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We study the quantum-classical correspon-
dence of an experimentally accessible system
of interacting bosons in a tilted triple-well po-
tential. With the semiclassical analysis, we
get a better understanding of the different
phases of the quantum system and how they
could be used for quantum information sci-
ence. In the integrable limits, our analysis
of the stationary points of the semiclassical
Hamiltonian reveals critical points associated
with second-order quantum phase transitions.
In the nonintegrable domain, the system ex-
hibits crossovers. Depending on the parame-
ters and quantities, the quantum-classical cor-
respondence holds for very few bosons. In
some parameter regions, the ground state is
robust (highly sensitive) to changes in the in-
teraction strength (tilt amplitude), which may
be of use for quantum information protocols
(quantum sensing).

1 Introduction
Studies of the quantum-classical correspondence pro-
vide insights into the properties of both the quantum
system and its classical counterpart. Level statis-
tics as in full random matrices [1], for example, is
a quantum signature of classical chaos [2, 3]. In the
other direction, classical chaos and instability are re-
lated with the exponential growth of the out-of-time-
ordered correlator [4, 10], and unstable periodic orbits
explain the phenomenon of quantum scarring [11, 14].
In this work, we explore the quantum-classical corre-
spondence for yet another goal, that of locating the
quantum phase transition points of a system of inter-
acting bosons in a triple-well potential.

Previous semiclassical analyses of three coupled
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Bose-Einstein condensates have revealed a dynamical
transition from self trapping to delocalization [15, 16].
The quantum dynamics in triple well traps have since
been extensively investigated [17, 34]. When quantum
gases, such as chromium or dysprosium, are loaded
into triple well potentials [35], dipolar interactions
need to be taken into account [35] and they lead to
various ground-state phases [35, 38]. An integrable
version of this dipolar model in one dimension, solv-
able with the algebraic Bethe ansatz, was derived
in [39], and by tilting the potential, this model can
be brought to the chaotic domain [40]. The tilt is an
additional control parameter that expands the versa-
tility of the model and allows for its possible appli-
cation as an atomtronic switching device [40] and as
a generator of entangled states [41]. This is the sys-
tem that we analyze here, both in its integrable and
nonintegrable regimes.

With the semiclassical Hamiltonian of our triple-
well system, we find the stationary points of the clas-
sical dynamics and use them to identify the critical
points of quantum phase transitions. We show that
there are two integrable limits that exhibit second-
order quantum phase transitions. One critical point is
accessed by varying the interaction strength between
the bosons with respect to the tilt of the potential,
while the tunneling amplitude between the wells is
zero, and the other point is found by changing the in-
teraction strength with respect to the tunneling am-
plitude, while the tilt is zero. The different phases
are characterized by different values of the occupa-
tion numbers of the wells, which serve as good order
parameters. In the nonintegrable domain, where the
three Hamiltonian parameters are nonzero, the sys-
tem exhibits crossovers.

We find that the nonintegrable model presents two
interesting features with potential applications. In the
region of attractive interaction, the occupation num-
bers of the wells at the edges of the chain are highly
sensitive to the amplitude of the tilt, which could
be explored for developing quantum sensors. In the
opposite region of repulsive interaction, the ground
state is protected against changes of the interaction
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strength and of the tilt amplitude around zero, a fea-
ture that might be advantageous for certain quantum
information protocols.

In addition, we analyze how the quantum-classical
correspondence for the lowest energy state depends
on the total number of bosons. This point is related
with the question of how many particles are needed
for a system to reveal many-body features [42, 49], a
subject of current experimental interest [50, 51]. In
the absence of interaction, the agreement is exact for
a single boson, since the system is in the semiclassical
limit. In the presence of tunneling and interaction,
and for a finite range of values of the tilt, the coinci-
dence between the quantum and semiclassical results
can also hold for a single particle depending on the
quantity and whether the interaction is attractive or
repulsive.

The paper is organized as follows. Section II de-
scribes the Hamiltonian and the stationary points.
Section III is dedicated to the analysis of the three
integrable limits of the model and Sec. IV to the anal-
ysis of the nonintegrable regime. Our conclusions are
presented in Sec. V.

2 Quantum and classical Hamiltonians
In this section, after describing the quantum Hamil-
tonian, we explain its semiclassical limit and how to
determine the stationary points.

2.1 Quantum Hamiltonian
We consider N bosons in an aligned three-well poten-
tial [see Fig. 1]. The quantum Hamiltonian is given
by

Ĥ =U

N

(
N̂1 − N̂2 + N̂3

)2
+ ε
(
N̂3 − N̂1

)
+ J√

2

(
â†1â2 + â†2â1

)
+ J√

2

(
â†2â3 + â†3â2

)
,

(1)

where N̂k = â†kâk is the number operator of the

well k, âk (â†k) is the annihilation (creation) opera-
tor, U represents both the onsite interaction strength
and the strength of the interactions between wells,
and it is rescaled by N , J is the tunneling ampli-
tude between wells, and ε is the tilt. The Hamil-
tonian is invariant under the interchange of wells 1
and 3 when ε = 0, and it conserves the total num-
ber of bosons, N = N1 +N2 +N3, having dimension
D = (N + 2)!/(2!N !). Our analysis is conveniently
done in the Fock basis representation, |N1, N2, N3〉
and we use exact diagonalization [A].

The Hamiltonian presents three integrable limits:
(A) U = 0U = 0U = 0, ε 6= 0, J 6= 0;
(B) J = 0J = 0J = 0, U 6= 0, ε 6= 0;
(C) ε = 0ε = 0ε = 0, U 6= 0, J 6= 0.

V0

tilt

tilt
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Figure 1: Schematic representation of the three-well system.

As we show next, (B) and (C) exhibit quantum
phase transitions at the critical points U = ε/4 and
U = −J/2, respectively. The model becomes nonin-
tegrable when J , U and ε are nonzero.

2.2 Classical Hamiltonian and Stationary
Points
The classical Hamiltonian is obtained using co-
herent states [52], |α〉 = |α1, α2, α3〉, where
αk =

√
Nk exp(iφk). It leads to

Hcl = 〈α|Ĥ|α〉
N

(2)

=U

N
(N1 −N2 +N3)2 + ε (N3 −N1) + J

√
2[√

N1N2 cos(φ1 − φ2) +
√
N2N3 cos(φ2 − φ3)

]
.

To simplify our analysis, we introduce a convenient
set of classical variables, ρk =

√
Nk/N . In addition,

since the quantum Hamiltonian conserves the total
number of particles, we also impose the constraint
N = N1 + N2 + N3. The classical Hamiltonian now
becomes

H̄cl =Hcl

N
= U

(
ρ2

1 − ρ2
2 + ρ2

3
)2 + ε

(
ρ2

3 − ρ2
1
)

+J
√

2 [ρ1ρ2 cos(φ1 − φ2) + ρ2ρ3 cos(φ2 − φ3)]
+λ
(
1− ρ2

1 − ρ2
2 − ρ2

3
)
, (3)

where λ is the Lagrange multiplier associated with the
constraint.

The dynamical variables of the classical system are
the ρk’s and the phase differences φk,k+1 = φk−φk+1.
To find the stationary points, we first compute the
partial derivatives in the phase-difference variables,

∂H̄cl

∂φ12
= sinφ12 = 0 ∂H̄cl

∂φ23
= sinφ23 = 0, (4)

which gives φ12 = nπ and φ23 = mπ, where n,m are
integers.

Since the cosines of the phase differences are limited
to ±1, they can be absorbed as a phase to ρk. This
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means that to obtain the stationary points, we can
use the simplified Hamiltonian,

H̄eq =U
(
ρ2

1 − ρ2
2 + ρ2

3
)2 + ε

(
ρ2

3 − ρ2
1
)

+J
√

2 (ρ1ρ2 + ρ2ρ3)
+λ
(
1− ρ2

1 − ρ2
2 − ρ2

3
)
, (5)

and solve the following fours equations in the variables
(ρ1, ρ2, ρ3, λ),

∂H̄eq

∂ρ1
= ∂H̄eq

∂ρ2
= ∂H̄eq

∂ρ3
= ∂H̄eq

∂λ
= 0. (6)

The values of the phase differences are then simply
inferred from the sign of ρkρk+1, a positive (negative)
value for ρkρk+1 implies that φk,k+1 is zero (φk,k+1 =
π).

3 Integrable limits
The analysis of the integrable points provides the min-
imum energies of the semiclassical limit exactly and
serves as a preparation for the study of the noninte-
grable regime.

3.1 Case U = 0U = 0U = 0
In the absence of interaction, U = 0, there is no phase
transition. This regime is referred to as Rabi in the
case of two wells and no tilt [53] and the term has been
borrowed also for the tilted triple-well potential [40].
The solution of Eq. (6) reveals three stationary points,
x1, x2, and x3. The expressions for the energies and
for the variables (N1, N2, N3, φ12, φ23) of these critical
points are provided in Table 1. The sign of J does
not affect the results, so we fix J > 0. For ε < 0
the minimum energy comes from x3 and for ε > 0 it
comes from x2, as illustrated in Fig. 2 (a).

The dependence of the occupation number of the
wells on J/ε for the stationary point with lowest en-
ergy is shown in Fig. 2 (b). When |ε| � |J |, the
bosons are confined to well 1, which is understand-
able, since this is the deepest well. As the magnitude
of the hopping amplitude gets larger than the magni-
tude of the tilt, the particles spread through the wells.
In the extreme scenario of |ε| � |J | [not reached in
Fig. 2 (b)], where the wells are nearly symmetric, half
of the bosons become localized in well 2 and the other
half splits equally between the wells 1 and 3 due to
the symmetry between these wells.

3.1.1 Quantum-classical correspondence: U = 0

The results for the energy and for the mean values of
the occupation numbers, 〈Ψ0|N̂k|Ψ0〉, for the ground
state |Ψ0〉 of the quantum Hamiltonian are also de-
picted in Figs. 2 (a)-(b) with circles. There is excel-
lent agreement with the semiclassical results. In fact

−4 −2 0 2 4
J/∈

-6
-4
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0
2
4
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∈
)
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1

N
k/N
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N2 N3
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x3
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x1

Figure 2: Case U = 0U = 0U = 0: Energies of the 3 stationary points
(a) and occupation numbers N1, N2, and N3 for the mini-
mum energy state (b); J > 0 and N = 20. Solid lines are for
the semiclassical results and circles for the quantum ground
state.

the agreement is perfect for even a single particle, be-
cause the model in the absence of interaction is in
the semiclassical regime. When N = 1, there are just
three eigenstates, all of them coherent, which can be
verified from the perfect coincidence with the semi-
classical values. For N > 1, the quantum coherent
states correspond to the minimal, intermediate, and
maximal equilibrium points obtained in the semiclas-
sical limit.

3.2 Case J = 0J = 0J = 0

Following the definition in Ref. [53], the case J = 0
is an extreme Fock regime, where quantum tunneling
is forbidden and the occupation number (Fock) states
are the eigenstates of the Hamiltonian. The solution
of Eq. (6) for the semiclassical limit gives 5 different
stationary points, x1, x2, x3, x4, and x5, whose ener-
gies and variables (N1, N2, N3, φ12, φ23) are given in
Table 2.

The point x2 (x5) exists only if |U | ≥ |ε|/4, because
according to Table 2, for |U | < |ε|/4, the occupation
number N3 (N2) becomes negative. One also sees
in Table 2 that changing the sign of ε simply inter-
changes x1 with x4 and x2 with x5, so we assume that
ε > 0. When U < ε/4, the minimum energy is deter-
mined by the stationary point x4, while for U > ε/4,
the minimum energy is given by x5. At U = ε/4,
there is a bifurcation, as shown in Fig. 3 (a), which
indicates a phase transition. The line at U = ε/4
separates the plane (U, ε) in two different phases.

The phase transition is of second order. This can
be verified by defining an arbitrary unitary vector,
v = v1x + v2y and ∇ =

(
∂
∂U ,

∂
∂ε

)
, and using the

directional derivative in the plane (U, ε). The first
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Table 1: Case U = 0U = 0U = 0: Exact expressions for the energies and variables (N1, N2, N3, φ12, φ23) of the three stationary points.

Point Energy E/N N1/N N2/N N3/N (φ12, φ23)

x1 0 J2

2(ε2 + J2)
ε2

(ε2 + J2)
J2

2(ε2 + J2) (0, π)

x2 −|ε|
√
ε2 + J2

ε

[ε2 + J2 +
√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2
J2

2(ε2 + J2)
[ε2 + J2 −

√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2 (π, π)

x3
|ε|
√
ε2 + J2

ε

[ε2 + J2 −
√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2
J2

2(ε2 + J2)
[ε2 + J2 +

√
ε2 (ε2 + J2)]2

4 (ε2 + J2)2 (0, 0)

Table 2: Case J = 0J = 0J = 0: Exact expressions for the energies and variables (N1, N2, N3, φ12, φ23) of the five stationary points.
The points x2 and x5 exist only if |U | ≥ |ε|/4.

Stationary point Energy E/N N1/N N2/N N3/N (φ12, φ23)
x1 U + ε 0 0 1 arbitrary

x2 − ε2

16U + ε

2 0 1
2 + ε

8U
1
2 −

ε

8U arbitrary

x3 U 0 1 0 arbitrary
x4 U − ε 1 0 0 arbitrary

x5 − ε2

16U −
ε

2
1
2 + ε

8U
1
2 −

ε

8U 0 arbitrary

derivatives(
(v · ∇)E4

N

)∣∣∣∣
U=ε/4

=
(

(v · ∇)E5

N

)∣∣∣∣
U=ε/4

= v1−v2,

are equal, but not the second derivatives for v2 6= 4v1,(
(v · ∇)2E4

N

)∣∣∣∣
U=ε/4

= 0(
(v · ∇)2E5

N

)∣∣∣∣
U=ε/4

= − (v2 − 4v1)2

8U ,

which, according to the Ehrenfest criterion [54], im-
plies a second-order phase transition.

For the stationary point with lowest energy, N3 = 0,
so in Fig. 3 (b) we show only N1 and N2 as a function
of U/ε. These two occupation numbers are good order
parameters and clearly mark the phase transition at
U = ε/4. For U < ε/4, the lowest energy is obtained
by having all bosons on well 1, while for U > ε/4, the
bosons distribute between well 1 and well 2, and they
become equally distributed when U � ε.

3.2.1 Quantum-classical correspondence: J = 0

Since the quantum Hamiltonian is diagonal in the
Fock basis |N1, N2, N3〉, finding the energy of the
ground state comes down to finding the set of non-
negative integers (N1, N2, N3) that minimizes the ex-
pression

U

N
(N1 −N2 +N3)2 + ε (N3 −N1) (7)

and satisfies N1 +N2 +N3 = N . As seen in Fig. 3 (a),
the quantum-classical correspondence for the lowest

-2 -1 0 1 2 3 4
U/∈

-2

0

2

4

E/
(N

∈
)

-2 -1 0 1 2 3 4
U/∈

0
0.2
0.4
0.6
0.8

1

N
k/N

x1 x3

x2

x4

x5

N1 N1

N2

N2

(a)

(b)

Figure 3: Case J = 0J = 0J = 0: Energies of the 5 stationary points
(a) and the occupation numbers N1 and N2 for the minimum
energy state (b); ε > 0 and N = 20. Solid lines are for the
semiclassical results and circles for the quantum ground state.
N3 is zero for the lowest energy state.

energy is excellent. In fact, for U < ε/4, where all
the bosons are on well 1, the agreement holds for any
number of bosons, including the limiting case N =
1. When U > ε/4, to lower the energy, the system

needs to decrease the term U
N (N1 −N2 +N3)2

, which
can be achieved by placing part of the bosons on well
2. The quantum-classical agreement for the energy
is good for small values of N when the number of
particles is even, N = 2, 4, while for an odd number,
larger N ’s are needed.

In the case of the occupation numbers, since the
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mean values 〈Ψ0|N̂k|Ψ0〉 are integers, when U > ε/4,
a large number of particles is needed for 〈Ψ0|N̂1|Ψ0〉
and 〈Ψ0|N̂2|Ψ0〉 to properly follow the classical
curves, as shown in Fig. 3 (b). The exception is
the case where U � ε and N1 = N2, for which the
quantum-classical agreement holds for any even N .

3.3 Case ε = 0ε = 0ε = 0
The solution of Eq. (6) for ε = 0 gives ten solu-
tions for (ρ1, ρ2, ρ3) from which only five are different,
x1, x2, x3, x4, and x5. The energies and variables
(N1, N2, N3, φ12, φ23) for these five stationary points
are provided in Table 3. Since the three wells have
the same depth (ε = 0) and the Hamiltonian is in-
variant by switching wells 1 and 3, all the stationary
points have N1 = N3. Changing the sign of J just in-
terchanges x2 with x3, so we assume that J > 0. The
points x4 and x5 have the same energy and they only
exist for |U | ≥ J/2, when the Nk’s are real numbers.

In Fig. 4 (a), we show the energies for the five sta-
tionary points as a function of U/J . The minimum
energy corresponds to the stationary points x4 and x5
when U < −J/2, while for U > −J/2, the minimum
energy corresponds to x3. Moving from positive U
towards the negative values, a bifurcation appears at
U = −J/2, which indicates a phase transition. In-
deed, using the directional derivatives in the plane
(U, J), we verify that this is a second-order phase
transition. The line at U = −J/2 separates the plane
(U, J) in two phases.

The occupation numbers presented in Fig. 4 (b) for
x4 and in Fig. 4 (c) for x5 behave as typical order
parameters, exhibiting an abrupt change at the crit-
ical point U = −J/2. When the onsite interaction
is attractive with U < −J , there are two possible
scenarios: either the particles are equally distributed
between wells 1 and 3 for x4 [Fig. 4 (b)] or the par-
ticles are all contained in well 2 for x5 [Fig. 4 (c)].
Approaching the phase transition, there is some leak-
age between those two scenarios. For U > −J/2,
Fig. 4 (b) and Fig. 4 (c) become identical, since this
is the region determined by x3, where the bosons get
spread out through the wells, half of them in well 2
and the other half equally distributed between wells
1 and 3.

3.3.1 Quantum-classical correspondence: ε = 0

The presence of two stationary points, x4 and x5, both
with the same minimum energy for U < −J/2, gets
manifested as a degenerate quantum ground state.
This is shown in Fig. 5 (a), where we depict the dif-
ference between the energies of the first excited state
and the ground state as a function of U/J (circles)
and confirm that E1 − E0 = 0 for U < −J/2.

In Fig. 5 (a), we also show the energy difference
between the second excited state and the ground state
as a function of U/J (triangles). The crossing point
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3
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1
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Figure 4: Case ε = 0ε = 0ε = 0: Energies of the 5 stationary points
(a) and the occupation numbers Nk for the minimum energy
state from x4 (b) and x5 (c); J > 0 and N = 20. Solid lines
are for the semiclassical results and circles for the quantum
ground state. The quantum results for 〈Nk〉 are shown only
for U > −J/2. Results for U < −J/2 are discussed in
Sec. IV.

for the curves (E2 − E0)/(NJ) and (E1 − E0)/(NJ)
indicates that E2 = E1, and since at this point the
two energy differences are smaller than 10−1, it can be
seen that E2, E1 ∼ E0. This reflects the semiclassical
result at U/J = −1/2, where the green and red lines
in Fig. 4 (a) coincide, that is, the stationary points
x3, x4 and x5 have the same energy.

In Fig. 5 (b), we compare the lowest classical en-
ergy (solid line) with the energy of the ground state
(symbols). For U < −J/2, the quantum-classical cor-
respondence holds for few bosons, N & 5, and for
U � −J/2, the agreement is very good for as few as
N = 2 (not shown). In contrast, when the interac-
tion becomes repulsive, U/J > 0, a larger number of
particles is needed for a good quantum-classical cor-
respondence, as evident from the results for N = 10
(triangles), N = 40 (squares), and N = 60 (circles) in
Fig. 5 (b).

When it comes to the comparison between the
quantum and semiclassical results for the occupa-
tion numbers, the scenario changes. For U/J ≥ 0,
the agreement is already excellent for N = 1 (not
shown). This is understood, because for U = 0, the
system is in the semiclassical regime, as discussed in
Sec. 3.1.1, with (N1 + N3)/N = N2/N = 1/2; and
for U > J , the lowest energy is reached by vanishing
the term U(N1 − N2 + N3), so the mean occupation
numbers remain the same as those for U = 0. In
Fig. 4 (c), we show the mean values of the occupation
numbers (circles) for U > −J/2 and N = 20, and
the quantum-classical agreement is indeed excellent.
For U < −J/2, due to the degeneracy of the ground
state, any superposition of the packages centered at
|Nx4

1 Nx4
2 Nx4

3 〉 and at |Nx5
1 Nx5

2 Nx5
3 〉 are valid ground

states, so we leave the comparison between the semi-
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Table 3: Case ε = 0ε = 0ε = 0: Exact expressions for the energies and variables (N1, N2, N3, φ12, φ23) of the five stationary points.
The points x4 and x5 exist only if |U | ≥ |J |/2. Notice that N1 = N3.

Point Energy E/N N1/N = N3/N N2/N (φ12, φ23)
x1 U 1 0 (0, π)
x2 J 1/4 1/2 (0, 0)
x3 −J 1/4 1/2 (π, π)

x4 U + J2

4U
1
4 + 1

8

√
4− J2

U2
1
2 −

1
4

√
4− J2

U2 (π, π) if U/J < −1/2, (0, 0) if U/J > 1/2

x5 U + J2

4U
1
4 −

1
8

√
4− J2

U2
1
2 + 1

4

√
4− J2

U2 (π, π) if U/J < −1/2, (0, 0) if U/J > 1/2
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Figure 5: Case ε = 0ε = 0ε = 0: Energy differences E1 − E0 (circles)
and E2 − E0 (triangles) in (a); classical energy (solid line)
and quantum ground state energy for N = 10 (triangles),
N = 20 (squares), and N = 60 (circles) in (b); energies
of the triple-well system with ε = 0 (blue lines) and of the
double well system (green circles). In (a) and (c): N = 20.

classical values of Nk’s and 〈Ψ0|N̂k|Ψ0〉 for this range
of values of U to the next section, where all param-
eters, including ε, are non-zero, so the degeneracy is
lifted.

It is informative to make a parallel between the
symmetric triple-well potential and the symmetric
double-well potential. By introducing a new annihila-
tion operator b̂ =

√
2â1 =

√
2â3, the quantum Hamil-

tonian (1) becomes equivalent to a double-well Hamil-
tonian,

Ĥ = U

N

(
b̂†b̂− N̂2

)2
+ J

(
b̂†â2 + â†2b̂

)
. (8)

Both Hamiltonians lead to a symmetry in the spec-
trum, where the eigenvalues changes sign, E → −E,
as the interaction changes from attractive to repul-
sive, U/J < 0 → U/J > 0. As |U |/J increases
from zero, the eigenvalues from Ĥ (1) [blue lines in
Fig. 5 (c)] approach those from Ĥ (8) [green circles
in Fig. 5 (c)]. This becomes evident first for the ex-
treme values, the ground state energy for U/J < 0 and

the highest eigenvalue for U/J > 0, and it gradually
reaches the other levels. In the limit |U |/J →∞, the
Fock states become the eigenstates and the energies
of both models then coincide. In the particular case
of the triple-well system, it is clear that in this limit,
the states |N1, N2, N3〉 and |N2 − n,N1 +N3, n〉 with
0 ≤ n ≤ N2 have the same energy and the degeneracy
has order N + 2 [or degeneracy of order (N + 2)/2 for
the state in the middle of the spectrum].

4 Nonintegrable regime
For the general case, where U 6= 0, J 6= 0, and
ε 6= 0, analytical solutions are no longer available,
so our studies are numerical. As we explain in the ap-
pendix A, to find N2 it is necessary to solve a seventh
degree polynomial, which in general does not have an
analytical solution.

We start the study of this section in comparison
with the one presented in Sec. 3.3 for ε = 0. Here
again we assume that J > 0 and also that ε > 0 (ε < 0
simply exchanges the roles of N1 and N3). As seen
in Fig. 6 (a), by tilting the potential, the bifurcation
observed at U/J = −1/2 in Fig. 4 (a) now vanishes.
This implies that for ε 6= 0, there is no longer a phase
transition, but only crossovers. The crossovers can be
seen in two directions as described in the next two
paragraphs.

For a fixed value of ε/J < 1, as U/J goes from
negative to positive values, there is a clear change in
the behavior of the occupation numbers. For example,
as seen in Figs. 6 (b)-(d) and also in the density plots
in Fig. 7 (b), N2/N is always zero when U/J < −1/2,
but it becomes equal to 1/2 for repulsive interaction.

For a fixed value of U/J , as ε/J increases from
zero, N3 decays to zero and N1 increases, as one sees
by comparing Fig. 6 (b), Fig. 6 (c), and Fig. 6 (d)
and by examining the density plots in Fig. 7 (a)
and Fig. 7 (b). The change in the values of N3/N
(N1/N) from 1/2 to 0 (from 1/2 to 1) is abrupt when
U/J < −1/2. This is evident from the very narrow
lines seen close to ε/J = 0 for which N1 ∼ N3 ∼ 1/2
in the density plots of Fig. 7 (a) and Fig. 7 (c). When
the interaction is repulsive, N3/N decays smoothly
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Figure 6: Case J, U, ε 6= 0J, U, ε 6= 0J, U, ε 6= 0: Energies of the 5 stationary
points for ε/J = 0.5 (a) and the occupation numbers Nk for
the lowest energy for ε/J = 10−3 (b), ε/J = 0.05 (c), and
ε/J = 0.5 (d). Solid lines are for the semiclassical results
and circles for the quantum ground state; N = 20. Note:
For the parameters used here, from the seven solutions of
seventh degree polynomial in the appendix A, we find that
only five are real.

Figure 7: Case J, U, ε 6= 0J, U, ε 6= 0J, U, ε 6= 0: Density plots for the semiclassi-
cal results of the occupation numbers for different interaction
strengths and tilt amplitudes.

from 1/4 to 0 as ε/J increases and N1/N grows be-
yond 1/4 reaching a point, close to ε/J ∼ 1, where
N1 = N2 = 1/2. If the tilt keeps increasing, so that
ε/J > 1, N1 naturally increases above N2, but we dis-
regard this trivial scenario and restrict our discussion
to 0 < ε/J < 1.

In the next two subsections, we have a closer look
at the behaviors of the occupation numbers for U/J <
−1/2 and for repulsive interaction U/J > 0.

4.1 Degeneracy lift for U/J < −1/2U/J < −1/2U/J < −1/2
The ground state degeneracy that the system had for
U/J < −1/2 when ε = 0 is lifted for tiny values of the
tilt. This has a dramatic effect on the values of the
occupation numbers N1 and N3, as seen already for
ε/J = 10−3 in Fig. 6 (b), where N1 and N3 no longer
coincide. This high sensitivity of N1 and N3 to the
amplitude of the tilt could be explored for developing
new quantum sensors [55].

The idea of quantum sensing is to use quantum

systems or quantum properties to measure physical
quantities. Quantum sensors take advantage of the
strong sensitivity of a quantum system to a perturba-
tion. In the case of our model, keeping all other pa-
rameters constant, a dramatic change of the ground
state indicates the presence of a tilt, and vice versa, a
tiny variation of the tilt can be used to equate a state
with the ground state.

When U/J < −1/2, as ε/J increases [Figs. 6 (b)-
(d)], the bosons migrate from well 3 to well 1, as ex-
pected, and well 2 remains empty. For values of the
tilt as small as ε/J = 0.3, all particles are already
trapped in well 1 and this picture does not change
for larger values of ε/J . The state becomes robust
against changes in the value of the tilt.

4.1.1 Quantum-classical correspondence: ε, J 6= 0,
U/J < −1/2

In Sec. 3.3, where ε = 0, we mentioned that the
quantum-classical correspondence for the lowest en-
ergy was excellent for few bosons when U/J < −1/2.
For ε/J = 0.5, this agreement is already good for
N = 2. With respect to the occupation numbers, we
postponed the discussion entirely to the present sec-
tion, where the ground state is no longer degenerate.
The general trend goes as follows. For a fixed value of
the interaction strength with U/J < −1/2 and a fixed
N > 1, the agreement between the semiclassical val-
ues of Nk’s and 〈Ψ0|N̂k|Ψ0〉 improves as ε/J increases
from zero, while for fixed values of ε/J and N , the
agreement is better as U/J → −∞. In other words, in
the vicinity of U/J ∼ −1/2, a good quantum-classical
correspondence requires a large number of particles,
especially if ε/J is small and close to the critical point
for ε = 0.

4.2 Robustness of N2N2N2 for U/J > 0U/J > 0U/J > 0

When the interaction is repulsive, the ground state
for 0 < ε/J < 0.1 [Figs. 6 (b)-(c)] is a superpo-
sition of Fock basis very similar to that for ε = 0
[Fig. 4 (b)]. We indeed verified that the fidelity
|〈Ψ0(ε = 0)|Ψ0(ε 6= 0)〉| > 0.9. This implies that
if one quenches the parameters U/J and ε/J within
a good range of values, the ground state remains in-
variant. The robustness of quantum states is a desir-
able feature in quantum information protocols where
a specific property must be stable in spite of external
perturbations.

As the tilt further increases, ε/J > 0.1, the fidelity
decays significantly, because the particles from well 3
move to well 1 to keep the energy low. However, the
occupation number of well 2 remains practically the
same, N2/N ∼ 1/2, up to ε/J . 1.
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4.2.1 Quantum-classical correspondence: ε, J 6= 0,
U/J > 0

With respect to the quantum-classical correspon-
dence, it was shown in Sec. 3.3 that for repulsive inter-
action and ε = 0, the agreement between the quantum
and semiclassical results for the occupation numbers
holds for a single boson. This agreement persists for
ε/J < 0.1, but within a smaller range of values of the
interaction, 0 ≤ U/J < 1.

5 Discussion
We studied a system of interacting bosons in a triple-
well potential, which can be experimentally realized
with cold atoms. In two integrable limits of the model
and using a semiclassical analysis, we identified two
critical points associated with second-order quantum
phase transitions. In the nonintegrable regime, the
system exhibits crossovers under changes of the in-
teraction strength or of the value of the potential tilt
with respect to the tunneling amplitude. In all cases,
we showed that the quantum and semiclassical results
for the lowest energy and the corresponding occupa-
tion numbers of the three wells agree extremely well,
and depending on the Hamiltonian parameters and
the quantity, the agreement may hold for even a sin-
gle particle.

We found that in certain regions, the lowest energy
state is either very sensitive or robust to changes in
the Hamiltonian parameters, which could find appli-
cation for quantum sensing or quantum information
protocols, respectively. For attractive interaction, the
occupation numbers of wells 1 and 3 are highly sen-
sitive to the inclusion of the potential tilt. For re-
pulsive interaction and small values of the tilt, the
ground state is robust to changes in both the interac-
tion strength and the tilt.

There are several interesting directions for exten-
sions of the results presented in this work. They in-
clude the analysis of the higher levels in connection
with the notion of excited state quantum phase tran-
sitions; the study of dynamics, in particular quench
dynamics through different phases; and the addition
of more wells [56, 57].
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A Equations for the nonintegrable
regime
For the analysis of the equilibrium points in the non-
integrable regime, we resort again to Eq. (6). This
set of four equations can be reduced to only two if we
write ρ1 and ρ3 as functions of ρ2 and λ, that is

ρ1 =
√

2
2

Jρ2

λ+ ε− 2U (1− 2ρ2
2) , (9)

ρ3 =
√

2
2

Jρ2

λ− ε− 2U (1− 2ρ2
2) . (10)

The two equations that determine ρ2 and λ become

1
ρ2

2
− 1 =J2

2

[
1

[λ+ ε− 2U (1− 2ρ2
2)]2

+ 1
[λ− ε− 2U (1− 2ρ2

2)]2

]
, (11)

L+ 2U
(
1− 2ρ2

2
)

=J2

2

[
1

λ+ ε− 2U (1− 2ρ2
2)

+ 1
λ− ε− 2U (1− 2ρ2

2)

]
.

(12)

Using the definition

X ≡ λ− 2U(1− 2ρ2
2), (13)

we can reduce Eq. (11) to one quadratic polynomial
in X2 whose roots determine the expression X(ρ2).
In particular,

X = ±

√√√√ε2 + Jρ2
2

2(1− ρ2
2)

[
J ±

√
J2 + 8

(
1− ρ2

2
ρ2

2

)
ε2

]
.

(14)
For each ρ2, there are 4 possible values of X, of which
only one gives the correct result. The correct result
corresponds to the value of λ in Eq. (13) that satisfies
the four equations in Eq. (6).

A better option is to eliminate λ and reduce
Eq. (11) and Eq. (12) to a seventh degree polyno-
mial in ρ2

2 whose roots are the equilibrium values of
ρ2. Explicitly,

7∑
m=0

Cm(U2, J2, ε2)(ρ2
2)m = 0. (15)

The coefficients of this polynomial are shown below,

C0 = −ε2J4, (16)

C1 = 4ε4J2 + 5ε2J4 + J6 + 64ε2J2U2, (17)
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C2 =− 4ε6 − 12ε4J2 − 12ε2J4 − 4J6

+ 128ε4U2 − 576ε2J2U2 − 16J4U2

− 1024ε2U4, (18)

C3 =4ε6 + 12ε4J2 + 12ε2J4 + 4J6 − 640ε4U2

+ 1856ε2J2U2 + 80J4U2 + 9216ε2U4, (19)

C4 =1024ε4U2 − 2560ε2J2U2 − 128J4U2

− 32768ε2U4, (20)

C5 =− 512ε4U2 + 1280ε2J2U2 + 64J4U2

+ 57344ε2U4, (21)

C6 = −49152ε2U4, (22)

C7 = 16384ε2U4. (23)

As the roots of a seventh-degree polynomial do not
have, in general, analytical expressions, we resort to
numerical calculations. Taking only the positive so-
lutions for ρ2, we have at most seven real solutions
for each value of (U, J, ε). With Eq. (9) and Eq. (10),
we can calculate the coordinates (N1, N2, N3) and the
phases differences (depending on the sign of ρ1 and
ρ3), and using Eq. (5), we get the energy per particle
for each stationary point.
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Hernández, L. F. Santos, and J. G. Hirsch, Quan-
tum and classical Lyapunov exponents in atom-
field interaction systems, Phys. Rev. Lett. 122,
024101 (2019).

[6] S. Pappalardi, A. Russomanno, B. Žunkovič,
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