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Iterative decoders for finite length quan-
tum low-density parity-check (QLDPC)
codes are attractive because their hard-
ware complexity scales only linearly with
the number of physical qubits. However,
they are impacted by short cycles, detri-
mental graphical configurations known as
trapping sets (TSs) present in a code graph
as well as symmetric degeneracy of errors.
These factors significantly degrade the de-
coder decoding probability performance
and cause so-called error floor. In this pa-
per, we establish a systematic methodol-
ogy by which one can identify and clas-
sify quantum trapping sets (QTSs) accord-
ing to their topological structure and de-
coder used. The conventional definition of
a TS from classical error correction is gen-
eralized to address the syndrome decod-
ing scenario for QLDPC codes. We show
that the knowledge of QTSs can be used
to design better QLDPC codes and de-
coders. Frame error rate improvements of
two orders of magnitude in the error floor
regime are demonstrated for some practi-
cal finite-length QLDPC codes without re-
quiring any post-processing.

1 Introduction

Quantum low-density parity check (QLDPC)
codes are an important class of quantum er-
ror correction (QEC) [2, 3] codes that can re-
alize scalable fault-tolerant quantum computers
(FTQCs) with a finite multiplicative overhead
[4]. In addition, they have finite asymptotic
rates with non-zero fault-tolerant thresholds [5],
and support low-complexity iterative decoding.
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The existing QLDPC code literature primarily fo-
cuses on constructing asymptotically good code
families with improved minimum distance scal-
ing with the block length and higher code rates,
as well as on designing better iterative decoding
algorithms [6–12]. However, QLDPC codes im-
plemented in practical QEC systems will be of
finite length and will exhibit performance degra-
dation due to the failure of iterative decoders to
converge to a correct error pattern. This phe-
nomenon specific to finite-length codes is well un-
derstood in classical literature, but similar anal-
ysis for QLDPC codes and precise mathematical
characterization requires further attention in the
QEC literature [7, 13]. The convergence failure
manifests itself as an error floor of the decod-
ing probability of error [14] at low physical error
rate levels – an operating regime for large-scale
FTQCs – and is observed in all state-of-the-art
iterative message-passing decoders for QLDPC
codes such as belief propagation (BP), min-sum
algorithm (MSA) and their variants [15–17].

A typical approach in QEC literature to reduce
the error floor of the above decoding algorithms
is to couple them with ordered statistics decoding
(OSD) and post-processing [15, 17]. However, al-
though exhibiting good performance, this tech-
nique is too complex to implement in hardware
due to the high complexity of the OSD algorithm
[18] which scales cubically with the code dimen-
sion (see Eq. 4 in [19]). In contrast, the philos-
ophy of our approach and our ultimate goal is
to develop message-passing decoders for QLDPC
codes that do not require a post-processing step
to achieve strong error correction.

Iterative message-passing decoder operates on
a Tanner graph which is the graphical represen-
tation of a parity check matrix of the underlying
code. Error floor is attributed to the presence
of specific topologies of sub-graphs in the Tan-
ner graph, generically referred to as trapping sets
(TSs) that are detrimental to iterative decoders.
Since a trapping set depends both on the topol-
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ogy of the sub-graph and on the decoder, one
must understand key differences of QEC, specifi-
cally QLDPC codes and decoding with respect to
classical error correction.

The first difference comes as the fact that the
stabilizer commutativity/symplectic inner prod-
uct (SIP) requirement for the parity check matri-
ces introduces additional code construction con-
straints resulting in unavoidable cycles in the
Tanner graph. Furthermore, QLDPC codes are
known to be highly degenerate, i.e., their mini-
mum distance is higher than the weight of their
stabilizers. From the decoder perspective, this
implies that the decoders need to account for de-
generate errors, which have no equivalent in clas-
sical error correction. However, iterative algo-
rithms based on BP are sub-optimal in the pres-
ence of cycles and, also, are not capable of cor-
recting all degenerate errors [13, 20]. Another key
difference from classical LDPC decoding stems
from the inability to directly measure qubits for
error correction. Hence, the iterative message-
passing algorithms used for decoding of QLDPC
codes are modified to only make use of the syn-
drome information to infer the error introduced
by the channel. How the classical trapping sets
definition accommodates a syndrome-based de-
coder is not clearly understood. As we show,
degenerate errors having no classical analogy in-
troduces new failure configurations unique to the
QLDPC codes. The approach presented in this
paper accounts for these key differences and their
implications.

Failure configurations of QLDPC codes are rel-
atively unknown when compared to the classical
trapping set research. One major drawback of BP
as pointed out in [21] is that the decoding abil-
ity of BP is typically limited by the row weight
of the parity-check matrix due to the SIP con-
straint and identifies pseudo-codeword structures
for cycle codes. However, generalization from cy-
cle codes to QLDPC codes is non-trivial.

In this paper, we define quantum trapping sets
(QTSs) by investigating failure configurations for
syndrome based iterative message passing algo-
rithms. The quantum trapping set formulation
is modified to the syndrome decoding scenario
for QLDPC codes considering Pauli X and Z er-
rors separately. We identify QTSs of prominent
QLDPC code families and show that the QTSs
must be analyzed in conjunction with the partic-

ular iterative decoder used along with their loca-
tion in the Tanner graph [22]. In the same flavor
as in classical LDPC codes where the knowledge
of trapping sets has resulted in low-complexity
decoders surpassing the traditional BP decoder
[23], in this paper, we demonstrate two prac-
tical advantages of our quantum trapping set
study: (i) ability to construct QLDPC codes de-
void of such graphical configurations, and (ii)
ability to devise new decoding algorithms that
escape from such graphical configurations with-
out post-processing. The message update rules
and scheduling strategies thus identified help to
improve the error floor performance.

The rest of this paper is organized as follows.
In Section 2, we introduce QLDPC codes using
the stabilizer formalism reviewing some basic no-
tations, and then discuss the syndrome decod-
ing problem and classical trapping sets. In Sec-
tion 3, we analyze the different failure configura-
tions and the relation between trapping sets and
decoder-error correction properties. We also for-
mally define quantum trapping sets and describe
the methodology used to identify those specifi-
cally for Calderbank, Shor, Steane (CSS) codes
[24]. Trapping sets of some classes of CSS codes
are analyzed in Section 4. Based on these anal-
yses, we present simulation results that briefly
explore two strategies of code and decoder im-
provement. We explore CSS code constructions
without some of the harmful configurations and
compare the performance of trapping set-aware
decoding strategies in Section 5 followed by con-
cluding remarks and future research directions in
Section 6.

2 Preliminaries
2.1 Stabilizer Formalism
Stabilizer codes, the quantum analog of classi-
cal linear codes, are the most common type of
QEC codes considered in both theory and prac-
tice [25, 26]. An Jn, k, dK quantum stabilizer code
maps k qubit quantum state |φ〉 to an entan-
gled n-qubit codeword |ψ〉 (a unit vector in the
2n-dimensional Hilbert space) and is defined as
a 2k-dimensional subspace of the Hilbert space
which is a common +1 eigenspace of the sta-
bilizer group S. The n-qubit codeword |ψ〉 is
stabilized by all stabilizer elements in S. i.e.,
sj |ψ〉 = + |ψ〉 for any sj ∈ S. We denote a gen-
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erator set of a given stabilizer group S by the set
S = {s1, s2, . . . , sm}. The stabilizer generators
form the m = n − k rows of the corresponding
stabilizer matrix Hp whose entries are the single-
qubit Pauli matrices I2 = [ 1 0

0 1 ],X = [ 0 1
1 0 ],Z =[ 1 0

0 −1
]
, and Y = ıXZ =

[ 0 −ı
ı 0

]
. Kronecker prod-

ucts of n single-qubit Paulis and scalars ıκ, where
κ ∈ Z4 = {0, 1, 2, 3} forms the n-qubit Pauli
group Pn, of which the stabilizer group S is a
commutative subgroup that contains only Hermi-
tian Paulis and excludes−In. The weight w(P ) of
a Pauli operator P ∈ Pn is the number of qubits
on which it applies a non-identity Pauli matrix.
A QLDPC code is a stabilizer code with all stabi-
lizer generators having low weight [2]. Analogous
to the classical minimum distance, Jn, k, dK code
have logical operators L ∈ Pn \ S that commutes
with all si having minimum weight d. Like the
codeword generators, the logical operators of the
code map an n-qubit codeword to another. Logi-
cal group L is generated by k logical X generators:
LX = {lx1, lx2, . . . , lxk} and k logical Z genera-
tors: LZ = {lz1, lz2, . . . , lzk} obtained by using
either Gottesman’s [26] or Wilde’s algorithm [27].

The stabilizers commute with each other fol-
lowing the commutativity relation between two
n-qubit Pauli operators P and Q defined as fol-
lows:

P ◦Q :=
n∏
j=1

Pj ◦Qj ,

where Pj ◦Qj = ±1 if PjQj = ±PjQj . The Pauli
operators P and Q commute if P ◦ Q = +1 and
anti-commute if P ◦Q = −1. Every logical gener-
ators commute with the stabilizers, and Lxi com-
mutes with every other generators except with
Lzi ∀i ∈ {1, k}.

2.2 Stabilizers as binary parity checks

An alternative binary representation maps Pauli
matrices to binary tuples as follows: I2 →
(0, 0), X → (1, 0), Z → (0, 1), Y → (1, 1).
More generally, binary representation of an n-
qubit Pauli operator P will be a binary vector
of length 2n of the form p = (pX,pZ), where pX
and pZ are of length n each with ones at positions
of X- and Z-Pauli components, respectively. Such
a mapping aids in the construction of quantum
stabilizer codes using extensive classical coding
literature. The binary representation Hb of the

stabilizer matrix of dimension m× 2n given by

Hb =
[
HX | HZ

]
, (1)

where HX and HZ represent binary parity check
matrices used for error correction. Each row in
Hb denotes a stabilizer generator, and a pair of
corresponding columns inHX andHZ represent a
qubit. Equivalent to the commutativity relation
defined for Pauli operators, the stabilizer genera-
tors commute with each other based on the sym-
plectic inner product (SIP) in their binary repre-
sentation [25]. Any two rows p = (pX,pZ) and
q = (qX, qZ) of

[
HX | HZ

]
must satisfy p� q :=

mod (pXq
T
Z + pZb

T
X, 2) = 0. This leads to the

condition

HXH
T
Z +HZH

T
X = 0, (2)

where the right hand side (0) is an m × m zero
matrix, T denotes the transpose of a matrix, and
operations (addition and multiplication) are done
modulo-2. We will refer to Eq. (2) as the SIP
constraint.

2.3 Decoding Problem
Following the approach in [2], to assess perfor-
mance of binary syndrome decoding of CSS codes,
it is sufficient to consider the two independent bi-
nary symmetric channels (BSCs) rather than the
depolarizing channel, thus ignoring the correla-
tion between bit flip (X) and phase flip (Z) errors.
In this case, the BSCs for X and Z errors have a
cross-over probability of 2p/3, decoded using HZ
and HX, respectively.

Let e = (eX, eZ) be the binary representation
of a Pauli error acting on the n qubits. The cor-
responding syndrome is computed as

σ = [σX, σZ]
= [ mod (HZ.e

T
X, 2), mod (HX.e

T
Z, 2)].

All-zero syndrome σ = 0̄ indicates that all the
stabilizers commute with the error pattern (unde-
tectable error), whereas non-zero entries/ones in
σ indicate that some stabilizer generators anti-
commute with the error pattern (detectable er-
ror). A syndrome based decoder’s task is to es-
timate the error pattern ê whose syndrome σ̂
matches with the initial input syndrome σ. If
σ̂ = σ, the estimated error pattern ê is applied
to reverse the error e introduced by the channel.
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Error correction process is successful if ê = e⊕h,
where h ∈ rowspace(Hb), i.e., if the code word is
recovered up to a stabilizer (ê⊕ e is a stabilizer,
where ⊕ denotes pairwise XOR). Error correc-
tion fails when the decoder is unable to find an
error pattern that matches the syndrome σ or
when the decoding process results in a logical er-
ror, also referred to as miss-correction in classical
coding theory literature. A logical error occurs if
ê ⊕ e is a logical operator such that post error
correction state is a codeword different from the
original codeword. We can detect a logical error if
Pauli representation of ê⊕e anti-commutes with
any of the 2k logical generators.

2.4 Iterative Decoding of CSS codes

Although the syndrome decoding paradigm is ap-
plicable to any class of quantum codes, trapping
set analysis in this paper is focused on QLDPC
families: hypergraph product (HP) codes [8], bi-
cycle codes [2] and generalized bicycle codes [15]
representing the CSS class of codes [24]. An at-
tractive property of CSS codes constructed from
two classical codes C1 and C2, where C⊥2 ⊆ C1 is
that the parity check matrix can be written in a

separable form: Hb =
[
HX 0
0 HZ

]
. CSS-QLDPC

codes have a sparse matrix Hb with the SIP con-
straint: HZ.H

T
X = 0.

We can perform error correction for the X
and Z errors separately using HZ and HX matri-
ces, respectively. The corresponding input syn-
dromes are obtained as σX = mod (HZ.e

T
X, 2)

and σZ = mod (HX.e
T
Z, 2), respectively. For

simplicity going forward, we use H, L and σ, e
for the parity check matrix, logical generator ma-
trix, input syndrome, and channel error vector,
respectively.

The stabilizer generator matrix/parity check
matrixH is the bi-adjacency matrix of a bipartite
Tanner graph G = (V ∪ C,E), where V repre-
sents the set of n qubit/variable nodes (VNs), C
is the set of m stabilizer generators/check nodes
(CNs) and E is the set of edges between them.
CN ci ∈ C and VN vj ∈ V are neighbors if
there is an edge (vj , ci) ∈ E between the nodes,
corresponding to the non-zero entry in the par-
ity check matrix Hci,vj = 1. Diagrammatically,
Tanner graphs are drawn with circles represent-
ing VNs, squares representing CNs, and solid-
lines representing the edges. Let us denote the

set of CNs connected to a VN vj by N (vj), and
|N (vj)|, where | · | denotes cardinality, is referred
to as the degree of the VN vj . Similarly, we can
define the neighbor set and the degree of a CN
ci as N (ci) and |N (ci)|, respectively. A (γ, ρ)
QLDPC code have a sparse stabilizer matrix with
the variable and stabilizer degree upper-bounded
by γ and ρ respectively. For a subset of VNs, say
K ⊆ V, N (K) denotes the set of CN neighbors.
The induced sub-graph G(K) is the graph con-
taining the nodes K∪N (K) along with the edges
{(x, y) ∈ F : x ∈ K, y ∈ N (K)}. The girth, g, of
the Tanner graph G is the length of the shortest
cycle in G. Denote the number of cycles of length
g, g+2, . . . by χg, χg+2, . . ., respectively. If G has
χg, χg+2, . . . cycles of length g, g+2, . . ., then the
cycle enumerator series CYC(x) =

∑
r≥0

χrx
r de-

fines the cycle profile of G.

The goal of a syndrome-based iterative decoder
Ds is to output an error pattern that matches the
input syndrome. This is different from the tra-
ditional iterative decoder D that uses the chan-
nel information as initial likelihoods to recover
the codeword matching to an all-zero syndrome.
Starting from an input syndrome σ and an all-
zero error vector estimate, Ds performs a finite
number `max of iterations of decoding over the
Tanner graph. The messages are passed over the
edges of the Tanner graph from check nodes to
their neighboring variable nodes and vice versa
at every iteration of message passing decoding.
Decoder update rules and message alphabet size
can be of varying complexity ranging from the
simplest binary message passing algorithms such
as Gallager-B [28] to finite alphabet iterative de-
coders [23], and MSA or BP using floating point
messages [2]. Also, schedule of message passing in
Ds can be implemented with a flooding/parallel
schedule or a layered/serial schedule. Trapping
set analysis presented here is applicable for all
such decoder implementations. We discuss a
generic syndrome-based iterative decoder in Ap-
pendix A for completeness. Based on the up-
date rules, Ds outputs an error vector estimate
ê(`) = (ê(`)

1 , ê
(`)
2 , . . . , ê

(`)
n ) and corresponding out-

put syndrome σ̂(`) = (σ̂(`)
1 , σ̂

(`)
2 , . . . , σ̂

(`)
m ). We re-

fer to ê(`)
j /σ̂(`)

i as the value of the variable/check
node vj/ci at iteration ` ≤ `max. We conclude
that Ds is successful if the output syndrome σ̂(`)

is equal to the input syndrome σ (we also say that
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syndromes are matched). Then, the n-length er-
ror pattern ê(`) is decided as the most likely er-
ror pattern. The iterative procedure is halted if
successfully matched or if `max number of itera-
tions is reached. At the end of iterative decoding,
the syndrome decoding process is successful if the
syndromes are matched. Otherwise, the decoding
is said to have failed.

2.5 Classical Trapping Sets
A classical trapping set example is shown in Fig. 1
illustrating the failure of a classical iterative de-
coder D on a small sub-graph inside the Tanner
graph. Let us consider a simple binary message
passing decoder - Gallager-B decoder which per-
forms XOR operation at the check nodes and a
majority voting at the variable nodes. More pre-
cisely, the outgoing check node message over an
edge is computed as the XOR of extrinsic (all in-
coming messages except the edge for the message
is updated) variable node messages. The outgo-
ing variable node message is the majority value
among incoming extrinsic check node messages
and the channel value. The messages passed over
corresponding edges are marked next to the di-
rected arrows in the figure. All-zero transmitted
codeword has errors only on three variable nodes
(v2, v4, v5 - shaded circles •) as shown in Fig. 1.
The decoder is unable to converge to the all-zero
codeword. In fact, the decoder oscillates from
the error pattern (v2, v4, v5) to (v1, v3) and back
as its output during the decoding iterations, thus
failing to converge.

A classical iterative decoder is said to con-
verge correctly if the decoder output word for any
` ≤ `max matches to the transmitted codeword
and fails to converge correctly otherwise. A vari-
able node vj is eventually correct if there exists
a positive integer Ij such that for all iterations
` ≥ Ij, the decoder’s estimate of vj is equal to
the transmitted bit value. Then, trapping set is
defined as

Definition 1 ([16]) A trapping set T for an iter-
ative decoder D is a non-empty set of variable
nodes in a Tanner graph G that are not eventually
correct. If the sub-graph G(T ) induced by such a
set of variable nodes has a variable nodes and b
odd degree check nodes, then the trapping set T is
conventionally labeled as an (a, b) trapping set.

Fig. 2 shows examples of TS induced sub-

Figure 1: An illustration of a failure configuration of
regular Gallager-B decoder, unable to converge to the
all-zero codeword when the input error pattern is a spe-
cific weight-three error pattern (v2, v4, v5) (shaded cir-
cles •) among the five VNs in the sub-graph. Figures
are marked with the binary messages (next to the ar-
rows indicating the direction of the messages passed)
corresponding to the check/variable updates. Upper left
figure corresponds to the variable node update at the
zero-th iteration. The subsequent CN and VN updates
of the decoding process are indicated by the connecting
arrows. We assume that the rest of the Tanner graph is
correct.

graphs observed in classical LDPC codes. Even at
low physical error rate levels, the presence of such
small sub-graphs can result in decoding failures
resulting in the characteristic error floors in their
decoding performance (frame error rate (FER)
vs. physical error rate) curves.

Harmfulness of a TS is also closely linked to
the decoder through their critical number µ and
strength s defined as follows:

Definition 2 Critical number µ of a trapping set
T is the minimal number of variable nodes that
have to be initially in error for the decoder to fail
to converge.

Let failure inducing set be the set of variable
nodes that have to be initially in error for the
decoder to fail to converge.

Definition 3 Strength s of a trapping set T is the
number of failure inducing sets of cardinality µ.

Two important assumptions are used in the def-
inition of the critical number and strength of a
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(a) (4,2) TS (b) (5,3) TS

Figure 2: Graphical (Tanner graph) representations of a
(4, 2) TS and a (5, 3) TS. Odd degree/unsatisfied checks
are shown using black squares.

TS. The first one is that the minimum distance
of the code is large compared to the size of the
TS. The second is an isolation assumption [23]
which ensures that messages from outside the TS
are correct for the TS failure analysis. For ex-
ample, from Fig. 1, the critical number µ for
the (5, 3) TS with Gallager-B decoder is 3 and
the number of weight-µ error patterns that fail is
s = 1. Note that the decoder also fails to cor-
rect weight-4 error patterns and the weight-5 er-
ror pattern in the TS. Error floor of the decoder is
dominated by the minimum critical number µmin

and the number of weight-µmin failure inducing er-
ror patterns. Analytical/semi-analytical estima-
tion of error floors of QLDPC codes using critical
number and strength of TSs is beyond the scope
of this paper and we refer the reader to classical
LDPC literature [16, 22].

3 Quantum Trapping Sets

As our focus is on the error floor regime, we are in-
terested in error patterns with small weight, well
below the maximum likelihood (ML) error correc-
tion capability of the QLDPC code for which the
syndrome-based iterative decoder Ds fails to con-
verge. Such low-weight error patterns are either
part of a classical-type TS or a symmetric stabi-
lizer, defined as a quantum trapping set (QTS).

3.1 Definition of a Quantum Trapping Set

After pre-defined number of iterations, `max, of
iterative syndrome decoding, we declare that the
decoder Ds failed for a particular input syn-
drome/error pattern if the decoder is not able to
find an error pattern with a syndrome equal to
the input syndrome. More precisely, a decoder
failure is said to have occurred if there does not
exist ` ≤ `max such that supp(σ̂(`) + σ) = ∅,

where supp denotes the support set (indices of
non-zero elements). During iterative decoding, a
check node ci is eventually satisfied if there ex-
ists a positive integer Ii such that for all ` ≥ Ii,
σ̂

(`)
i = σi. We say that the variable node vi has

eventually converged if there exists a positive in-
teger Ii such that for all ` ≥ Ii, ê

(`)
i = ê

(`−1)
i .

Note that the ê(`)
i is not necessarily the correct

estimate of error on the ith-variable node. With
these definitions, we define quantum TSs as fol-
lows:

Definition 4 A trapping set Ts for a syndrome-
based iterative decoder Ds is a non-empty set of
variable nodes in a Tanner graph G that are not
eventually converged or are neighbors of the check
nodes that are not eventually satisfied

Remark 1 If the sub-graph G(T s) induced by
such a set of variable nodes has a variable nodes
and b unsatisfied check nodes, then the trapping
set Ts is conventionally labeled as an (a, b) trap-
ping set.

The QTSs similar to the TSs in classical LDPC
codes have exactly the same definition as Def.
1, and we refer to them as classical-type trap-
ping sets. The second class of trapping sets
are specifically the harmful degenerate errors ob-
served within the stabilizers classified as sym-
metric stabilizer trapping sets. We will see that
in such trapping sets, even though the variable
nodes eventually converge to some error pattern,
there exist check nodes that are not eventually
satisfied. The definitions and assumptions for
critical number and strength of the QTS remain
the same as for the classical trapping set.

In the next two paragraphs, we give examples
of these two classes of trapping sets. We assume
that Ds is the well-known Gallager-B decoding
algorithm. This assumption is made mostly for
pedagogical reasons, but also because some trap-
ping sets of Gallager-B are also trapping sets of
other decoders such as BP or MSA.

3.1.1 Classical-type trapping set

We will first show in an illustration why classical-
type TSs as shown in Fig. 2 are also failure con-
figurations of syndrome decoders. The same er-
ror pattern of the (5,3) TS given in Fig. 1 is re-
drawn for a syndrome based Gallager-B decoder
in Fig. 3. The syndrome input is all-one vector,
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Figure 3: An illustration of a failure configuration
of syndrome-based Gallager-B decoder [28]. The
shaded squares � represent the anti-commuting stabi-
lizers/checks. Syndrome iterative decoder starts mes-
sage passing with an all zero error pattern trying to find
the true error pattern that matches with the all-one syn-
drome but is unable to converge successfully. The mes-
sages passed within the sub-graph in consecutive itera-
tions oscillates showing that the decoder is trapped.

indicated by the black squares and the decoder
starts from the all-zero error pattern (no error).
The outgoing check node message over an edge is
computed as the XOR of extrinsic variable node
messages and the syndrome input value at the
check node, and the variable node message com-
putation remains the same as in regular Gallager-
B decoder. The messages passed over correspond-
ing edges are marked next to the directed arrows.
Note that even though the messages passed in
Fig. 3 are different from that in Fig. 1 of the reg-
ular Gallager-B decoder, the syndrome decoder is
also unable to converge, and its output oscillates
from the all-zero error pattern to errors in v2, v4,
and v5 and back. Hence, the (5, 3) TS in Fig. 3 is
classified as a QTS for the syndrome decoder as
well.

In addition to classical-type TSs, iterative de-
coders on QLDPC codes fail for specific degener-
ate errors. Our quantum trapping set Definition 4
captures such failure configurations as well. This
distinctive difference from classical codes deserves
further analysis in the next section.

(a) (b)

Figure 4: The Tanner graph representations of the (4, 0)
and (10, 0) symmetric stabilizers with • and • repre-
senting the disjoint sets of variable nodes of the stabi-
lizer.

3.1.2 Symmetric stabilizer trapping set

Recall the quantum decoding problem in Section
2.3, wherein the decoder needs to identify any re-
covery operator such that ê⊕ e = rowspace(Hb).
This is in contrast to the classical decoding prob-
lem where an exact match of error ê = e is re-
quired. In quantum decoding, we say error vec-
tors e and f are degenerate errors if e⊕f is a sta-
bilizer, which makes it equivalent to output any
one of the degenerate errors as the candidate error
pattern for matching the syndrome. However, in
QLDPC codes whose minimum distance is higher
than their stabilizer weight, some degenerate er-
rors can be detrimental to iterative decoding. A
symmetric topology of the stabilizer sub-graph
that contains degenerate error patterns e and f
of equal weight will result in a decoding failure.
We will see more examples of such decoder failure
when the iterative decoder attempts to converge
to error patterns e and f simultaneously, thus not
matching the input syndrome. This failure can
be attributed to the symmetry of the both the
stabilizer and the decoder message update rules.
Hence, such errors are referred to as symmetric
degenerate errors and corresponding sets of vari-
able nodes as symmetric stabilizer trapping sets
or just symmetric stabilizers, for short. Although
degenerate errors are typically classified as harm-
less for quantum decoding, from the above dis-
cussion it follows that some (not all) degenerate
error patterns in a symmetric stabilizer are harm-
ful for iterative decoders.

Definition 5 A symmetric stabilizer is a stabilizer
with the set of variable/qubit nodes, whose in-
duced sub-graph has no odd-degree check nodes,
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(a) (b)

Figure 5: The induced sub-graphs from • and • variable
nodes of a (10, 0) symmetric stabilizer trapping set. The
sub-graphs 5(a) and 5(b) are isomorphic and have the
same odd-degree checks represented using dark squares
�.

and that can be partitioned into an even number of
disjoint subsets, so that: (a) sub-graphs induced
by these subsets of variable nodes are isomorphic,
and (b) each subset has the same set of odd degree
check node neighbors in its induced sub-graph.

Example 1 Consider the Fig. 4(b) with the sta-
bilizer sub-graph induced by ten variable nodes
that are partitioned into two disjoint sets with
the coloring • and •. The induced sub-graphs
from • and • variable nodes are shown in the
Fig. 5. The sub-graphs in Fig. 5(a) and Fig. 5(b)
are isomorphic and have the same odd-degree
checks represented using dark squares �. Hence,
the stabilizer shown in Fig. 4(b) satisfies the def-
inition of a symmetric stabilizer.

Remark 2 The symmetric stabilizer shown in
Fig. 4(b) is present in generalized bicycle codes
given in [15]. Surface codes are highly degen-
erate, and symmetric stabilizers, for example as
shown in Fig. 4(a), are ubiquitous in them.

Now, we discuss how degenerate errors within
the symmetric stabilizer are harmful for iterative
decoders. As a non-trivial example of a symmet-
ric degenerate error, let the error pattern e be lo-
cated on the • variable nodes in Fig. 6(a). They
result in unsatisfied check shown as �. Note,
however, that the sub-graph is symmetric with
respect to the vertical axis, and therefore each
erroneous node has a • twin. The set of all •
twins form an alternative error pattern f . The
existing iterative decoders fail as they simulta-
neously attempt to converge to both these error

(a) (b)

Figure 6: Degenerate errors e and f located on • and •
variable nodes, respectively in the symmetric stabilizer
in 6(a) result in an iterative decoder failure. Introducing
asymmetry during the QLDPC code design can lead to
decoder success taking advantage of degeneracy of the
QLDPC codes. As an example, for the sub-graph in 6(b),
a BP decoder is able to match to the syndrome (dark
squares represent unsatisfied checks) correctly with the
red error pattern.

patterns. It is not difficult to see that such “am-
biguity” happens for all decoders for which: (a)
the check and message update rules are symmet-
ric functions in incoming messages, and (b) in
the same iteration all variable/check nodes in the
graph apply in parallel the same variable/check
update function, respectively. For example, dur-
ing the iterations of the Gallager-B decoder, every
unsatisfied CN � sends the binary message, one
back to the VNs. Because of the symmetry, the
VNs in both e and f receive exactly the same
messages, thus converging to e⊕ f , the symmet-
ric stabilizer.

Based on the Definition 4, the set of VNs in-
volved in the symmetric stabilizer form a QTS
and the sub-graph in Fig. 6(a) is a (10,0) TS
by convention. We can prove as in the following
lemma pertaining to the general case.

Lemma 1 A symmetric stabilizer is an (a, b = 0)
trapping set, and a is even.

Proof Let the cardinality of the set of VNs of
the stabilizer be a. By definition, the induced
sub-graph having no odd-degree check nodes im-
plies that b = 0. Also, according to the symmet-
ric stabilizer definition, the disjoint VN sets that
partitions the stabilizer must have the same odd
degree check node neighbor set. This implies that
there can only be even number of such disjoint
sets which further implies that the parameter a
is even. �
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When there are more than a pair (an even number
greater than two) of disjoint sets of VNs, the sym-
metric stabilizer can be split into smaller symmet-
ric stabilizers.

From the discussion earlier, it follows that sym-
metric stabilizers are trapping sets not only for
the syndrome BP decoder, but for many other
iterative decoders, such as bit-flipping, Gallager-
B and MSA with different critical number and
strength. Harmfulness of symmetric stabilizers
associated with decoders is distinct from classical-
type trapping sets, as summarized in the follow-
ing lemma.

Lemma 2 For an (a, 0) symmetric stabilizer TS
with any iterative decoder with a critical number
a/2, no error pattern on more than a/2 nodes of
the symmetric stabilizer is a trapping set.

Proof Consider an (a, 0) symmetric stabilizer
with critical number a/2 for a syndrome decoder
Ds. By the definition of the critical number, any
error pattern of weight smaller than the critical
number a/2 with support on the symmetric sta-
bilizer is corrected by the decoder Ds. Error pat-
terns of weight larger than the critical number
a/2 with support on the symmetric stabilizer are
decoded correctly, converging to their respective
low-weight degenerate error pattern. �

In Fig. 4(b), if a syndrome decoder Ds is able to
correct all error patterns of weight smaller than
five, it can also correct error patterns of weight
six and more by converging to their respective
low-weight degenerate error patterns.

The strength of an (a, 0) symmetric stabilizer
TS with critical number a/2 is given by the twice
the number of possible partitions into two disjoint
subsets of VNs that satisfy the symmetric stabi-
lizer definition. Each of such partition (distinct
by their unsatisfied syndromes) contributes two
error patterns each to the decoder failure in the
TS.

3.2 Searching for Quantum Trapping Sets

Using the definition of a QTS, one can search
for small sub-graphs in the Tanner graph of
the QLDPC code to identify and enumerate the
QTSs. There are efficient algorithms for TS
search widely used in classical literature [29, 30]
to identify sub-graphs that are (a, b) TSs. Such

techniques are utilized in the search for classical-
type TSs. Note that there can be more than one
non-isomorphic sub-graphs with the same (a, b)
parameters. For example, a (5, 3) TS can have
non-isomorphic sub-graphs as in Fig. 2(b) and
Fig. 3. Observe that they all have different com-
binations of short cycles of length six, eight and
ten. Enumeration of cycles and their combina-
tions also allows to find harmful classical-type
TSs in the QLDPC code. Unlike these classical-
type TSs, the search for symmetric stabilizer TSs
requires a different approach of finding low-weight
codeword sub-graphs [31] with additional symme-
try constraints. In the case of CSS codes, the HZ
even-weight stabilizer generators are examples of
symmetric stabilizer TSs for iterative decoding
over the Tanner graph of HX matrix and vice-
versa. After obtaining the list of relevant QTSs,
we can perform decoder simulation with an iter-
ative decoder Ds to verify their relative harmful-
ness. In the next section, we find and enumerate
QTSs in some prominent QLDPC code families
presented in the literature. We also provide the
harmfulness analysis of “dominant” QTSs present
in these code families.

4 Trapping Set Analysis of CSS codes
A myriad QLDPC code families have been pro-
posed over the years. They include the CSS-
based constructions (bicycle codes [2], hyper-
graph product (HP) codes [8] and their general-
izations [15], expander codes [9]), non-CSS based
QLDPC codes [32, 33] and quaternary QLDPC
codes [34]. In this section, we analyze trapping
sets of CSS based QLDPC codes, the generalized
bicycle codes, and HP codes, in particular. Simi-
lar analysis may be extended to the general class
of stabilizer codes.

4.1 Generalized bicycle codes
Bicycle codes [2] were generalized by Kovalev and
Pryadko in [35] as follows: Consider two binary
n/2×n/2 matrices A andB that commute (AB =
BA). Let

HX = [A,B] and HZ = [BT , AT ].

The SIP condition is clearly satisfied by defini-
tion, and in [35], A and B are chosen as binary
circulant matrices so that they commute. Bicy-
cle codes are dual containing CSS codes where
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B = AT . Compared to the HP codes, these
codes generally have a wider range of parameters;
in particular, they can have a higher rate while
preserving the estimated error threshold [35]. In
[15], Panteleev and Kalachev use binary polyno-
mials over rings to define the circulant matrices
for constructing [[n, k]] family of generalized bi-
cycle codes. The choice of circulant matrices de-
termines the properties of both the classical-type
TSs and the symmetric stabilizers in the code.
Hence, the observations on QTSs in the example
we discuss next can be generalized to the code
family.

Example 2 For illustration, in our TS analysis,
we chose the A1[[254, 28]] code, where the circu-
lant size is 127, a(x) = 1 + x15 + x20 + x28 + x66

and b(x) = 1 + x58 + x59 + x100 + x121 as given
in Appendix B in [15]. The girth of the Tanner
graph is six, CN degree ρ = 10 and VN degree
γ = 5.

4.1.1 Classical-type trapping sets

Based on our QTS definition, we search for QTSs
of small size (upto a = 5) present in the A1 code
in Ex. 2. As noted in [15], based on the circu-
lant matrices in the A1 code, it does not have
(a, b) trapping sets with b ≤ 5. The (5, 5) TS
is the most harmful small sub-graph present in
the Tanner graph, making BP based iterative de-
coders to fail for low weight error patterns. The
critical number and strength of this TS are deter-
mined by the specific decoder used and the neigh-
borhood of the (5, 5) TS. Fig. 7 shows the dense
(5, 5) TS present in both the circulant matrices
A and B. From their cyclic property, we can lo-
cate 127 (equal to the circulant size) isomorphic
(5, 5) TSs in each of them. In the Fig. 7, blue
and red shaded circles for the VNs indicate their
relative position in the HX matrix, from A and
B respectively.

The (5, 5) trapping set in Fig. 7 has five vari-
able nodes. Every variable nodes have exactly the
same VN degree ρ = 5 and one odd-degree check
node neighbor (black squares). The number of
small cycles within the trapping set and their
symmetry makes this a hard configuration to de-
code. For simple binary decoders like syndrome
based Gallager-B, any weight three or more er-
ror patterns will result in a failure inducing set.
Hence, the critical number for the (5, 5) TS with

Figure 7: A (5, 5) TS with 5 variable nodes and 5 odd
degree check nodes (the shaded squares represent the
odd-degree checks). The degree of every variable node
is 5. The blue and red shaded circles for the variable
nodes indicate their relative position in the HX matrix,
from A and B, respectively.

the Gallager-B algorithm is µ = 3. For stronger
decoders such as BP and MSA decoder, the be-
havior is more complex and interesting. Any
weight-5 error pattern in the TS in the circulant
matrix A indicated by blue qubits results in a
failure, whereas similar error patterns in the TSs
in the circulant matrix B (indicated by the red
qubits) are decoded correctly. Such a behavior is
typically attributed to the neighborhood of the
TS in the Tanner graph. Whether a TS is harm-
ful depends not just on the graphical configura-
tion, but also on the neighborhood and the de-
coder. This “true” behavior of all such quantum
TSs can be systematically analyzed and charac-
terized by extending the sub-graph expansion-
contraction algorithm [22] developed for classical
LDPC codes to quantum codes, and it is left for
future work.

4.1.2 Symmetric stabilizer trapping sets

Failures of syndrome-based iterative decoding on
generalized bicycle code also consist of the degen-
erate error patterns in symmetric stabilizers dis-
cussed in the Section 3.1.2. An example of a pair
of symmetric degenerate error patterns of weight
five in the Ex. 2 code is shown in Fig. 5(a) and
Fig. 5(b). Together, they form a (10, 0) TS shown
in Fig. 4(b) referred as a symmetric stabilizer. In-
terestingly, the blue and red shaded circles indi-
cates the variable nodes relative position as before
in case of the (5, 5) TS coloring. Also, these er-
ror patterns induce isomorphic sub-graphs - trees
without any cycles, quite distinct from the error
patterns in classical-type TSs which are usually
composed of one or more cycles. Using the cyclic
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property of the circulant matrices in the code, we
can easily locate 127 isomorphic symmetric sta-
bilizers present in the Tanner graph of HX, and
similarly for HZ.

Remark 3 The input syndrome (dark squares
representing odd-degree checks) in both Fig. 5(a)
and Fig. 5(b) is not matched correctly using iter-
ative decoder using a parallel or flooding sched-
ule. Breaking such TSs requires use asymmetric
update of variable node decisions such as used
in a layered/serial decoder. Since such symmet-
ric trapping sets have clear distinction of red and
blue nodes with respect to the cyclic matrices A
and B, we can identify the layered decoder sched-
ule that can break such trapping sets.

4.2 Hypergraph product codes
HP codes by Tillich and Zemor [8] and their
improvements by Kovalev and Pryadko [36] are
constructed by taking Kronecker product (de-
noted as ⊗) of two classical LDPC codes. Us-
ing two classical parity check matrices H1 and
H2 of dimensions m1 × n1 and m2 × n2 respec-
tively, we have HX =

[
H1 ⊗ In2 | Im1 ⊗HT

2

]
and

HZ =
[
In1 ⊗H2 | HT

1 ⊗ Im2

]
.

Example 3 For our trapping set analysis, we use
the example of a [[900, 36, 10]] HP code given in
[17] using a symmetric Kronecker product of a
single (n = 24, k = 6, d = 10) classical code.

The classical LDPC code determines the HP code
properties and its trapping sets. As we analyze
the cycle profile of the Tanner graph of the classi-
cal code used in Ex. 3, we observe that there are
54 cycles of length six (6-cycles) and 160 8-cycles.

Table 1: HPG code parameters and number of cycles

Code n m g χg χg+2
[24,6,10] 24 18 6 54 160

[[900,36,10]] 900 432 6 2268 14496

These cycles appear in the HP codes, multi-
plying according to the size of the classical parity
check matrix (m = 18, n = 24) as given in Table
1. For example, 54 six cycles in the classical code
gives rise to (54× 24) + (54× 18) = 2268 6-cycles
in both HX and HZ matrix of the [[900, 36, 10]]
code. This behavior is consistent across the sym-
metric HP code family.

Lemma 3 Tanner graphs of hypergraph product
codes have girth at most 8.

Proof The Kronecker product of the constituent
LDPC code graphs results in unavoidable 8-cycles
in the Tanner graphs of HX and HZ matrices,
upper bounding the girth of HP codes by 8 [8].
Let the two constituent code Tanner graphs be
(V ∪ C) and (V ′ ∪ C ′), then one can find a cycle
of length 8 in the Tanner graph of HX by looking
at HZ rows. Consider a variable node v′ ∈ V ′

and a check node c ∈ C. Let v′ be connected
to check nodes c′1 and c′2 in the graph (V ′ ∪ C ′).
Similarly, let the check node c has variable node
neighbors v1 and v2 in the graph (V ∪C). Based
on the Kronecker product, the following length-8
cycle is formed involving variable node (v1, v

′) in
the hypergraph product: (v1, v

′)-(v1, c
′
1)-(c, c′1)-

(v2, c
′
1)-(v2, v

′)-(v2, c
′
2)-(c, c′2)-(v1, c

′
2)-(v1, v

′). �

Our TS search procedure identified thirty
(4, 2) trapping sets and ten (5, 1) trapping
sets in the classical code. Also, there are two
non-isomorphic topologies of (5, 3) TSs: one
hundred and seventy (5, 3) TSs whose induced
graph has a six, eight, and ten-cycle, and fifteen
(5, 3) TSs having three eight cycles. All these
trapping sets manifest themselves in the HP
code with their count scaling as in the case of
small cycles. In Table 2, we enumerate all the
smallest QTSs (with a ≤ 5, b ≤ a) present in the
[[900, 36, 10]] HP code having no CN with degree
> 2 in their induced sub-graphs. These values
for a and b are chosen as such classical-type
TSs are typically the most harmful for iterative
decoders. The QTS enumeration of HX and HZ
for symmetric HP codes is the same. Also, the
cycle enumerator series CYC(x) =

∑
r≥0

χrx
r for

each QTS sub-graph in the parameters column
in the Table indicates the number of small cycles
present, which we refer to as its cycle profile.
Observe that the (5, 3) QTS with γ = 3 has two
non-isomorphic topologies with different cycle
profiles. Another interesting observation specific
to these HP codes having VNs with degree 3
and 4 is the presence of (5, 3) and (5, 5) QTSs
with the same cycle profile - CYC(x) = 3x8.
The (5, 5) QTSs are indeed the result of the
Kronecker product in the HP codes. The QTSs
in Table 2 are the main reason for poor iterative
decoding performance of such family of codes.
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Table 2: QTS enumeration in HX/HZ of [[900, 36, 10]] HP code [17]

Quantum TS

Parameters a

Quantum TS

Parameters
(a,b) (a,b)

CYC(x) CYC(x)
Count Count
(4,2) (4,4)

2x6 + x8 4x6 + 3x8

720 72

(5,1) (5,4)

2x6 + 3x8 + 2x10 4x6 + 5x8 + 4x10

240 36

(5,3) (5,4)

x6 + x8 + x10 5x6 + 5x8 + 2x10

4080 90

(5,3) (5,5)

3x8 3x8

360 5184

Figure 8: A stabilizer sub-graph in the [[900, 36, 10]] HP
code [17] is not symmetric. Note that the red and blue
variable nodes have four and three check node neighbors,
respectively. Thus, a BP decoder converges to the red
variable nodes as its output exploiting the asymmetry in
the stabilizer.

Observe that the node degree of the classical
parity check Tanner graph influences the symmet-

1In Table 2, the parameters-(a,b), CYC(x), and Count
are listed row-wise under the column header-Parameters
for each QTS.

ric property of the stabilizers of the HP code. In
Ex. 3, since the classical parity check code cho-
sen has γ = 3 and ρ = 4 in its Tanner graph,
the variable nodes of the HP code have VN de-
grees 3 and 4. For the stabilizer in Fig. 8, the
VNs with degree γ = 4 are shown as • and those
with γ = 3 as •. The stabilizer is not symmetric
according to the Definition 5. Suppose the input
syndrome corresponds to all the check nodes in
the sub-graph in error, then an iterative BP or
MSA decoder (based on the update rule) will be
able to successfully converge to the red error pat-
tern. This happens as every • VN uses messages
from four CNs compared to three CNs for the •
VNs in the decoding process to successfully con-
verge. Note that the above statement depends on
the decoder update rule chosen. For example, the
red and blue error patterns in the stabilizer are
indeed failure configurations for a simple binary
decoding algorithm like Gallager-B algorithm.
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This observation emphasizes the importance of
the decoder in characterizing the harmfulness of
QTSs as in the case of classical TSs [22]. In the
subsequent section showing the applications of
TS analysis, we will use the example of different
decoding schedule that “breaks” such symmetry
of the stabilizer.

5 Using the QTS to design better
QLDPC codes and better decoders

In this section, we explain practical importance of
QTS analysis by providing two approaches for fi-
nite length QLDPC code and decoder design with
QTS knowledge.

5.1 Improved Code Design

While previous research has observed the issue of
symmetric degenerate errors [13, 20], there has
been no effort to fully characterize them. Iden-
tifying symmetric stabilizers, particularly of low
weight in the QLDPC code is an important step
in quantifying the effect of degenerate errors on
iterative decoding. Removal of symmetry in low-
weight stabilizers present in the Tanner graph,
especially during the QLDPC code design, sig-
nificantly reduces the number of instances of it-
erative decoder failure. For example, during the
row removal step in the bicycle code [2] we care-
fully modify the original bicycle code to obtain
codes wherein the stabilizer is asymmetric as in
Fig. 6(b). The BP decoder will able to match to
the syndrome (dark squares represent unsatisfied
checks) correctly with the red error pattern, in
contrast to the symmetric stabilizer in Fig. 6(a).
Similarly, in the case of HP codes, careful removal
of TSs in the constituent classical LDPC codes
helps to further optimize rate and minimum dis-
tance properties. Such code design improvements
lead to performance gains especially in the error
floor region for QLDPC codes. Here, we show
an example of such an improved HP code design
with quasi-cyclic (QC) LDPC [37] code for the
constituent classical LDPC code.

5.1.1 Improved HP codes without harmful TSs

One of the disadvantages of QLDPC codes is that
the random code construction makes the stabi-
lizers highly non-local, requiring arbitrary qubit-

qubit inter-connectivity to perform check opera-
tions. Using QC LDPC code brings structure to
the constituent codes and flexibility in improv-
ing finite length QLDPC codes along with effi-
cient implementation of decoders. Instead of the
random codes which are only optimized for girth
g = 6, we construct QC [40, 10, 12] code with
girth 8, and make sure that small trapping sets
are not present. The QC code with circulant size
Q = 10 is constructed by carefully choosing cir-
culants to build the Tanner graph that is free of
(4, 2), (4, 4), and (5, 1) harmful trapping sets. For
a fair comparison, we use a random code of the
same size and minimum distance. The random
[40,10,12] code is constructed to be cycle-4 free.
The HP codes constructed from these constituent
classical codes both have the same number (=
21600) of unavoidable length-8 cycles (see Lemma
3) in their respective Tanner graphs, as it only
depends on the size of the component code and
their variable and check node degrees. For the
symmetric HP code from regular LDPC code, we
can count these as m×

(ρ
2
)
×n×

(γ
2
)
, where m and

n correspond to the number of check nodes and
variable nodes, respectively, and dv and dc are
variable and check node degrees, respectively of
the constituent classical code. These 8-cycles can
be classified as (4, 6) TSs and are not harmful for
iterative decoders like min-sum or BP algorithm.

Fig. 9 shows improved decoding performance
(flooding BP decoder with `max = 100 iterations)
in the error floor regime for the newly constructed
QC HP code. Even though the curves start with
a similar waterfall performance (due to same min-
imum distance), the randomly constructed code
performs worse in the error floor regime compared
to the QC code. For the same code parameters,
using the QC component code improves the FER
by nearly an order of magnitude at p ≈ 0.005.
This improvement can be clearly attributed to
the absence of harmful TSs which were removed
in the constituent QC code construction. The ex-
ample of the HP-LDPC code construction with
QC constituent code is chosen considering their
hardware friendly nature and simple bookkeep-
ing of trapping sets. In general, no specific code
structure is required in our method, and the con-
cept, definition and analysis of trapping sets are
applicable to random codes as well.
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Figure 9: FER performance comparison between the
symmetric HP codes constructed using random con-
stituent codes ([20,5,8] code and [24,6,10] code in [17],
and [40,10,12] code with girth g = 6) and the sym-
metric HP code constructed using a trapping set aware
QC [40,10,12] code. All curves are decoded using a
BP decoder for `max = 100 iterations with the flooding
schedule. For the same code parameters, using the QC
component code without harmful trapping sets shows
FER improvement (close to an order of magnitude) over
the random constituent code in the error floor region.

5.2 Novel Decoder Design

An alternative or complementary approach is
to devise iterative decoders that do not fail for
the error patterns in the QTSs identified for
the QLDPC code. This approach, prevalent
in classical LDPC decoders (finite alphabet it-
erative decoding (FAID) algorithms such as in
[23]) do not ignore the topology of the TSs
while devising decoder update rules. Breaking
the symmetry of messages by using non-linear
message update rules leads to orders of mag-
nitude decoding error performance improvement
[23]. For QLDPC iterative decoders, the typically
used parallel/flooding message update schedule
(in the same iteration all variable/check nodes
in the Tanner graph apply in parallel the same
variable/check update function, respectively) at-
tributes to decoders’ failure to symmetric degen-
erate errors. We devise decoder strategy that
corrects these errors by taking into account the
topology of the low-weight symmetric stabilizers
in the code. Specifically, we show that an MSA
decoder with sequential message update sched-
ule (layered decoder as in classical literature [38])
that uses the knowledge of location of the sym-
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Figure 10: FER performance comparison for the
A1[[254, 28]] code using the min-sum algorithm (MSA)
for two different schedules: flooding/parallel and lay-
ered schedule. The layered schedule is able to decode
all the symmetric stabilizer TSs and numerous classical-
type TSs correctly leading to two orders of magnitude
improvement in the error floor regime (low physical error
rates).

metric stabilizers in the code as well as other
harmful trapping sets improves the error floor
decoding performance. As an intuitive example,
suppose the symmetric stabilizer of weight 6 has
support on variable nodes v1, . . . , v6 with sym-
metric degenerate error patterns: e1, e2, e3 and
e4, e5, e6. A layered decoder with the update or-
der: starting with VN update of v1, v2, v3, fol-
lowed by the check node updates, and then VN
update of v4, v5, v6 converges to the correct error
pattern without getting trapped. Since the sched-
ule order is with respect to the variable nodes cor-
responding to the columns of the H matrix, we
refer to such schedule as column-layered. In ad-
dition to fast decoder convergence in terms of the
number of iterations [38, 39], column-layered de-
coders break some harmful TSs in classical LDPC
codes [40]. In the following section 5.2.1, we com-
pare the two schedules: flooding MSA and layered
MSA decoders for the chosen QLDPC code.

5.2.1 Layered Decoding to break QTSs

We employ a specific layered decoding sched-
ule to break the symmetric stabilizers in the
A1[[254, 28]] code in Fig. 10 using a column lay-
ered schedule. The layered schedule employed
here is based on the circulant-size of the cyclic
matrices A and B. The symmetric trapping sets
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have a clear distinction of red and blue nodes
with respect to these cyclic matrices, giving a
straight forward update order: v1, . . . , v127 fol-
lowed by v128, . . . , v254. The column-layered de-
coder (MSA with `max = 20 iterations) is able
to decode all the symmetric stabilizer TSs and
numerous classical-type TSs correctly leading to
two orders of magnitude improvement in the error
floor regime (low physical error rates) compared
to the flooding MSA decoder. 2

Remark 4 (Random perturbation and post-
processing) With the QTS knowledge, we can
construct iterative decoders without compu-
tationally expensive post-processing steps,
and thus reduce the decoding complexity and
latency. Note that the two curves in Fig. 10
use same maximum number of decoding iter-
ations (`max = 20). In contrast, the heuristic
random perturbation approach in [13] requires
many rounds of decoding attempts (Dr) with
additional BP decoder iterations (`r) each of
which are initialized with perturbed channel
log-likelihood ratios on variable nodes that are
neighbors of the unsatisfied syndromes. If we al-
lot the same total number of decoding iterations
to compare the random perturbation method
with BP, we observe that the advantage of using
random perturbation is only observed with very
large number of iterations. However, if the total
number of iterations is set to 100 iterations,
the decoding performance improvement using
heuristic methods is not significant as illustrated
in Fig. 11. For a significant performance im-
provement, post processing step with random
perturbation decoder requires much more de-
coding rounds (using `max + (Dr × `r) = 1700
iterations which is >> 100) as shown in dashed-
red-diamond curve. The heuristic choice of the
randomness parameter can be further improved
by using feedback as in [41]. This is also shown
to improve the convergence speed of the post-
processing step, but it does not eliminate this
step completely. The performance improvement
shown with the chosen layered schedule is to
demonstrate the usefulness of the QTS analysis.
If required, post-processing techniques as well as
improvements over heuristic approaches such as

2In the Monte-Carlo simulations presented in the pa-
per, we collect at least 100 errors for simulation points
in the low FER region ensuring that they are statistically
significant.
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Figure 11: FER performance comparison for the
A1[[254, 28]] code using the belief propagation decoder
with the flooding schedule with/without perturbation
rounds (dashed/solid lines). When the total number of
iterations allowed are only 100 iterations, the dashed-
blue-square marked and dashed-cyan-triangle marked
(BP with random perturbation) curves do not outper-
form the solid-red-diamond BP-only curve for 100 itera-
tions. For a significant performance improvement, post
processing step with random perturbation decoders re-
quires much more decoding rounds as shown in dashed-
red-diamond curve. Also, note that the heuristic choice
of noise parameter value affects these decoding improve-
ments.

enhanced feedback decoding [41] and augmented
decoding [20] can be used as additional tools over
the iterative decoder based on QTS analysis.

An interesting result to note is that using more
iterations in the BP algorithm results in match-
ing with many degenerate error patterns in case
of quantum LDPC codes. FER versus iterations
of BP plotted in Fig. 12 shows that increasing it-
erations of flooding BP do not lower the FER
in terms of purely classical errors (for the red
curve, the degenerate error patterns that match
the corresponding syndrome are considered as er-
rors). However, such degenerate error patterns
that match the syndrome without introducing a
logical error are harmless for QLDPC codes, re-
sulting in lowering the FER with increasing itera-
tions of BP. In our future work, we will devise im-
proved message passing algorithms of lower com-
plexity than BP that exploits the degeneracy of
QLDPC codes systematically.

Remark 5 These alternative improved decoders
are an attractive solution when the QLDPC code
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Figure 12: FER vs iterations is plotted for the physical
error probability 2p/3 = 0.01 demonstrating how error
patterns are corrected by the flooding BP decoder to
their degenerate patterns with more decoding iterations.
The blue-diamond marked curve corresponds to the FER
curve in QLDPC codes wherein degenerate error pattern
matching is not considered as an error. In contrast,
classical-like BP errors are plotted with the red-square
marked curve with degenerate matching also classified as
an error in addition to the decoding failures. Quantum
decoders are observed to lower the FER with increasing
iterations of BP resulting from degenerate error match-
ing.

and their structure is fixed and modifying it is
not an option (due to technology or system-level
constraints in the future). Clearly, joint code and
decoder design would guarantee further decoding
performance improvement and a higher thresh-
old.

6 Summary and Future Work

In this paper, we identified and classified quan-
tum trapping sets using their definition adapted
from the classical error correction to address the
syndrome decoding scenario for QLDPC codes.
The knowledge of QTSs is shown to significantly
improve stabilizer code/decoder designs and also
decoder performance in the error floor regimes
of practical finite-length QLDPC codes. Analy-
sis of failure configurations of the QLDPC codes,
which are a generalization of the surface codes,
will have near-future implications in surface code
designs and their decoders.

In future work, we will analyze the finite length
performances of recently proposed QLDPC codes
that break the

√
n growing minimum distance

barrier [10] based on their QTS enumeration.
We will establish the parent-child relationship
between the harmful sub-graphs and determine
their relative harmfulness. Understanding the ef-
fect of neighborhood of the Tanner graph with
respect to the decoder used is not easy, but im-
portant to understand the actual harmful error
patterns. In future work, we plan to modify the
expansion-contraction method [22] to QLDPC
codes to obtain the exact set of most harmful con-
figurations that should be avoided in the Tanner
graph of QLDPC codes. Enumeration of symmet-
ric stabilizers in QLDPC codes is also an impor-
tant step towards exploiting degeneracy to the de-
coder’s advantage. Approaches used in classical
literature for structured QLDPC code construc-
tions such as efficient low-weight codeword search
are promising in this direction. In addition, the
extension of QTS definition to consider X and Z
type errors together (correlated errors) and non-
CSS stabilizer codes in general will set up the
framework to study and explore non-binary quan-
tum trapping sets.
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message alphabets, Y is the same a-priori chan-
nel value chosen for all variable nodes, Φ,Ψ are
the update functions used in variable and check
nodes, and Φ̂ is the decision function, and ζ is
the check value alphabet (for syndrome) with σ
and σ̂ as the input and output syndromes respec-
tively. The alphabetsM and Y depend on a de-
coder type and quantum channel model.

Messages passed in an iterative decoder can
be of floating point precision (floating point BP
and MSA) or quantized to fixed number of lev-
els for practical implementation. For a quan-
tized decoder with Z levels, the message al-
phabet M consists of Z = 2z + 1 levels to
which the message values are confined to. The
message alphabet is defined as follows: M =
{−Bz, . . . ,−B1, 0, B1, . . . , Bz}, where Bi ∈ Z+
(positive integers) and Bi > Bj for any i > j.
The sign of a message m ∈ M can be inter-
preted as the error estimate of the variable node
for which m is being passed to or from (positive
for zero and negative for one), and the magnitude
as a measure of how reliable the error estimate
is. For BSC, the initial channel value for variable
node vi is set as yi = +Y mapping 0 → Y ac-
cording to the assumption of zero error pattern.
The variable node message from vi is initialized to
Φ(yi,0), and in each iteration updated according
to the rules Φ and Ψ.

The messages passed over the edges of the Tan-
ner graph (say, at `-th iteration-iteration will be
indicated as superscript when required) are de-
noted as follows: µci→vj and νvj→ci denote a mes-
sage from check node ci to variable node vj and
vice-versa respectively.

Check node message is updated as µ(`)
ci→vj =

Ψ(n(`−1), σi), where n = νN (ci)\vj→ci
denote all

incoming variable node messages to the check
node ci except from the variable node vj . Note
that Ψ is a symmetric function, i.e., any permuta-
tion of the function variables leaves the function
unchanged. Variable node message is updated as
ν

(`)
vj→ci = Φ(yj ,m(`)), where m = µN (vj)\ci→vj

de-
note all incoming check node messages to the vari-
able node vj except the message from the check
node ci.

The decision function on vj is computed us-
ing all messages incoming to vj denoted by
l = µN (vj)→vj

. The decision function λ
(`)
j =

Φ̂(l(`), yj) decides the error bit Êj based on the

sign using an indicator function as ê(`)
j = 1

λ
(`)
j <0.

Output syndrome value for ith check node in the
`-th iteration σ̂

(`)
i =

∑
k∈N (ci) êk modulo-2. A

check node ci is matched only if σ̂i = σi. If all
syndromes are matched, we say that iterative de-
coder Ds successfully decoded to output the error
pattern ê.

The order of message passing in the Tan-
ner graph is generally referred to as the updat-
ing schedule. Message passing follows a paral-
lel/flooding schedule where Ψ at all CNs are up-
dated simultaneously followed by updating Φ at
all VNs simultaneously. In contrast, a row (col-
umn) layered schedule performs sequential up-
date of messages in an order. An iteration of row
(column) layered decoder proceeds by comput-
ing a check node (variable node) update function
in the sequence followed by computing neighbor-
ing variable node (check node) function till all
check nodes (variable nodes) are updated. Deci-
sion function Φ̂ computed at each layer acceler-
ates the decoder convergence significantly.
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