall, J. Hansom, Z. Li, M. Hugues, E. Clarke, M. Atatüre, Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source, Nat. Commun. 4 (1) (2013) 1600. doi:10.1038/​ncomms2601.
https:/​/​doi.org/​10.1038/​ncomms2601

[45] K. Konthasinghe, J. Walker, M. Peiris, C. K. Shih, Y. Yu, M. F. Li, J. F. He, L. J. Wang, H. Q. Ni, Z. C. Niu, A. Muller, Coherent versus incoherent light scattering from a quantum dot, Phys. Rev. B 85 (23) (2012) 235315. doi:10.1103/​PhysRevB.85.235315.
https:/​/​doi.org/​10.1103/​PhysRevB.85.235315

[46] A. Bechtold, D. Rauch, F. Li, T. Simmet, P.-L. Ardelt, A. Regler, K. Müller, N. A. Sinitsyn, J. J. Finley, Three-stage decoherence dynamics of an electron spin qubit in an optically active quantum dot, Nat. Phys. 11 (12) (2015) 1005–1008. doi:10.1038/​nphys3470.
https:/​/​doi.org/​10.1038/​nphys3470

[47] R. Stockill, C. Le Gall, C. Matthiesen, L. Huthmacher, E. Clarke, M. Hugues, M. Atatüre, Quantum dot spin coherence governed by a strained nuclear environment, Nat. Commun. 7 (1) (2016) 12745. doi:10.1038/​ncomms12745.
https:/​/​doi.org/​10.1038/​ncomms12745

[48] A. Högele, M. Kroner, C. Latta, M. Claassen, I. Carusotto, C. Bulutay, A. Imamoglu, Dynamic Nuclear Spin Polarization in the Resonant Laser Excitation of an InGaAs Quantum Dot, Phys. Rev. Lett. 108 (19) (2012) 197403. doi:10.1103/​PhysRevLett.108.197403.
https:/​/​doi.org/​10.1103/​PhysRevLett.108.197403

[49] D. J. Christle, P. V. Klimov, C. F. de las Casas, K. Szász, V. Ivády, V. Jokubavicius, J. Ul Hassan, M. Syväjärvi, W. F. Koehl, T. Ohshima, N. T. Son, E. Janzén, Á. Gali, D. D. Awschalom, Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface, Phys. Rev. X 7 (2) (2017) 021046. doi:10.1103/​PhysRevX.7.021046.
https:/​/​doi.org/​10.1103/​PhysRevX.7.021046

[50] G. Calusine, A. Politi, D. D. Awschalom, Silicon carbide photonic crystal cavities with integrated color centers, Appl. Phys. Lett. 105 (1) (2014) 011123. doi:10.1063/​1.4890083.
https:/​/​doi.org/​10.1063/​1.4890083

[51] A. Bourassa, C. P. Anderson, K. C. Miao, M. Onizhuk, H. Ma, A. L. Crook, H. Abe, J. Ul-Hassan, T. Ohshima, N. T. Son, G. Galli, D. D. Awschalom, Entanglement and control of single nuclear spins in isotopically engineered silicon carbide, Nat. Mater. 19 (12) (2020) 1319–1325. doi:10.1038/​s41563-020-00802-6.
https:/​/​doi.org/​10.1038/​s41563-020-00802-6

[52] L. Spindlberger, A. Csóré, G. Thiering, S. Putz, R. Karhu, J. U. Hassan, N. T. Son, T. Fromherz, A. Gali, M. Trupke, Optical Properties of Vanadium in 4 H Silicon Carbide for Quantum Technology, Phys. Rev. Applied 12 (1) (2019) 014015. doi:10.1103/​PhysRevApplied.12.014015.
https:/​/​doi.org/​10.1103/​PhysRevApplied.12.014015

[53] G. Wolfowicz, C. P. Anderson, B. Diler, O. G. Poluektov, F. J. Heremans, D. D. Awschalom, Vanadium spin qubits as telecom quantum emitters in silicon carbide, Sci. Adv. 6 (18) (2020) eaaz1192. doi:10.1126/​sciadv.aaz1192.
https:/​/​doi.org/​10.1126/​sciadv.aaz1192

[54] N. B. Manson, J. P. Harrison, M. J. Sellars, Nitrogen-vacancy center in diamond: Model of the electronic structure and associated dynamics, Phys. Rev. B 74 (10) (2006) 104303. doi:10.1103/​PhysRevB.74.104303.
https:/​/​doi.org/​10.1103/​PhysRevB.74.104303

[55] D. Riedel, I. Söllner, B. J. Shields, S. Starosielec, P. Appel, E. Neu, P. Maletinsky, R. J. Warburton, Deterministic Enhancement of Coherent Photon Generation from a Nitrogen-Vacancy Center in Ultrapure Diamond, Phys. Rev. X 7 (3) (2017) 031040. doi:10.1103/​PhysRevX.7.031040.
https:/​/​doi.org/​10.1103/​PhysRevX.7.031040

[56] M. Berthel, O. Mollet, G. Dantelle, T. Gacoin, S. Huant, A. Drezet, Photophysics of single nitrogen-vacancy centers in diamond nanocrystals, Phys. Rev. B 91 (3) (2015) 035308. doi:10.1103/​PhysRevB.91.035308.
https:/​/​doi.org/​10.1103/​PhysRevB.91.035308

[57] R. N. Patel, T. Schröder, N. Wan, L. Li, S. L. Mouradian, E. H. Chen, D. R. Englund, Efficient photon coupling from a diamond nitrogen vacancy center by integration with silica fiber, Light Sci. Appl. 5 (2) (2016) e16032–e16032. doi:10.1038/​lsa.2016.32.
https:/​/​doi.org/​10.1038/​lsa.2016.32

[58] I. Aharonovich, S. Castelletto, D. A. Simpson, C.-H. Su, A. D. Greentree, S. Prawer, Diamond-based single-photon emitters, Reports Prog. Phys. 74 (7) (2011) 076501. doi:10.1088/​0034-4885/​74/​7/​076501.
https:/​/​doi.org/​10.1088/​0034-4885/​74/​7/​076501

[59] P. C. Humphreys, N. Kalb, J. P. Morits, R. N. Schouten, R. F. Vermeulen, D. J. Twitchen, M. Markham, R. Hanson, Deterministic delivery of remote entanglement on a quantum network, Nature 558 (7709) (2018) 268–273. doi:10.1038/​s41586-018-0200-5.
https:/​/​doi.org/​10.1038/​s41586-018-0200-5

[60] W. Pfaff, T. H. Taminiau, L. Robledo, H. Bernien, M. Markham, D. J. Twitchen, R. Hanson, Demonstration of entanglement-by-measurement of solid-state qubits, Nat. Phys. 9 (1) (2013) 29–33. doi:10.1038/​nphys2444.
https:/​/​doi.org/​10.1038/​nphys2444

[61] J. N. Becker, B. Pingault, D. Groß, M. Gündoğan, N. Kukharchyk, M. Markham, A. Edmonds, M. Atatüre, P. Bushev, C. Becher, All-Optical Control of the Silicon-Vacancy Spin in Diamond at Millikelvin Temperatures, Phys. Rev. Lett. 120 (5) (2018) 053603. doi:10.1103/​PhysRevLett.120.053603.
https:/​/​doi.org/​10.1103/​PhysRevLett.120.053603

[62] M. K. Bhaskar, R. Riedinger, B. Machielse, D. S. Levonian, C. T. Nguyen, E. N. Knall, H. Park, D. Englund, M. Lončar, D. D. Sukachev, M. D. Lukin, Experimental demonstration of memory-enhanced quantum communication, Nature 580 (7801) (2020) 60–64. doi:10.1038/​s41586-020-2103-5.
https:/​/​doi.org/​10.1038/​s41586-020-2103-5

[63] D. D. Sukachev, A. Sipahigil, C. T. Nguyen, M. K. Bhaskar, R. E. Evans, F. Jelezko, M. D. Lukin, Silicon-Vacancy Spin Qubit in Diamond: A Quantum Memory Exceeding 10 ms with Single-Shot State Readout, Phys. Rev. Lett. 119 (22) (2017) 223602. doi:10.1103/​PhysRevLett.119.223602.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.223602

[64] E. Neu, M. Fischer, S. Gsell, M. Schreck, C. Becher, Fluorescence and polarization spectroscopy of single silicon vacancy centers in heteroepitaxial nanodiamonds on iridium, Phys. Rev. B 84 (20) (2011) 205211. doi:10.1103/​PhysRevB.84.205211.
https:/​/​doi.org/​10.1103/​PhysRevB.84.205211

[65] E. Neu, D. Steinmetz, J. Riedrich-Möller, S. Gsell, M. Fischer, M. Schreck, C. Becher, Single photon emission from silicon-vacancy colour centres in chemical vapour deposition nano-diamonds on iridium, New J. Phys. 13 (2) (2011) 025012. doi:10.1088/​1367-2630/​13/​2/​025012.
https:/​/​doi.org/​10.1088/​1367-2630/​13/​2/​025012

[66] B. Pingault, D.-D. Jarausch, C. Hepp, L. Klintberg, J. N. Becker, M. Markham, C. Becher, M. Atatüre, Coherent control of the silicon-vacancy spin in diamond, Nat. Commun. 8 (1) (2017) 15579. doi:10.1038/​ncomms15579.
https:/​/​doi.org/​10.1038/​ncomms15579

[67] A. M. Edmonds, M. E. Newton, P. M. Martineau, D. J. Twitchen, S. D. Williams, Electron paramagnetic resonance studies of silicon-related defects in diamond, Phys. Rev. B 77 (24) (2008) 245205. doi:10.1103/​PhysRevB.77.245205.
https:/​/​doi.org/​10.1103/​PhysRevB.77.245205

[68] T. Iwasaki, F. Ishibashi, Y. Miyamoto, Y. Doi, S. Kobayashi, T. Miyazaki, K. Tahara, K. D. Jahnke, L. J. Rogers, B. Naydenov, F. Jelezko, S. Yamasaki, S. Nagamachi, T. Inubushi, N. Mizuochi, M. Hatano, Germanium-Vacancy Single Color Centers in Diamond, Sci. Rep. 5 (1) (2015) 12882. doi:10.1038/​srep12882.
https:/​/​doi.org/​10.1038/​srep12882

[69] M. K. Bhaskar, D. D. Sukachev, A. Sipahigil, R. E. Evans, M. J. Burek, C. T. Nguyen, L. J. Rogers, P. Siyushev, M. H. Metsch, H. Park, F. Jelezko, M. Lončar, M. D. Lukin, Quantum nonlinear optics with a germanium-vacancy color center in a nanoscale diamond waveguide, Phys. Rev. Lett. 118 (2017) 223603. doi:10.1103/​PhysRevLett.118.223603.
https:/​/​doi.org/​10.1103/​PhysRevLett.118.223603

[70] Y. N. Palyanov, I. N. Kupriyanov, Y. M. Borzdov, N. V. Surovtsev, Germanium: a new catalyst for diamond synthesis and a new optically active impurity in diamond, Sci. Rep. 5 (1) (2015) 14789. doi:10.1038/​srep14789.
https:/​/​doi.org/​10.1038/​srep14789

[71] M. E. Trusheim, B. Pingault, N. H. Wan, M. Gündoğan, L. De Santis, R. Debroux, D. Gangloff, C. Purser, K. C. Chen, M. Walsh, J. J. Rose, J. N. Becker, B. Lienhard, E. Bersin, I. Paradeisanos, G. Wang, D. Lyzwa, A. R.-P. Montblanch, G. Malladi, H. Bakhru, A. C. Ferrari, I. A. Walmsley, M. Atatüre, D. Englund, Transform-Limited Photons From a Coherent Tin-Vacancy Spin in Diamond, Phys. Rev. Lett. 124 (2) (2020) 023602. doi:10.1103/​PhysRevLett.124.023602.
https:/​/​doi.org/​10.1103/​PhysRevLett.124.023602

[72] A. E. Rugar, S. Aghaeimeibodi, D. Riedel, C. Dory, H. Lu, P. J. McQuade, Z.-X. Shen, N. A. Melosh, J. Vučković, Quantum Photonic Interface for Tin-Vacancy Centers in Diamond, Phys. Rev. X 11 (3) (2021) 031021. doi:10.1103/​PhysRevX.11.031021.
https:/​/​doi.org/​10.1103/​PhysRevX.11.031021

[73] T. Iwasaki, Y. Miyamoto, T. Taniguchi, P. Siyushev, M. H. Metsch, F. Jelezko, M. Hatano, Tin-Vacancy Quantum Emitters in Diamond, Phys. Rev. Lett. 119 (25) (2017) 253601. doi:10.1103/​PhysRevLett.119.253601.
https:/​/​doi.org/​10.1103/​PhysRevLett.119.253601

[74] J. Görlitz, D. Herrmann, G. Thiering, P. Fuchs, M. Gandil, T. Iwasaki, T. Taniguchi, M. Kieschnick, J. Meijer, M. Hatano, A. Gali, C. Becher, Spectroscopic investigations of negatively charged tin-vacancy centres in diamond, New J. Phys. 22 (1) (2020) 013048. doi:10.1088/​1367-2630/​ab6631.
https:/​/​doi.org/​10.1088/​1367-2630/​ab6631

[75] R. Debroux, C. P. Michaels, C. M. Purser, N. Wan, M. E. Trusheim, J. A. Martínez, R. A. Parker, A. M. Stramma, K. C. Chen, L. de Santis, E. M. Alexeev, A. C. Ferrari, D. Englund, D. A. Gangloff, M. Atatüre, Quantum control of the tin-vacancy spin qubit in diamond, arXiv:2106.00723 (2021).
arXiv:2106.00723

[76] N. Tomm, A. Javadi, N. O. Antoniadis, D. Najer, M. C. Löbl, A. R. Korsch, R. Schott, S. R. Valentin, A. D. Wieck, A. Ludwig, R. J. Warburton, A bright and fast source of coherent single photons, Nat. Nanotechnol. 16 (4) (2021) 399–403. doi:10.1038/​s41565-020-00831-x.
https:/​/​doi.org/​10.1038/​s41565-020-00831-x

[77] D. Kim, S. G. Carter, A. Greilich, A. S. Bracker, D. Gammon, Ultrafast optical control of entanglement between two quantum-dot spins, Nat. Phys. 7 (3) (2011) 223–229. doi:10.1038/​nphys1863.
https:/​/​doi.org/​10.1038/​nphys1863

[78] D. Ding, M. H. Appel, A. Javadi, X. Zhou, M. C. Löbl, I. Söllner, R. Schott, C. Papon, T. Pregnolato, L. Midolo, A. D. Wieck, A. Ludwig, R. J. Warburton, T. Schröder, P. Lodahl, Coherent Optical Control of a Quantum-Dot Spin-Qubit in a Waveguide-Based Spin-Photon Interface, Phys. Rev. Applied 11 (3) (2019) 031002. doi:10.1103/​PhysRevApplied.11.031002.
https:/​/​doi.org/​10.1103/​PhysRevApplied.11.031002

[79] J. H. Bodey, R. Stockill, E. V. Denning, D. A. Gangloff, G. Éthier-Majcher, D. M. Jackson, E. Clarke, M. Hugues, C. L. Gall, M. Atatüre, Optical spin locking of a solid-state qubit, npj Quantum Inf. 5 (1) (2019) 95. doi:10.1038/​s41534-019-0206-3.
https:/​/​doi.org/​10.1038/​s41534-019-0206-3

[80] E. V. Denning, D. A. Gangloff, M. Atatüre, J. Mørk, C. Le Gall, Collective Quantum Memory Activated by a Driven Central Spin, Phys. Rev. Lett. 123 (14) (2019) 140502. doi:10.1103/​PhysRevLett.123.140502.
https:/​/​doi.org/​10.1103/​PhysRevLett.123.140502

[81] C. F. De Las Casas, D. J. Christle, J. Ul Hassan, T. Ohshima, N. T. Son, D. D. Awschalom, Stark tuning and electrical charge state control of single divacancies in silicon carbide, Appl. Phys. Lett. 111 (26) (2017) 262403. doi:10.1063/​1.5004174.
https:/​/​doi.org/​10.1063/​1.5004174

[82] T. T. Tran, K. Bray, M. J. Ford, M. Toth, I. Aharonovich, Quantum emission from hexagonal boron nitride monolayers, Nat. Nanotechnol. 11 (1) (2016) 37–41. doi:10.1038/​nnano.2015.242.
https:/​/​doi.org/​10.1038/​nnano.2015.242

[83] T. Zhong, J. M. Kindem, J. Rochman, A. Faraon, Interfacing broadband photonic qubits to on-chip cavity-protected rare-earth ensembles, Nat. Commun. 8 (1) (2017) 14107. doi:10.1038/​ncomms14107.
https:/​/​doi.org/​10.1038/​ncomms14107

[84] I. Aharonovich, A. D. Greentree, S. Prawer, Diamond photonics, Nat. Photonics 5 (7) (2011) 397–405. doi:10.1038/​nphoton.2011.54.
https:/​/​doi.org/​10.1038/​nphoton.2011.54

[85] I. Aharonovich, E. Neu, Diamond Nanophotonics, Adv. Opt. Mater. 2 (10) (2014) 911–928. doi:10.1002/​adom.201400189.
https:/​/​doi.org/​10.1002/​adom.201400189

[86] I. Aharonovich, D. Englund, M. Toth, Solid-state single-photon emitters, Nat. Photonics 10 (10) (2016) 631–641. doi:10.1038/​nphoton.2016.186.
https:/​/​doi.org/​10.1038/​nphoton.2016.186

[87] G. D. Fuchs, G. Burkard, P. V. Klimov, D. D. Awschalom, A quantum memory intrinsic to single nitrogen-vacancy centres in diamond, Nat. Phys. 7 (10) (2011) 789–793. doi:10.1038/​nphys2026.
https:/​/​doi.org/​10.1038/​nphys2026

[88] J. Holzgrafe, J. Beitner, D. Kara, H. S. Knowles, M. Atatüre, Error corrected spin-state readout in a nanodiamond, npj Quantum Inf. 5 (1) (2019) 13. doi:10.1038/​s41534-019-0126-2.
https:/​/​doi.org/​10.1038/​s41534-019-0126-2

[89] E. Togan, Y. Chu, A. S. Trifonov, L. Jiang, J. Maze, L. Childress, M. V. G. Dutt, A. S. Sørensen, P. R. Hemmer, A. S. Zibrov, M. D. Lukin, Quantum entanglement between an optical photon and a solid-state spin qubit, Nature 466 (7307) (2010) 730–734. doi:10.1038/​nature09256.
https:/​/​doi.org/​10.1038/​nature09256

[90] C. Bradac, W. Gao, J. Forneris, M. E. Trusheim, I. Aharonovich, Quantum nanophotonics with group IV defects in diamond, Nat. Commun. 10 (1) (2019) 5625. doi:10.1038/​s41467-019-13332-w.
https:/​/​doi.org/​10.1038/​s41467-019-13332-w

[91] M. E. Trusheim, N. H. Wan, K. C. Chen, C. J. Ciccarino, J. Flick, R. Sundararaman, G. Malladi, E. Bersin, M. Walsh, B. Lienhard, H. Bakhru, P. Narang, D. Englund, Lead-related quantum emitters in diamond, Phys. Rev. B 99 (7) (2019) 075430. doi:10.1103/​PhysRevB.99.075430.
https:/​/​doi.org/​10.1103/​PhysRevB.99.075430

[92] N. H. Wan, T. J. Lu, K. C. Chen, M. P. Walsh, M. E. Trusheim, L. De Santis, E. A. Bersin, I. B. Harris, S. L. Mouradian, I. R. Christen, E. S. Bielejec, D. Englund, Large-scale integration of artificial atoms in hybrid photonic circuits, Nature 583 (7815) (2020) 226–231. doi:10.1038/​s41586-020-2441-3.
https:/​/​doi.org/​10.1038/​s41586-020-2441-3

[93] K. Kuruma, B. Pingault, C. Chia, D. Renaud, P. Hoffmann, S. Iwamoto, C. Ronning, M. Lončar, Coupling of a single tin-vacancy center to a photonic crystal cavity in diamond, Applied Physics Letters 118 (23) (2021) 230601. doi:10.1063/​5.0051675.
https:/​/​doi.org/​10.1063/​5.0051675

[94] P. Fuchs, T. Jung, M. Kieschnick, J. Meijer, C. Becher, A cavity-based optical antenna for color centers in diamond, APL Photonics 6 (8) (2021) 086102. doi:10.1063/​5.0057161.
https:/​/​doi.org/​10.1063/​5.0057161

[95] C. Hepp, T. Müller, V. Waselowski, J. N. Becker, B. Pingault, H. Sternschulte, D. Steinmüller-Nethl, A. Gali, J. R. Maze, M. Atatüre, C. Becher, Electronic Structure of the Silicon Vacancy Color Center in Diamond, Phys. Rev. Lett. 112 (3) (2014) 036405. doi:10.1103/​PhysRevLett.112.036405.
https:/​/​doi.org/​10.1103/​PhysRevLett.112.036405

[96] L. J. Rogers, K. D. Jahnke, M. W. Doherty, A. Dietrich, L. P. McGuinness, C. Müller, T. Teraji, H. Sumiya, J. Isoya, N. B. Manson, F. Jelezko, Electronic structure of the negatively charged silicon-vacancy center in diamond, Phys. Rev. B 89 (23) (2014) 235101. doi:10.1103/​PhysRevB.89.235101.
https:/​/​doi.org/​10.1103/​PhysRevB.89.235101

[97] S. Meesala, Y.-I. Sohn, B. Pingault, L. Shao, H. A. Atikian, J. Holzgrafe, M. Gündoğan, C. Stavrakas, A. Sipahigil, C. Chia, R. Evans, M. J. Burek, M. Zhang, L. Wu, J. L. Pacheco, J. Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, M. Lončar, Strain engineering of the silicon-vacancy center in diamond, Phys. Rev. B 97 (20) (2018) 205444. doi:10.1103/​PhysRevB.97.205444.
https:/​/​doi.org/​10.1103/​PhysRevB.97.205444

[98] Y.-I. Sohn, S. Meesala, B. Pingault, H. A. Atikian, J. Holzgrafe, M. Gündoğan, C. Stavrakas, M. J. Stanley, A. Sipahigil, J. Choi, M. Zhang, J. L. Pacheco, J. Abraham, E. Bielejec, M. D. Lukin, M. Atatüre, M. Lončar, Controlling the coherence of a diamond spin qubit through its strain environment, Nat. Commun. 9 (1) (2018) 2012. doi:10.1038/​s41467-018-04340-3.
https:/​/​doi.org/​10.1038/​s41467-018-04340-3

[99] A. Gali, J. R. Maze, Ab initio study of the split silicon-vacancy defect in diamond: Electronic structure and related properties, Phys. Rev. B 88 (23) (2013) 235205. doi:10.1103/​PhysRevB.88.235205.
https:/​/​doi.org/​10.1103/​PhysRevB.88.235205

[100] B. Pingault, The silicon-vacancy centre in diamond for quantum information processing, Ph.D. thesis, Cambridge (2017). doi:10.17863/​CAM.15577.
https:/​/​doi.org/​10.17863/​CAM.15577

[101] T. H. Taminiau, J. Cramer, T. van der Sar, V. V. Dobrovitski, R. Hanson, Universal control and error correction in multi-qubit spin registers in diamond, Nat. Nanotechnol. 9 (3) (2014) 171–176. doi:10.1038/​nnano.2014.2.
https:/​/​doi.org/​10.1038/​nnano.2014.2

[102] I. Schwartz, J. Scheuer, B. Tratzmiller, S. Müller, Q. Chen, I. Dhand, Z.-Y. Wang, C. Müller, B. Naydenov, F. Jelezko, M. B. Plenio, Robust optical polarization of nuclear spin baths using Hamiltonian engineering of nitrogen-vacancy center quantum dynamics, Sci. Adv. 4 (8) (2018) eaat8978. doi:10.1126/​sciadv.aat8978.
https:/​/​doi.org/​10.1126/​sciadv.aat8978

[103] K. De Greve, L. Yu, P. L. McMahon, J. S. Pelc, C. M. Natarajan, N. Y. Kim, E. Abe, S. Maier, C. Schneider, M. Kamp, et al., Quantum-dot spin–photon entanglement via frequency downconversion to telecom wavelength, Nature 491 (7424) (2012) 421–425. doi:10.1038/​nature11577.
https:/​/​doi.org/​10.1038/​nature11577

[104] W. Gao, P. Fallahi, E. Togan, J. Miguel-Sánchez, A. Imamoglu, Observation of entanglement between a quantum dot spin and a single photon, Nature 491 (7424) (2012) 426–430. doi:10.1038/​nature11573.
https:/​/​doi.org/​10.1038/​nature11573

[105] J. R. Schaibley, A. P. Burgers, G. A. McCracken, L.-M. Duan, P. R. Berman, D. G. Steel, A. S. Bracker, D. Gammon, L. J. Sham, Demonstration of Quantum Entanglement between a Single Electron Spin Confined to an InAs Quantum Dot and a Photon, Phys. Rev. Lett. 110 (16) (2013) 167401. doi:10.1103/​PhysRevLett.110.167401.
https:/​/​doi.org/​10.1103/​PhysRevLett.110.167401

[106] R. Vasconcelos, S. Reisenbauer, C. Salter, G. Wachter, D. Wirtitsch, J. Schmiedmayer, P. Walther, M. Trupke, Scalable spin–photon entanglement by time-to-polarization conversion, npj Quantum Inf. 6 (1) (2020) 9. doi:10.1038/​s41534-019-0236-x.
https:/​/​doi.org/​10.1038/​s41534-019-0236-x

[107] E. A. Chekhovich, S. F. C. da Silva, A. Rastelli, Nuclear spin quantum register in an optically active semiconductor quantum dot, Nat. Nanotechnol. 15 (12) (2020) 999–1004. doi:10.1038/​s41565-020-0769-3.
https:/​/​doi.org/​10.1038/​s41565-020-0769-3

[108] Z.-H. Wang, G. de Lange, D. Ristè, R. Hanson, V. V. Dobrovitski, Comparison of dynamical decoupling protocols for a nitrogen-vacancy center in diamond, Phys. Rev. B 85 (15) (2012) 155204. doi:10.1103/​PhysRevB.85.155204.
https:/​/​doi.org/​10.1103/​PhysRevB.85.155204

Cited by

[1] Romain Debroux, Cathryn P. Michaels, Carola M. Purser, Noel Wan, Matthew E. Trusheim, Jesús Arjona Martínez, Ryan A. Parker, Alexander M. Stramma, Kevin C. Chen, Lorenzo de Santis, Evgeny M. Alexeev, Andrea C. Ferrari, Dirk Englund, Dorian A. Gangloff, and Mete Atatüre, "Quantum Control of the Tin-Vacancy Spin Qubit in Diamond", Physical Review X 11 4, 041041 (2021).

[2] Bikun Li, Sophia E. Economou, and Edwin Barnes, "Entangled photon factory: How to generate quantum resource states from a minimal number of quantum emitters", arXiv:2108.12466.

The above citations are from Crossref's cited-by service (last updated successfully 2021-12-07 23:08:17) and SAO/NASA ADS (last updated successfully 2021-12-07 23:08:18). The list may be incomplete as not all publishers provide suitable and complete citation data.