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A leading proposal for verifying near-term quantum supremacy experiments on noisy
random quantum circuits is linear cross-entropy benchmarking. For a quantum circuit
C on n qubits and a sample z ∈ {0, 1}n, the benchmark involves computing |〈z|C|0n〉|2,
i.e. the probability of measuring z from the output distribution of C on the all zeros
input. Under a strong conjecture about the classical hardness of estimating output
probabilities of quantum circuits, no polynomial-time classical algorithm given C can
output a string z such that |〈z|C|0n〉|2 is substantially larger than 1

2n (Aaronson and
Gunn, 2019). On the other hand, for a random quantum circuit C, sampling z from the
output distribution of C achieves |〈z|C|0n〉|2 ≈ 2

2n on average (Arute et al., 2019).
In analogy with the Tsirelson inequality from quantum nonlocal correlations, we

ask: can a polynomial-time quantum algorithm do substantially better than 2
2n ? We

study this question in the query (or black box) model, where the quantum algorithm
is given oracle access to C. We show that, for any ε ≥ 1

poly(n) , outputting a sample z

such that |〈z|C|0n〉|2 ≥ 2+ε
2n on average requires at least Ω

(
2n/4

poly(n)

)
queries to C, but

not more than O
(
2n/3

)
queries to C, if C is either a Haar-random n-qubit unitary, or

a canonical state preparation oracle for a Haar-random n-qubit state. We also show
that when C samples from the Fourier distribution of a random Boolean function, the
naive algorithm that samples from C is the optimal 1-query algorithm for maximizing
|〈z|C|0n〉|2 on average.

1 Introduction
A team based at Google has claimed the first experimental demonstration of quantum computational
supremacy on a programmable device [10]. The experiment involved random circuit sampling, where
the task is to sample (with nontrivial fidelity) from the output distribution of a quantum circuit
containing random 1- and 2-qubit gates. To verify their experiment, they used the so-called Linear
Cross-Entropy Benchmark, or Linear XEB. Specifically, for an n-qubit quantum circuit C and
samples z1, . . . , zk ∈ {0, 1}n, the benchmark is given by:

b = 2n

k
·
k∑
i=1
|〈zi|C|0n〉|2.
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The goal is for b to be large with high probability over the choice of the random circuit and the
randomness of the sampler, as this demonstrates that the observations tend to concentrate on the
outputs that are more likely to be measured under the ideal distribution for C (i.e. the noiseless
distribution in which z is measured with probability |〈z|C|0n〉|2). We formalize this task as the
b-XHOG task:

Problem 1 (b-XHOG, or Linear Cross-Entropy Heavy Output Generation). Fix a distribution D
over quantum circuits on n-qubits.1 Given a quantum circuit C sampled from D, output a sample
z ∈ {0, 1}n such that:

E
C∼D

[
|〈z|C|0n〉|2

]
≥ b

2n .

We emphasize that in this work, b-XHOG is fundamentally an average-case problem: it is always
defined with respect to a distribution D over the choice of circuit C, which is why we require that
the Linear XEB score exceeds b in expectation. Note also that the procedure for solving XHOG
could itself be randomized (e.g. if it involves sampling z from the output of a quantum device), so
the expectation in the above definition is taken with respect to this randomness as well.

For the purposes of demonstrating quantum supremacy, we will typically think of “large” b as
any b bounded away from 1, as guessing z uniformly at random achieves b = 1 (regardless of
the distribution D!), just because

∑
z∈{0,1}n |〈z|C|0n〉|2 = 1 for any n-qubit circuit C. On the

other hand, sampling from the noiseless output distribution of C achieves b ≈ 2 when D selects
random circuits of polynomial size and sufficient depth. Indeed, sampling from C achieves b ≈ 2
whenever the circuit distribution D empirically exhibits the Porter-Thomas distribution on circuit
output probabilities, in which the output probabilities are approximately i.i.d. exponential random
variables [3, 10].

Under a strong complexity-theoretic conjecture about the classical hardness of nontrivially es-
timating output probabilities of quantum circuits, Aaronson and Gunn showed that no classical
polynomial-time algorithm can solve b-XHOG for any b ≥ 1 + 1

poly(n) on random quantum circuits
of polynomial size [3]. Thus, a physical quantum computer that solves b-XHOG for b ≥ 1 + Ω(1) is
considered strong evidence of quantum computational supremacy.

In this work, we ask: can an efficient quantum algorithm for b-XHOG do substantially better
than b = 2?2 That is, what is the largest b for which a polynomial-time quantum algorithm can
solve b-XHOG on random circuits? Note that the largest b we could hope for is achieved by the
optimal sampler that always outputs the string z maximizing |〈z|C|0n〉|2. If the random circuits
induce a Porter-Thomas distribution on output probabilities, then this solves b-XHOG for b = Θ(n)
(see Fact 13 below). However, finding the largest output probability might be computationally
difficult even on a quantum computer, which is why we restrict our attention to efficient quantum
algorithms.

We refer to our problem as the “quantum supremacy Tsirelson inequality” in reference to the
Bell [12] and Tsirelson [19] inequalities for quantum nonlocal correlations (for a modern overview,
see [21]). Under this analogy, the quantity b in XHOG plays a similar role as the probability p
of winning some nonlocal game. For example, the Bell inequality for the CHSH game [20] states
that no classical strategy can win the game with probability p > 3

4 ; we view this as analogous

1We will sometimes leave the choice of D implicit when it is clear from context.
2We thank Scott Aaronson [1] for raising this question, and for suggesting the analogy with the Tsirelson inequality.
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to the conjectured inability of efficient classical algorithms to solve b-XHOG for any b > 1. By
contrast, a quantum strategy with pre-shared entanglement allows players to win the CHSH game
with probability p = cos2 (π

8
)
≈ 0.854 > 3

4 . An experiment that wins the CHSH game with
probability p > 3

4 , a violation of the Bell inequality, is analogous to an experimental demonstration
of b-XHOG for b > 1 on a quantum computer that establishes quantum computational supremacy.
Finally, the Tsirelson inequality for the CHSH game states that any quantum strategy involving
arbitrary pre-shared entanglement wins with probability p ≤ cos2 (π

8
)
. Hence, an upper bound on b

for efficient quantum algorithms is the quantum supremacy counterpart to the Tsirelson inequality.
We emphasize that our choice to refer to this as a “Tsirelson inequality” is purely by analogy; we
do not claim that the question involving quantum supremacy or the techniques one might use to
answer it are otherwise related to quantum nonlocal correlations.

1.1 Our Results
We study the quantum supremacy Tsirelson inequality in the quantum query (or black box) model.
That is, we consider b-XHOG with respect to distributions D that take the following form. We fix
a quantum circuit C that queries a classical or quantum oracle O. To sample C from D, we choose
O according to some distribution over oracles. We then ask what is the largest b such that b-XHOG
with respect to D is solvable with polynomially many queries to O.

Our motivation for studying this problem in the query model is twofold. First, quantum query
results often give useful intuition for what to expect in the real world, and can provide insight
into why naive algorithmic approaches fail. Second, we view this as an interesting quantum query
complexity problem in its own right. Whereas most other quantum query lower bounds involve
decision problems [6] or relation problems [13], XHOG is more like a weighted, average-case relation
problem, because we only require that |〈z|C|0n〉|2 be large on average. Contrast this with the
relation problem considered in [2], where the task is to output a z such that |〈z|C|0n〉|2 is greater
than some threshold.

Note that there are known quantum query complexity lower bounds for relation problems [10],
and even relation problems where the output is a quantum state [7, 27]. Yet, it is unclear whether
existing quantum query lower bound techniques are useful here. Whereas the adversary method
tightly characterizes the quantum query complexity of decision problems and state conversion prob-
lems [26], it is not known to characterize the query complexity of relation problems, unless they are
efficiently verifiable [13]. The adversary method appears to be essentially useless for saying any-
thing about XHOG, which is not efficiently verifiable and is not a relation problem in the traditional
sense.3

The XHOG task is well-defined for any distribution of random quantum circuits, so this gives
us a choice in selecting the distribution. We focus on three classes of oracle circuits that either
resemble random circuits used in practical experiments, or that were previously studied in the
context of quantum supremacy. Formal definitions of these oracles (and the associated versions of
XHOG) are given in Section 2.2.

Canonical State Preparation Oracles Because the linear cross-entropy benchmark for a circuit
C depends only on the state |ψ〉 := C|0n〉 produced by the circuit on the all zeros input, it is
natural to consider an oracle Oψ that prepares a random state |ψ〉 without leaking additional

3As we will see later, however, the polynomial method [11] plays an important role in one of our results.
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information about |ψ〉. Formally, we choose a Haar-random n-qubit state |ψ〉, and fix a canonical
state |⊥〉 orthogonal to all n-qubit states.4 Then, we take the oracle Oψ that acts as Oψ|⊥〉 = |ψ〉,
Oψ|ψ〉 = |⊥〉, andOψ|ϕ〉 = |ϕ〉 for any state |ϕ〉 that is orthogonal to both |⊥〉 and |ψ〉. Equivalently,
Oψ is the reflection about the state |ψ〉−|⊥〉√

2 . Finally, we let C be the composition of Oψ with any
unitary that sends |0n〉 to |⊥〉, so that C|0n〉 = |ψ〉. This model is often chosen when proving lower
bounds for quantum algorithms that query state preparation oracles [4, 8, 14], in part because the
ability to simulate Oψ follows in a completely black box manner from the ability to prepare |ψ〉
unitarily without garbage (see Lemma 7 below). Hence, the oracle Oψ is “canonical” in the sense
that it is uniquely determined by |ψ〉 and is not any more powerful than any other oracle that
prepares |ψ〉 without garbage.

Haar-Random Unitaries A random polynomial-size quantum circuit C does not behave like a
canonical state preparation oracle: C|x〉 looks like a random quantum state for any computational
basis state |x〉, not just x = 0n. Indeed, random quantum circuits are known to information-
theoretically approximate the Haar measure in certain regimes [15, 22], and it seems plausible that
they are also computationally difficult to distinguish from the Haar measure. Thus, one could
alternatively model random quantum circuits by Haar-random n-qubit unitaries.

Fourier Sampling Circuits Finally, we consider quantum circuits that query a random classi-
cal oracle. For this, we use Fourier Sampling circuits, which Aaronson and Chen [2] previously
studied in the context of proving oracular quantum supremacy for a problem related to XHOG.
Fourier Sampling circuits are defined as H⊗nUfH⊗n, where Uf is a phase oracle for a uniformly
random Boolean function f : {0, 1}n → {−1, 1}. On the all-zeros input, Fourier Sampling cir-
cuits output a string z ∈ {0, 1}n with probability proportional to the squared Fourier coefficient
f̂(z)2. This model has the advantage that in principle, one can prove the corresponding quantum
supremacy Bell inequality for classical algorithms given query access to f , and that in some cases
one can replace f by a pseudorandom function to base quantum supremacy on cryptographic as-
sumptions [2].

Our first result is an exponential lower bound on the number of quantum queries needed to solve
(2 + ε)-XHOG given either of the two types of quantum oracles that we consider:

Theorem 2 (Informal version of Theorem 17 and Theorem 20). For any ε ≥ 1
poly(n) , any quantum

query algorithm for (2 + ε)-XHOG with query access to either:

(1) a canonical state preparation oracle Oψ for a Haar-random n-qubit state |ψ〉, or

(2) a Haar-random n-qubit unitary,

requires at least Ω
(

2n/4

poly(n)

)
queries.

Recall that, because Haar-random states induce a Porter-Thomas distribution on measurement
probabilities, the naive algorithm that outputs a sample from the measurement distribution of the
state solves b-XHOG for b ≈ 2. Hence, in the black box setting, Theorem 2 implies that it is

4We can always assume that a convenient |⊥〉 exists by extending the Hilbert space, if needed. For example, if
|ψ〉 is an n-qubit state, a natural choice is to encode |ψ〉 by |ψ〉|1〉 and to choose |⊥〉 = |0n〉|0〉.
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computationally difficult to substantially beat the naive algorithm for XHOG. We do not know if
Theorem 2 is quantitatively optimal, but we show in Theorem 18 that a simple algorithm based
on the quantum collision finding algorithm [16] solves (2 + Ω(1))-XHOG using O

(
2n/3

)
queries to

either oracle.
Finally, we show that for Fourier Sampling circuits, the naive algorithm of simply running

the circuit is optimal among all 1-query algorithms:

Theorem 3 (Informal version of Theorem 22). Any 1-query quantum algorithm for b-XHOG with
Fourier Sampling circuits achieves b ≤ 3.

Note that the value of b achieved by the naive quantum algorithm for XHOG depends on the dis-
tribution of circuits used. In contrast to Haar-random circuits that achieve b ≈ 2, Fourier Sampling
circuits achieve b ≈ 3 (see Proposition 21). This stems from the fact that the amplitudes of a Haar-
random quantum state are approximately distributed as complex normal random variables, whereas
the amplitudes of a state produced by a random Fourier Sampling circuit are approximately
distributed as real normal random variables.

1.2 Our Techniques
The starting point for our proof of the Tsirelson inequality with a canonical state preparation oracle
Oψ is a result of Ambainis, Rosmanis, and Unruh [8]. It shows that any algorithm that queries
Oψ can be approximately simulated by a different algorithm that makes no queries, but starts with
copies of a resource state that depends on |ψ〉. This resource state consists of polynomially many (in
the number of queries to Oψ) states of the form α|ψ〉+β|⊥〉, i.e. copies of |ψ〉 in superposition with
|⊥〉. Our strategy is to show that if any algorithm solves b-XHOG given this resource state, then a
similar algorithm solves b-XHOG given copies of |ψ〉 alone. Then, we prove a lower bound on the
number of copies of |ψ〉 needed to solve b-XHOG. To do so, we argue that if |ψ〉 is Haar-random, then
the best algorithm for b-XHOG given copies of |ψ〉 is a simple collision-finding algorithm: measure
all copies of |ψ〉 in the computational basis, and output whichever string z ∈ {0, 1}n appears most
frequently in the measurement results. For a Haar-random n-qubit state, the chance of seeing any
collisions is exponentially unlikely, unless the number of copies of |ψ〉 is exponentially large in n,
and so this does not do much better than measuring a single copy of |ψ〉 and outputting the result.

To prove the analogous lower bound for b-XHOG with a Haar-random unitary oracle, we show
more generally that the canonical state preparation oracles and Haar-random unitary oracles are
essentially equivalent as resources, which may be of independent interest. More specifically, we show
that for an n-qubit state |ψ〉, using a constant number of queries to Oψ, one can approximately
simulate (to exponential precision) queries to a random oracle that prepares |ψ〉. By “random oracle
that prepares |ψ〉,” we mean an n-qubit unitary Uψ that acts as Uψ|0n〉 = |ψ〉 but Haar-random
everywhere else. We can construct such a Uψ by taking an arbitrary n-qubit unitary that maps
|0n〉 to |ψ〉, then composing it with a Haar-random unitary on the (2n − 1)-dimensional subspace
orthogonal to |0n〉.

Our lower bound for Fourier Sampling circuits uses an entirely different technique. We use
the polynomial method of Beals et al. [11], which shows that for any quantum algorithm that
makes T queries to a classical oracle, the output probabilities of the algorithm can be expressed
as degree-2T polynomials in the variables of the classical oracle. Our key observation is that the
average linear XEB score achieved by such a quantum query algorithm can also be expressed as
a polynomial in the variables of the classical oracle. We further observe that this polynomial is
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constrained by the requirement that the polynomials representing the output probabilities must be
nonnegative and sum to 1. This allows us to upper bound the largest linear XEB score achievable
by the maximum value of a certain linear program, whose variables are the coefficients of the
polynomials that represent the output probabilities of the algorithm. To upper bound this quantity,
we exhibit a solution to the dual linear program.

2 Preliminaries
2.1 Notation
We use [N ] to denote the set {1, 2, . . . , N}. We use 1 to denote the identity matrix (of implicit
size). We let TD(ρ, σ) denote the trace distance between density matrices ρ and σ, and let ||A||�
denote the diamond norm of a superoperator A acting on density matrices (see [5] for definitions).
For a unitary matrix U , we use U · U † to denote the superoperator that maps ρ to UρU †. In a
slight abuse of notation, if A denotes a quantum algorithm (which may consist of unitary gates,
measurements, oracle queries, and initialization of ancilla qubits), then we also use A to denote the
superoperator corresponding to the action of A on input density matrices.

2.2 Oracles for Quantum States
We frequently consider quantum algorithms that query quantum oracles. In this model, a query to
a unitary matrix U consists of a single application of either U , U †, or controlled versions of U or
U †. We also consider quantum algorithms that make queries to random oracles. In analogue with
the classical random oracle model, such calls are not randomized at each query. Rather, a unitary
U is chosen randomly (from some distribution) at the start of the execution of the algorithm, and
thereafter all queries for the duration of the algorithm are made to U .

We now define several types of unitary oracles that we will use. These definitions (and associated
lemmas giving constructions of them) have appeared implicitly or explicitly in prior work, e.g.
[4, 8, 9, 14]. For completeness, we provide proofs of the constructions.

Definition 4. For an n-qubit quantum state |ψ〉, the reflection about |ψ〉, denoted Rψ, is the
n-qubit unitary Rψ := 1− 2|ψ〉〈ψ|.

In other words, |ψ〉 is a −1 eigenstate of Rψ, and all states orthogonal to |ψ〉 are +1 eigenstates.
Note that some authors define the reflection about |ψ〉 to be the negation of this operator (e.g.
[9, 28, 31]), while others follow our convention (e.g. [4, 17, 24]). This makes little difference, as
these definitions are equivalent up to a global phase (or, if using the controlled versions, equivalent
up to a Pauli Z gate).

The following lemma shows that Rψ can be simulated given any unitary that prepares |ψ〉 from
the all-zeros state, possibly with unentangled garbage.

Lemma 5. Let U be a unitary that acts as U |0n〉|0m〉 = |ψ〉|ϕ〉, where |ψ〉 and |ϕ〉 are n- and
m-qubit states, respectively. Then one can simulate T queries to the reflection Rψ using 2T + 1
queries to U .

Proof. Consider the unitary U(1− 2|0m+n〉〈0m+n|)U †. For any n-qubit state |x〉, the action of this
unitary on |x〉|ϕ〉 is equivalent to the action of Rψ on |x〉|ϕ〉. So, we can simulate Rψ on |x〉 as
follows: first use one query to U to prepare |ψ〉|ϕ〉 from |0m+n〉, so that we have a copy of |ϕ〉.

6



Then, simulate each query to Rψ using a query to U and U † to perform U(1− 2|0m+n〉〈0m+n|)U †
applied to |x〉|ϕ〉, using the copy of |ϕ〉 prepared in the first step. �

Definition 6. For a quantum state |ψ〉, the canonical state preparation oracle for |ψ〉, denoted Oψ,
is the reflection about the state |ψ〉−|⊥〉√

2 , where |⊥〉 is some canonical state orthogonal to |ψ〉.

Unless otherwise specified, we generally assume that if |ψ〉 is an n-qubit state, then |⊥〉 is
orthogonal to the space of n-qubit states under a suitable encoding (see Footnote 4).

The next lemma shows that Oψ can be simulated from any oracle that prepares |ψ〉 without
garbage:

Lemma 7. Let U be an n-qubit unitary that satisfies U |0n〉 = |ψ〉. Then one can simulate T
queries to Oψ using 4T + 2 queries to U .

Proof. |⊥〉 is known, so we may assume that a known unitary V acts as V |0n〉 = |⊥〉. Because
Oψ is defined as the reflection about |ψ〉−|⊥〉√

2 , by Lemma 5, it suffices to construct a unitary that
prepares any state of the form |ψ〉−|⊥〉√

2 |ϕ〉 from |0n〉|0m〉 using 2 queries to U . The following circuit
accomplishes this, with |ϕ〉 = |0〉:

|0n〉 / V U † U

|0〉 X H • • X

�

We introduce the notion of a random state preparation oracle, which, to our knowledge, is new.

Definition 8. For an n-qubit state |ψ〉 we define a random state preparation oracle for |ψ〉, denoted
Uψ, as follows. We fix an arbitrary n-qubit unitary V that satisfies V |0n〉 = |ψ〉, then choose a
Haar-random unitary W that acts on the (2n − 1)-dimensional subspace orthogonal to |0n〉 in the
space of n-qubit states. Finally, we set Uψ = VW .

The invariance of the Haar measure guarantees that this distribution over Uψ is independent of
the choice of V , and hence this is well-defined. Note that while we often refer to Uψ as a single
unitary matrix, Uψ really refers to a distribution over unitary matrices. Notice also that if |ψ〉
is distributed as a Haar-random n-qubit state, then Uψ is distributed as a Haar-random n-qubit
unitary.

With these definitions in hand, we can now formally define the three versions of the b-XHOG
task (Problem 1) that we consider in this paper.

Problem 9 (b-XHOG with canonical state preparation). Let |ψ〉 be a Haar-random n-qubit state.
Given oracle access to Oψ, output a sample z ∈ {0, 1}n such that:

E
|ψ〉

[
|〈z|ψ〉|2

]
≥ b

2n .

Problem 10 (b-XHOG with a Haar-random oracle). Let U be a Haar-random n-qubit unitary.
Given oracle access to U , output a sample z ∈ {0, 1}n such that:

E
U

[
|〈z|U |0n〉|2

]
≥ b

2n .
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Equivalently, in the above definition, we can let |ψ〉 be a Haar-random state, choose U = Uψ,
and output a sample z such that:

E
|ψ〉

[
|〈z|ψ〉|2

]
≥ b

2n .

Problem 11 (b-XHOG with Fourier Sampling circuits). Let f : {0, 1}n → {−1, 1} be a uni-
formly random Boolean function of n bits. Let Uf denote the phase oracle for f , meaning the
unitary transformation which acts as Uf |x〉 = f(x)|x〉 for any x ∈ {0, 1}n. Given oracle access to
Uf , output a sample z ∈ {0, 1}n such that:

E
f

[
|〈z|H⊗nUfH⊗n|0n〉|2

]
≥ b

2n ,

where H is the Hadamard transformation.

2.3 Other Useful Facts
We use the following formula for the distance between unitary superoperators in the diamond norm.

Fact 12 ([5]). Let V and W be unitary matrices, and suppose d is the distance between 0 and the
polygon in the complex plane whose vertices are the eigenvalues of VW †. Then∣∣∣∣∣∣V · V † −W ·W ∣∣∣∣∣∣

�
= 2

√
1− d2.

Finally, we observe that for a Haar-random n-qubit quantum state, the information-theoretically
largest linear XEB achievable is O(n), and this is tight.

Fact 13. Let |ψ〉 be a Haar-random n-qubit quantum state. Then:

E
|ψ〉

[
max

z∈{0,1}n
|〈z|ψ〉|2

]
= Θ(n)

2n .

Proof sketch. For a Haar-random |ψ〉, the probabilities |〈z|ψ〉|2 follow a Porter-Thomas distribution
[10], which is to say that they approach i.i.d. exponential random variables with mean 1

2n in the
limit. By a well-known result of Rényi [32], the maximum of N i.i.d. exponential random variables
with mean µ is distributed as

∑N
i=1

Ei
i , where E1, . . . , EN are i.i.d. exponentially distributed with

mean µ. In particular, the expected value of the maximum of N i.i.d. exponential random variables
with mean µ is HN ·µ, where HN is the Nth harmonic number. So, E

[
maxz∈{0,1}n |〈z|ψ〉|2

]
should

approach Θ(n)
2n , because HN ≈ lnN .

In reality, the probabilities |〈z|ψ〉|2 are not exactly i.i.d. exponentially distributed, but are dis-
tributed according to a Dirichlet distribution (in fact, uniform on the 2n-dimensional probability
simplex). This distribution can be sampled from as follows: sample E1, E2, . . . , E2n to be i.i.d. ex-
ponential random variables, and set |〈z|ψ〉|2 = Ez∑2n

i=1 Ei
. The same proof idea still works, essentially

because the denominator
∑2n
i=1Ei concentrates well (indeed, the denominator is exponentially close

to 1 with high probability). �
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3 Canonical State Preparation Oracles
In this section, we prove the quantum supremacy Tsirelson inequality for XHOG with a canonical
state preparation oracle for a Haar-random state (Problem 9). We first sketch the important ideas
in the proof. At the heart of our proof is the following lemma, due to Ambainis, Rosmanis, and
Unruh [8]. It shows that any quantum algorithm that makes queries to a canonical state preparation
oracle Oψ can be approximately simulated by a quantum algorithm that makes no queries to Oψ,
and instead receives various copies of |ψ〉 and superpositions of |ψ〉 with some canonical orthogonal
state.

Lemma 14 ([8]). Let A be a quantum query algorithm that makes T queries to Oψ. Then for any
k, there is a quantum algorithm B that makes no queries to Oψ, and a quantum state |R〉 of the
form:

|R〉 :=
k⊗
j=1

αj |ψ〉+ βj |⊥〉

such that for any state |ϕ〉:

TD(A(|ϕ〉〈ϕ|), B(|R〉〈R|, |ϕ〉〈ϕ|)) ≤ O
(
T√
k

)
.

So long as k � T 2, the output of B will be arbitrarily close to the output of A in trace distance.
We will use this and Fact 13 to show that if A solves b-XHOG for some b > 2, then so does B.
Then, to prove a lower bound on the number of queries T to Oψ needed to solve b-XHOG, it suffices
to instead lower bound k, the number of states of the form αj |ψ〉+ βj |⊥〉 needed to solve b-XHOG.

When |ψ〉 is a Haar-random state, notice that the linear XEB depends only on the magnitude of
the amplitudes in |ψ〉; the phases are irrelevant. So, when considering algorithms that attempt to
solve b-XHOG given only a state |R〉 of the form used in Lemma 14, we might as well assume that
the algorithm randomly reassigns the phases on |ψ〉. More formally, define the mixed state σR as

σR := E
diagonal U

[
U⊗k|R〉〈R|U †⊗k

]
, (1)

where the expectation is over the diagonal unitaries U such that the entries 〈i|U |i〉 are i.i.d. uni-
formly random complex phases (and by convention, 〈⊥|U |⊥〉 = 1). Then, the algorithm’s average
linear XEB score given σR for a random choice of |ψ〉 is identical to its average linear XEB score
given |R〉 for a random choice of |ψ〉, because of the invariance of the Haar measure with respect to
phases.

Next, we observe that one can prepare σR by measuring k copies of |ψ〉 in the computational
basis. We prove this in Lemma 15. So, when considering algorithms for XHOG that start with |R〉,
it suffices to instead consider algorithms that simply measure k copies of |ψ〉 in the computational
basis. Such algorithms are much easier to analyze, because once we have measured the k copies of
|ψ〉, we can assume (by convexity) that any optimal such algorithm for XHOG outputs a string z
deterministically given the k measurement results. And in that case, clearly the optimal strategy
is to output whichever z maximizes the posterior expectation of |〈z|ψ〉|2 given the measurement
results. We analyze this strategy in Lemma 16, and show that roughly 2n/2 copies of |ψ〉 are needed
to solve b-XHOG for b bounded away from 2. The intuition is that the posterior expectation of
|〈z|ψ〉|2 increases only when we see z at least twice in the measurement results. However, the

9



probability that any two measurement results are the same is tiny—on the order of 2−n—and so we
need to measure at least 2n/2 copies of |ψ〉 to see any collisions with decent probability.

We now proceed to proving the necessary lemmas.

Lemma 15. Let |ψ〉 =
∑N
i=1 ψi|i〉 be an unknown quantum state, and consider a state |R〉 of the

form:

|R〉 :=
k⊗
j=1

αj |ψ〉+ βj |⊥〉,

where αj , βj are known for j ∈ [k], and the vectors {|1〉, |2〉, . . . , |N〉, |⊥〉} form an orthonormal
basis. Define the mixed state σR as above (1). Then there exists a protocol to prepare σR by
measuring k copies of |ψ〉 in the computational basis.

To give some intuition, we note that it is simpler to prove Lemma 15 in the case where αj = 1
for all j. In that case, σR can be viewed as an Nk × Nk density matrix where both the rows and
columns are indexed by strings in [N ]k. Then, the averaging over diagonal unitaries implies that
σR is obtained from (|R〉〈R|)⊗k by zeroing out all entries where the index corresponding to the row
is not a reordering of the index corresponding to the column. In fact, one can show that σR is
expressible as a mixture of pure states, where each pure state is a uniform superposition over basis
states that are reorderings of each other. Moreover, the probability associated with each pure state
in this mixture is precisely the probability that one of the reorderings is observed when we measure
k copies of |ψ〉 in the computational basis. So, to prepare σR, it suffices to measure |ψ〉⊗k and then
output the uniform superposition over reorderings of the measurement result.

The proof of Lemma 15 is similar, but we instead have to randomly set some of the measurement
results to ⊥ with probability |βj |2.

Proof of Lemma 15. We first describe the protocol. Define [N⊥] := [N ] ∪ {⊥}. Measure |ψ〉⊗k in
the computational basis to obtain a string x ∈ [N ]k. Then, sample a string x ∈ [N⊥]k by setting

xj =
{

xj with probability |αj |2

⊥ with probability |βj |2

independently for each j ∈ [k]. Let Z := {z ∈ [N⊥]k : z is a reordering of x}. For each z ∈ Z and
j ∈ [k], define

γzj :=
{
αj zj 6= ⊥
βj zj = ⊥.

Finally, prepare and output the state

|ζZ〉 :=
∑
z∈Z

(∏k
j=1 γzj

)
|z〉√∑

z∈Z
∏k
j=1 γzjγ

∗
zj

. (2)

This allows us to express the density matrix ρR output by this protocol as follows:

ρR :=
∑

Z⊂[N⊥]k
Pr[Z = Z] · |ζZ〉〈ζZ |. (3)

10



To complete the proof, we want to show that ρR = σR. To see that this holds, first consider an
entry 〈x|σR|y〉 of σR, where x, y ∈ [N⊥]k. It is equal to

〈x|σR|y〉 = E
diagonal U

 k∏
j=1

γxjγ
∗
yj

 ·
 ∏
j:xj 6=⊥

Uxjxjψxj

 ·
 ∏
j:yj 6=⊥

U∗yjyjψ
∗
yj

 (4)

= 〈x|R〉〈R|y〉 · E
diagonal U

 ∏
j:xj 6=⊥

Uxjxj

 ·
 ∏
j:yj 6=⊥

U∗yjyj

 (5)

=
{
〈x|R〉〈R|y〉 x is a reordering of y
0 otherwise.

(6)

Here, (4) and (5) are simple calculations that follow from the definitions of |R〉 and σR. In (6),
we use the fact that the entries Uii are independent, uniformly random complex units, and so
E[UaiiU∗bii ] = E[Ua−bii ] is 1 if a = b and 0 otherwise, for positive integers a, b. Also, if i 6= j, then
E[UaiiU∗bjj ] = 0 unless a = b = 0.

Evidently, 〈x|ρR|y〉 = 〈x|σR|y〉 = 0 whenever x is not a reordering of y, because ρR is a mixture
of pure states, each of which is a superposition of basis states that are reorderings of one another.
So, it remains to show that 〈x|ρR|y〉 = 〈x|σR|y〉 = 〈x|R〉〈R|y〉 whenever x is a reordering of y. Let
Z := {z ∈ [N⊥]k : z is a reordering of x}. Then:

〈x|ρR|y〉 = Pr[Z = Z] · 〈x|ζZ〉〈ζZ |y〉 (7)

=
(∑
z∈Z

Pr[x = z]
)
· 〈x|ζZ〉〈ζZ |y〉 (8)

=

∑
z∈Z

 m∏
j=1

γzjγ
∗
zj

 ∏
j:zj 6=⊥

ψzjψ
∗
zj

 · ∏m
j=1 γxjγ

∗
yj∑

z∈Z
∏m
j=1 γzjγ

∗
zj

(9)

=

 m∏
j=1

γxjγ
∗
yj

 ·
 ∏
j:xj 6=⊥

ψxjψ
∗
xj

 (10)

= 〈x|R〉〈R|y〉 (11)
= 〈x|σR|y〉. (12)

Here, (7) holds because |ζZ〉 and |ζZ′〉 have disjoint support when Z∩Z ′ = ∅; (8) holds by definition
of Z; (9) holds by definitions of x and |ζZ〉; (10) is a simplification; (11) holds by definition of |R〉,
and (12) follows from (6), because x was assumed to be a reordering of y. �

Combining Lemma 14 and Lemma 15, we have reduced the problem of lower bounding the
number of Oψ queries needed to solve b-XHOG, to lower bounding the number of copies of |ψ〉
needed to solve b-XHOG. The next lemma lower bounds this latter quantity.

Lemma 16. Let |ψ〉 be a Haar-random n-qubit quantum state. Consider a quantum algorithm that
receives as input |ψ〉⊗k and outputs a string z ∈ {0, 1}n. Then:

E
|ψ〉,z

[
|〈z|ψ〉|2

]
≤ 2

2n + O(k2)
4n .
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Proof. Let |R〉 = |ψ〉⊗k. As we have argued above, the algorithm achieves the same linear XEB score
on average if it instead begins with the mixed state σR defined in (1), because of the invariance
of the Haar measure with respect to phases. By Lemma 15, the algorithm can prepare σR by
measuring |R〉 in the computational basis. By a convexity argument, we can assume that the
algorithm outputs z deterministically given the measurement results.

Suppose the measurement results are z1, z2, . . . , zk. Clearly, the choice of z that maximizes
E
[
|〈z|ψ〉|2

]
is whichever z appears most frequently in z1, z2, . . . , zk (with ties broken arbitrarily):

the probabilities |〈i|ψ〉|2 are distributed according to a Dir(1, 1, . . . , 1) distribution, so we can easily
compute the posterior expectations E

[
|〈i|ψ〉|2 | z1, z2, . . . , zk

]
. So, it suffices to bound E

[
|〈z|ψ〉|2

]
for the algorithm that chooses z to be the most frequent measurement result.

Let m be a random variable that denotes the frequency of the chosen z. Then

E
[
|〈z|ψ〉|2

]
= E

[
E
[
|〈z|ψ〉|2 | m

]]
(13)

= E
[ 1 +m

2n + k

]
(14)

≤ 1
2n + E

[
m

2n
]

(15)

≤ 1
2n + E

[
1 +

∑
i 6=j 1[zi = zj ]

2n

]
(16)

= 2
2n +

∑
i 6=j

Pr[zi = zj ]
2n (17)

= 2
2n +

(
k

2

)
2

2n(2n + 1) (18)

≤ 2
2n + O(k2)

4n . (19)

Here, (13) is valid by the law of total expectation. (14) substitutes the formula for the posterior
expectation of a Dirichlet distribution. (15) is valid by linearity of expectation. In (16), we use the
crude upper bound that m is at most one more than the number of pairwise collisions in z1, . . . , zk
(which is tight when the number of collisions is 0 or 1). (17) is valid by linearity of expectation. (18)
expands the sum, and computes the collision probabilities in terms of moments of the underlying
Dir(1, 1, . . . , 1) prior distribution. �

We note that one should not expect Lemma 16 to be tight for large k (say, k = Ω
(
2n/2

)
). For

example, to achieve b = 4, we need at least enough samples to see m ≥ 3 with good probability.
But Pr[m ≥ 3] is negligible unless k = Ω

(
22n/3

)
. More generally, a tight bound on the number

of copies of |ψ〉 needed to achieve a particular value of b seems closely related to the number of
measurements of |ψ〉 needed to see m ≥ b−1. This is like a sort of “balls into bins” problem [23, 30]
with k balls and 2n bins in which we want to bound the probability that the maximum load of any
bin exceeds m, but where the probabilities associated to each bin follow a Dirichlet prior rather
than being uniform.

We finally have the tools to prove the main result of this section.

Theorem 17. Any quantum query algorithm for (2 + ε)-XHOG with query access to Oψ for a
Haar-random n-qubit state |ψ〉 requires Ω

(
2n/4ε5/4

n

)
queries.

12



Proof. Consider a quantum algorithm A that makes T queries to Oψ and solves (2 + ε)-XHOG.
Choose k = c2T 2n2

ε2 in Lemma 14 for a constant c to be chosen later. By Lemma 14, there is a
quantum algorithm B that makes no queries to Oψ and instead starts with a state |R〉 (depending
on |ψ〉) such that the trace distance between the output of A and B is at most O

(
ε
cn

)
for every

|ψ〉. In particular, if we view |ψ〉 as fixed, then the total variation distance between the outputs
zA and zB of A and B, respectively, (as probability distributions over {0, 1}n) is at most O

(
ε
cn

)
.

Hence, for every |ψ〉, we may write:

E
zA

[
|〈zA|ψ〉|2

]
− E
zB

[
|〈zB|ψ〉|2

]
=

∑
z∈{0,1}n

|〈z|ψ〉|2 · (Pr[zA = z]− Pr[zB = z])

≤
∑

z∈{0,1}n
|〈z|ψ〉|2 · |Pr[zA = z]− Pr[zB = z]|

≤ max
z∈{0,1}n

|〈z|ψ〉|2 ·
∑

z′∈{0,1}n

∣∣Pr[zA = z′]− Pr[zB = z′]
∣∣

≤ max
z∈{0,1}n

|〈z|ψ〉|2 ·O
(
ε

cn

)
,

because the sum in the penultimate inequality is twice the total variation distance between zA
and zB. Fact 13 states that for a Haar-random |ψ〉, E|ψ〉

[
maxz∈{0,1}n |〈z|ψ〉|2

]
≤ O(n)

2n . So, for a
Haar-random |ψ〉, we have

E
|ψ〉,zA

[
|〈zA|ψ〉|2

]
− E
|ψ〉,zB

[
|〈zB|ψ〉|2

]
≤ O

(
ε

c2n
)
.

In particular, if we choose c sufficiently large, then B solves
(
2 + ε

2
)
-XHOG.

Because of the invariance of the Haar measure with respect to phases, B still solves
(
2 + ε

2
)
-

XHOG if the pure state |R〉 is replaced with the mixed state σR defined in (1). By Lemma 15,
this implies the existence of an algorithm that solves

(
2 + ε

2
)
-XHOG given k copies of |ψ〉. By

Lemma 16, such an algorithm must satisfy:

ε

2 ≤
O(k2)

2n .

Plugging in k gives the desired lower bound on T :

ε

2 ≤ O
(
T 4n4

2nε4

)

T ≥ Ω
(

2n/4ε5/4

n

)
. �

Lastly, we give an upper bound on the number of queries needed to nontrivially beat the naive
algorithm for XHOG with Oψ. In fact, the following algorithm works with any oracle that prepares
a Haar-random state (including a Haar-random unitary), because the algorithm only needs copies
of |ψ〉 and the ability to perform the reflection Rψ. We thank Scott Aaronson for suggesting this
approach based on quantum collision-finding.
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Theorem 18. There is a quantum algorithm for (2 + Ω(1))-XHOG that makes O
(
2n/3

)
queries

to a state preparation oracle for a Haar-random n-qubit state |ψ〉.

Proof. The quantum algorithm is essentially equivalent to the collision-finding algorithm of Bras-
sard, Høyer, and Tapp [16]. We proceed by measuring k = 2n/3 copies of |ψ〉 in the computational
basis, with results z1, z2, . . . , zk ∈ {0, 1}n. If any string appears twice in z1, z2, . . . , zk, we output
the first such collision. Otherwise, we perform quantum amplitude amplification [17] on another
copy of |ψ〉, where the “good” subspace is spanned by z1, z2, . . . , zk. This uses the reflection Rψ,
which can be simulated using a constant number of queries to any oracle that prepares |ψ〉 (see
Lemma 5). Finally, we measure and output the result of the amplitude amplification; call this
result zk+1. For the purpose of analyzing this algorithm, we say that the algorithm “succeeds” if it
either finds a collision in z1, z2, . . . , zk, or if zk+1 is contained in the good subspace.

We first argue that for any |ψ〉, O
(
2n/3

)
queries to Rψ (for amplitude amplification) are suf-

ficient for the algorithm to succeed with high probability. For this part of the analysis, we view
|ψ〉 as fixed, and consider only the randomness of the algorithm. Notice that for each 1 ≤ i ≤ k,
Pr
[
|〈zi|ψ〉|2 ≥ 1

2n+1

]
≥ 1

2 , because at most half of the probability mass of the output distribution
of |ψ〉 can be placed on inputs for which the output probability is less than 1

2n+1 , because there are
only 2n possible outputs. Thus, by a Chernoff bound, we have that:

Pr
[
k∑
i=1
|〈zi|ψ〉|2 ≥

k

2n+2

]
≥ 1− exp(O(k)).

In particular, with probability 1− exp(O(k)), either the algorithm finds a collision in z1, z2, . . . , zk,
or else O

(√
2n
k

)
= O

(
2n/3

)
applications of Rψ within the amplitude amplification subroutine

are sufficient to measure a good string with arbitrarily high constant probability. So overall, the
algorithm can be assumed to succeed with arbitrarily high constant probability.

Next, we argue that the algorithm outputs a string z such that E
[
|〈z|ψ〉|2

]
≥ 2+Ω(1)

2n . Suppose
that instead of performing amplitude amplification at the end, we just measured one additional
copy of |ψ〉 (still calling the result zk+1) and output zk+1 if there were no collisions in z1, z2, . . . , zk.
Then notice that, conditional on this modified algorithm’s success, the expected XEB score is at
least 3−o(1)

2n . In symbols, we claim that:

E
[
|〈z|ψ〉|2 | success

]
≥ 3

2n + k + 1

for this modified algorithm, because conditional on success, z was observed at least twice in
z1, z2, . . . , zk+1, so 3

2n+k+1 is a lower bound on the posterior expectation of the underlying Dirichlet
prior distribution on the output probabilities of |ψ〉. But now, we claim that E

[
|〈z|ψ〉|2 | success

]
is

the same for both the modified algorithm and the original algorithm that uses amplitude amplifica-
tion. The reason is that amplitude amplification preserves conditional probabilities: the conditional
probability distribution of zk+1 is exactly the same in both algorithms, when conditioned on mea-
suring in the good subspace. So overall, we have that:

E
[
|〈z|ψ〉|2

]
= E

[
|〈z|ψ〉|2 | success

]
· Pr[success] + E

[
|〈z|ψ〉|2 | failure

]
· Pr[failure]

≥ E
[
|〈z|ψ〉|2 | success

]
· Pr[success]

14



= 3− o(1)
2n · (1− p)

≥ 2 + Ω(1)
2n ,

where p is the arbitrarily small constant failure probability of amplitude amplification. �

We remark that a sharper analysis could most likely improve the above algorithm from solving
(2+Ω(1))-XHOG to solving (3−o(1))-XHOG, while still using the same number of queries. For most
Haar-random states |ψ〉, the probability of measuring in the “good” subspace should concentrate very
well. As a result, it should be possible to fix some T (n) such that running exactly T (n) iterations of
Grover’s algorithm ensures finding a marked with high probability, rather than constant probability.

4 Random State Preparation Oracles
In this section, we show that a canonical state preparation oracle and a random state preparation
oracle are essentially equivalent, and use it to prove the quantum supremacy Tsirelson inequality
for XHOG with a Haar-random oracle (Problem 10).

By Lemma 7, for a state |ψ〉, query access to a random state preparation oracle Uψ implies query
access to the canonical state preparation oracle Oψ with constant overhead. The reverse direction is
less obvious. We know from the definition of Uψ (Definition 8) that one can simulate Uψ given any
n-qubit unitary V that prepares |ψ〉 from |0n〉. So, it is tempting to let V = Oψ with |⊥〉 = |0n〉
to argue that Oψ allows simulating Uψ. However, this is only possible if |0n〉 is orthogonal to |ψ〉.
And while we previously argued that we can always find a canonical state |⊥〉 that is orthogonal to
|ψ〉 (Footnote 4), this requires extending the Hilbert space, so that Oψ no longer acts on n qubits!

To address this, imagine that we knew an explicit n-qubit state |ψ⊥〉 orthogonal to |ψ〉. Notice
that we could perfectly swap |ψ〉 and |ψ⊥〉: the composition OψOψ⊥Oψ sends |ψ〉 to |ψ⊥〉, |ψ⊥〉 to
|ψ〉, and acts trivially on all states orthogonal to |ψ〉 and |ψ⊥〉. In particular, this swaps |ψ〉 and
|ψ⊥〉 while acting only on the space of n-qubit states. Next, if we know |ψ⊥〉 explicitly, we can
certainly come up with an n-qubit unitary that sends |0n〉 to |ψ⊥〉. By composing such a unitary
with OψOψ⊥Oψ, we are left with an n-qubit unitary that sends |0n〉 to |ψ〉. This is sufficient to
construct Uψ, by Definition 8.

While we do not necessarily have such a state |ψ⊥〉, a random n-qubit state |ϕ〉 will be expo-
nentially close to such a |ψ⊥〉 with overwhelming probability. The next theorem shows that we can
use this observation to approximately simulate Uψ given Oψ, by going through the steps above and
keeping track of deviation from the ideal construction in terms of 〈ψ|ϕ〉.

Theorem 19. Let |ψ〉 be an n-qubit state. Consider a quantum query algorithm A that makes T
queries to Uψ. Then there is a quantum query algorithm B that makes 2T queries to Oψ such that:∣∣∣∣∣

∣∣∣∣∣EUψ [A]−B
∣∣∣∣∣
∣∣∣∣∣
�
≤ 10T + 4

2n/2
.

Proof. Without loss of generality, assume |⊥〉 is orthogonal to all n-qubit states. Let |ϕ〉 be a
Haar-random n-qubit state, and let V be an arbitrary n-qubit unitary that satisfies V |0n〉 = |ϕ〉.
Write |ϕ〉 = α|ψ⊥〉 + β|ψ〉, where |ψ⊥〉 is some n-qubit state orthogonal to |ψ〉, with the phase
chosen so that α is real and nonnegative. Note that β = 〈ψ|ϕ〉.
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Suppose we had an oracle V ′ acting on n qubits such that V ′|0n〉 = |ψ⊥〉. Then we could
appeal to Lemma 7 to simulate an oracle Oψ⊥ that reflects about the state |ψ

⊥〉−|⊥〉√
2 using queries

to V ′. Then the composition OψOψ⊥Oψ would swap |ψ〉 and |ψ⊥〉, while acting only on the space
of n-qubit states. Furthermore, we would have that OψOψ⊥OψV ′|0n〉 = |ψ〉, where OψOψ⊥OψV ′
acts on n qubits. So, by Definition 8, we could simulate Uψ perfectly by choosing a random
(2n − 1)-dimensional unitary W and replacing calls to Uψ with OψOψ⊥OψV ′W .

Unfortunately, we do not have such an oracle V ′; we only have V . However, we can show that
there exists an oracle V ′ that is close to V , so if we replace all occurrences of V ′ with V , the
resulting unitary we get is close to a random state preparation oracle for |ψ〉. Specifically, we take
R to be a rotation in the 2-dimensional space spanned by |ψ〉 and |ψ⊥〉 that satisfies R|ϕ〉 = |ψ⊥〉.
Then, we let V ′ = RV .

R is a rotation by angle θ = arccos(α) in this 2-dimensional subspace, and acts as the identity
elsewhere. So, R has eigenvalues eiθ, e−iθ, and 1. The assumption that α ≥ 0 implies θ ≤ π

2 , so by
Fact 12, ∣∣∣∣∣∣V · V † − V ′ · V ′†∣∣∣∣∣∣

�
= 2

√
1− cos2(θ) = 2 sin θ = 2|〈ψ|ϕ〉|. (20)

Lemma 7 shows that V ′ (or more precisely, controlled-V ′ or its inverse) is used 4T + 2 times in
implementing T queries to Oψ⊥ , which means we need 5T + 2 applications of V ′ to implement T
queries to OψOψ⊥OψV ′.

Let Bψ⊥ denote the quantum algorithm that simulates A using OψOψ⊥OψV ′W (for a random
choice of W ) in place of Uψ, and let Bϕ denote the quantum algorithm that simulates Bψ⊥ using
V in place of V ′. Then ∣∣∣∣∣

∣∣∣∣∣EUψ[A]−Bϕ

∣∣∣∣∣
∣∣∣∣∣
�

=
∣∣∣∣∣∣Bψ⊥ −Bϕ

∣∣∣∣∣∣
�

(21)

≤ (5T + 2)
∣∣∣∣∣∣V · V † − V ′ · V ′†∣∣∣∣∣∣

�
(22)

= (10T + 4)|〈ψ|ϕ〉|, (23)

where (21) holds because EUψ [A] and Bψ⊥ are equivalent as superoperators; (22) holds by the
subadditivity of the diamond norm under composition, because Bψ⊥ queries V ′ a total of 5T + 2
times; and (23) substitutes (20).

Finally, let B = E|ϕ〉 [Bϕ] (i.e. run Bϕ for a Haar-random choice of |ϕ〉). Then∣∣∣∣∣
∣∣∣∣∣EUψ[A]−B

∣∣∣∣∣
∣∣∣∣∣
�

=
∣∣∣∣∣
∣∣∣∣∣EUψ[A]− E

|ϕ〉
[Bϕ]

∣∣∣∣∣
∣∣∣∣∣
�

(24)

≤ E
|ϕ〉

[∣∣∣∣∣
∣∣∣∣∣EUψ[A]−Bϕ

∣∣∣∣∣
∣∣∣∣∣
�

]
(25)

≤ E
|ϕ〉

[(10T + 4)|〈ψ|ϕ〉|] (26)

= (10T + 4) E
|ϕ〉

[∑2n
i=1 |〈i|ϕ〉|

2n

]
(27)

≤ 10T + 4
2n max

|ϕ〉

[ 2n∑
i=1
|〈i|ϕ〉|

]
(28)
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≤ 10T + 4
2n/2

, (29)

where (24) holds by the definition of B; (25) holds by Jensen’s inequality because the diamond norm,
like every norm, is convex; (26) substitutes (23); (27) holds by symmetry (the choice of orthonormal
basis {|i〉 : i ∈ [2n]} is arbitrary); (28) trivially upper bounds (27); and (29) holds because the 1-
norm of an n-qubit quantum state is at most 2n/2 (maximized by a uniform superposition). �

The above theorem implies that the oracle Oψ in Theorem 17 can be replaced by a Haar-random
n-qubit unitary.

Theorem 20. Any quantum query algorithm for (2 + ε)-XHOG with query access to Uψ for a
Haar-random n-qubit state |ψ〉 (i.e. a Haar-random n-qubit unitary) requires Ω

(
2n/4ε5/4

n

)
queries.

Proof. Consider a quantum algorithm A that makes T queries to Uψ and solves (2 + ε)-XHOG.
Let c be a constant to be chosen later. If T > c2n/2ε

n , then we are done, because we can always
assume that ε ≤ O(n) (Fact 13), so 2n/2ε

n ≥ 2n/4ε5/4

n for sufficiently large n. In the complementary
case, suppose that T ≤ c2n/2ε

n . By Theorem 19 and the definition of the diamond norm, there is a
quantum query algorithm B that makes 2T queries to Oψ such that the trace distance between the
output of A (averaged over the choice of Uψ) and B is at most 10T+4

2n/2 ≤ 14T
2n/2 ≤ 14cε

n for every |ψ〉. By
an argument involving Fact 13 similar to the one used in the proof of Theorem 17, we conclude that
if c is a sufficiently small constant, then B solves

(
2 + ε

2
)
-XHOG (with a canonical state preparation

oracle for a Haar-random state). By Theorem 17, this implies T = Ω
(

2n/4ε5/4

n

)
. �

5 Fourier Sampling Circuits
In this section, we prove the quantum supremacy Tsirelson inequality for single-query algorithms
over Fourier Sampling circuits (Problem 11).

Throughout this section, we let N = 2n, and let Fn := {f : {0, 1}n → {−1, 1}} denote the set
of all n-bit Boolean functions. Given a function f ∈ Fn, we define the Fourier coefficient

f̂(z) := 1
2n

∑
x∈{0,1}n

f(x)(−1)x·z

for each z ∈ {0, 1}n. We also define the characters χz : {0, 1}n → {−1, 1} for each z ∈ {0, 1}n:

χz(x) := (−1)x·z.

Given oracle access to a function f ∈ Fn, the Fourier Sampling quantum circuit for f consists
of a layer of Hadamard gates, then a single query to f , then another layer of Hadamard gates, so
that the resulting circuit samples a string z ∈ {0, 1}n with probability f̂(z)2. In the context of
XHOG, we consider the distribution of Fourier Sampling circuits where the oracle f is chosen
uniformly at random from Fn.

Proposition 21. Fourier Sampling circuits over n qubits solve (3− 2
2n )-XHOG.
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Proof. Because the circuit samples z with probability f̂(z)2, the expected linear XEB score is:

E
f∈Fn

 ∑
z∈{0,1}n

f̂(z)4

 = E
f∈Fn

 ∑
z∈{0,1}n

f̂ · χz(0n)4

 (30)

= 2n E
f∈Fn

[
f̂(0n)4

]
(31)

= 2n
( 2

2n
)4

E
[
(B(2n, 1/2)− E [B(2n, 1/2)])4

]
(32)

=
3− 2

2n

2n , (33)

where (30) applies the substitution f̂(z) = f̂ · χz(0n); (31) is valid because if f is uniform over Fn
then so is f · χz; (32) uses the fact that 2n

2 (f̂(0n) + 1) is binomially distributed with 2n trials and
success probability 1

2 ; and (33) uses the formula Np(1−p)(1 + (3N −6)p(1−p)) for the 4th central
moment of a binomial distribution with N trials and success probability p. �

The remainder of this section constitutes the proof of the following theorem, which shows the
optimality of the 1-query algoritm for XHOG with Fourier Sampling circuits:

Theorem 22. Any 1-query algorithm for b-XHOG over n-qubit Fourier Sampling circuits sat-
isfies b ≤ 3− 2

2n .

To prove Theorem 22, we use the polynomial method of Beals et al. [11]. Consider a quantum
query algorithm that makes T queries to f ∈ Fn and outputs a string z ∈ {0, 1}n. The polynomial
method implies that for each z ∈ {0, 1}n, the probability that the algorithm outputs z can be
expressed as a real multilinear polynomial of degree 2T in the bits of f . We write such a polynomial
as:

pz(f) =
∑

S⊂{0,1}n,|S|≤2T
cz,S ·

∏
x∈S

f(x).

Then, the expected XEB score of this quantum query algorithm is given by:

1
2N

∑
f∈Fn

∑
z∈{0,1}n

pz(f) · f̂(z)2. (34)

Our key observation is that the quantity (34) is linear in the coefficients cz,S . This allows us to
express the largest XEB score achievable by polynomials of degree 2T as a linear program, with the
constraints that the polynomials {pz(f) : z ∈ {0, 1}n} must represent a probability distribution.
Then, the objective value of the linear program can be upper bounded by giving a solution to the
dual linear program. We can write the linear program as follows:

max
1

2N
∑
f∈Fn

∑
z∈{0,1}n

pz(f) · f̂(z)2

subject to pz(f) ≥ 0 for each f ∈ Fn; z ∈ {0, 1}n∑
z∈{0,1}n

pz(f) = 1 for each f ∈ Fn

cz,S ∈ R for each z ∈ {0, 1}n; 0 ≤ |S| ≤ 2T

(35)
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Before giving a solution to (or even writing down) the dual linear program, we will first show that
the primal linear program can be simplified considerably.

We first argue that one can apply a sort of symmetrization to reduce the number of variables.
Consider a solution to the linear program (35) in terms of polynomials pz, and define:

p′z(f) = 1
N

∑
y∈{0,1}n

py⊕z(f · χy).

Then we claim that the polynomials p′z are also a solution to the linear program with the same
objective value. The intuition is that f̂(z) = f̂ · χy(y ⊕ z), so we might as well assume that the
probability of outputting z on f is the same as the probability of outputting y ⊕ z on f · χy, by
averaging over the possible choices of y. We verify that the objective value is:

1
2N

∑
f∈Fn

∑
z∈{0,1}n

p′z(f) · f̂(z)2 = 1
N2N

∑
f∈Fn

∑
z∈{0,1}n

∑
y∈{0,1}n

py⊕z(f · χy) · f̂(z)2

= 1
N2N

∑
f∈Fn

∑
z∈{0,1}n

∑
y∈{0,1}n

py⊕z(f · χy) · f̂ · χy(y ⊕ z)2

= 1
N2N

∑
y∈{0,1}n

∑
f∈Fn

∑
z∈{0,1}n

py⊕z(f · χy) · f̂ · χy(y ⊕ z)2

= 1
2N

∑
f∈Fn

∑
z∈{0,1}n

pz(f) · f̂(z)2.

The nonnegativity constraint on each p′z(f) is satisfied by convexity, and the polynomials sum to 1
for each f because

∑
z∈{0,1}n

p′z(f) = 1
N

∑
z∈{0,1}n

∑
y∈{0,1}n

py⊕z(f · χy)

= 1
N

∑
y∈{0,1}n

∑
z∈{0,1}n

py⊕z(f · χy)

= 1
N

∑
y∈{0,1}n

∑
z∈{0,1}n

pz(f · χy)

= 1
N

∑
y∈{0,1}n

1

= 1.

Notice that the p′zs satisfy p′z(f) = p′0n(f · χz). So, we can rewrite the linear program in terms of
p′0n(f) alone. Define p(f) = p′0n(f) and define the coefficients of p(f) by:

p(f) =
∑

S⊂{0,1}n,|S|≤2T
cS ·

∏
x∈S

f(x).
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Now, we can rewrite the linear program (35) in terms of p(f) as:

max
1

2N
∑
f∈Fn

∑
z∈{0,1}n

p(f · χz) · f̂(z)2

subject to p(f) ≥ 0 for each f ∈ Fn∑
z∈{0,1}n

p(f · χz) = 1 for each f ∈ Fn

cS ∈ R for each 0 ≤ |S| ≤ 2T

(36)

We can simplify the objective function of the linear program (36) even further:
1

2N
∑
f∈Fn

∑
z∈{0,1}n

p(f · χz) · f̂(z)2 = 1
2N

∑
f∈Fn

∑
z∈{0,1}n

p(f · χz) · f̂ · χz(0n)2

= 1
2N

∑
z∈{0,1}n

∑
f∈Fn

p(f · χz) · f̂ · χz(0n)2

= 1
2N

∑
z∈{0,1}n

∑
f∈Fn

p(f) · f̂(0n)2

= N

2N
∑
f∈Fn

p(f) · f̂(0n)2.

Notice that we can also assume p(f) = p(−f) without loss of generality, because the squared Fourier
coefficient of f is the same as the squared Fourier coefficient of its negation, and because replacing
p(f) by p(f)+p(−f)

2 still satisfies all of the constraints. In particular,we can assume cS = 0 if |S| is
odd.

Next, we turn to simplifying the equality constraint. Define q(f) by:

q(f) :=
∑

z∈{0,1}n
p(f · χz)

=
∑

z∈{0,1}n

∑
|S|≤2T

cS ·
∏
x∈S

f(x) · (−1)x·z,

which is also a multilinear polynomial in f of degree 2T . Then the equality constraint reads as
q(f) = 1 for every f ∈ Fn. Because q is multilinear, this implies q(f) = 1 in fact holds identically
over all f : {0, 1}n → R, and not just Boolean-valued f . So, the coefficient on the monomial of the
set S in q must be 1 if S = ∅ and 0 otherwise. For S empty, we have:∑

z∈{0,1}n
c∅ = 1,

which is to say that c∅ = 1
N . Otherwise, for nonempty S we have:∑

z∈{0,1}n
cS
∏
x∈S

(−1)x·z = 0.

We can rewrite the equation above as:∑
z∈{0,1}n

cS(−1)(
∑

x∈S x)·z = 0.

Now, there are two cases:
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• If
⊕
x∈S x = 0n, then the equation holds if and only if cS = 0.

• If
⊕
x∈S x 6= 0n, then the terms in the sum are cS half of the time and −cS the other half of

the time, so equality always holds.

Putting this altogether, we can conclude:

• c∅ = 1
N .

• cS = 0 if
⊕

x∈S x = 0n.

• cS = 0 if |S| is odd.

• cS is otherwise unconstrained by q(f) = 1.

After all of this, our linear program now has the much simpler form:5

max
N

2N
∑
f∈Fn

p(f) · f̂(0n)2

subject to p(f) ≥ 0 for each f ∈ Fn
c∅ = 1

N
cS ∈ R for each 2 ≤ |S| ≤ 2T with |S| even,

⊕
S 6= 0n

(37)

Alternatively, we can express the linear program (37) purely in terms of the variables cS , rather
than leaving them implicit in p(f). In the objective function, the coefficient on cS is given by:

kS := N

2N
∑
f∈Fn

f̂(0n)2 ·
∏
x∈S

f(x).

We compute kS depending on the size of S:

• If S = ∅, then kS = N · E
[
f̂(0n)2

]
= N · E

[
f̂(0n)2 − E

[
f̂(0n)

]2]
= N · Var

[
f̂(0n)

]
= 1,

because for a random f , f̂(0n) is a sum of 2n independent ± 1
2n variables.

• If S 6= ∅, then:

kS = N

2N
∑
f∈Fn

1
22n

∑
x1∈{0,1}n

∑
x2∈{0,1}n

f(x1)f(x2)
∏
x∈S

f(x)

= N

2N
1

22n

∑
x1∈{0,1}n

∑
x2∈{0,1}n

∑
f∈Fn

f(x1)f(x2)
∏
x∈S

f(x)

=
{ 2
N |S| = 2
0 |S| > 2

,

because in the second line, the innermost sum is 0 unless {x1, x2} = S.

5Here,
⊕

S is shorthand for
⊕

x∈S x.

21



So, the final primal linear program takes the form:

max c∅ + 2
N

∑
|S|=2

cS

subject to
∑
S

cS ·
∏
x∈S

f(x) ≥ 0 for each f ∈ Fn

c∅ = 1
N

cS ∈ R for each 2 ≤ |S| ≤ 2T with |S| even,
⊕
S 6= 0n

(38)

Standard manipulations reveal the dual linear program of (38):

min
b

N
subject to b−

∑
f∈Fn

ψf = 1

−
∑
f∈Fn

ψf
∏
x∈S

f(x) = 2
N

for each |S| = 2

−
∑
f∈Fn

ψf
∏
x∈S

f(x) = 0 for each 4 ≤ |S| ≤ 2T with |S| even,
⊕
S 6= 0n

ψf ≥ 0 for each f ∈ Fn
b ∈ R

(39)

We now construct a solution to the dual linear program (39) for T = 1 query. Our dual solution
is motivated by complementary slackness, which guarantees that a variable in (39) of the optimal
dual solution is nonzero if and only if the corresponding constraint in (38) is tight in the optimal
primal solution. The naive XHOG algorithm solves the primal linear program with p(f) = f̂(0n)2,
so p(f) = 0 if and only if f̂(0n) = 0. Thus, if we think that the naive algorithm is optimal, then we
should look for a dual solution where ψf is nonzero if and only if f̂(0n) = 0.

For some κ to be chosen later, we choose ψf = κ if f̂(0n) = 0 and ψf = 0 otherwise. In other
words, we let ψf = κ ·HalfN (f), where HalfN : {−1, 1}N → {0, 1} is the 0-1 indicator of the set of
functions in Fn (viewed as N -bit strings) with exactly N

2 coordinates equal to −1.
Viewing ψf = ψ(f) as a function ψ : {−1, 1}N → R, it will be convenient to rewrite the

constraints of the dual linear program in terms of the Fourier coefficients of ψ. We use the inner
product formula below for Fourier coefficients, with the understanding that we identify a set S ⊆ [N ]
with its characteristic string in {0, 1}N :

ψ̂(S) = 1
2N

∑
f∈{−1,1}N

ψf
∏
x∈S

f(x).
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Now, the dual linear program reads as:

min
b

N
subject to b− 2N ψ̂(∅) = 1

2N ψ̂(S) = − 2
N

for each |S| = 2
ψ̂(S) = 0 for each 4 ≤ |S| ≤ 2T with |S| even,

⊕
S 6= 0n

ψf ≥ 0 for each f ∈ Fn
b ∈ R

(40)

The Fourier coefficients of HalfN are well known [29, Theorem 5.19], though they are also easy
to compute by hand for sets of small size. For |S| = 2j, they are given by:

ĤalfN (S) = (−1)j
(N/2
j

)(N
2j
) ·

( N
N/2
)

2N .

The |S| = 2 equality constraint of the dual linear program (40) implies

2N · κ · ĤalfN (S) = − 2
N

κ = 1
2N ·

2
N
·
(N

2
)(N/2

1
) · 2N( N

N/2
) =

4
(N

2
)

N2( N
N/2
) = 2(N − 1)

N
( N
N/2
) .

Plugging this value of κ into the constraint on ψ̂(∅) gives:

b− 2N · κ · ĤalfN (∅) = 1

b = 1 + 2N · κ ·
(N/2

0
)(N

0
) ·

( N
N/2
)

2N = 1 + 2N − 1
N

= 3− 2
N
.

This completes the proof, as we have shown a solution to the dual linear program with objective
value 3− 2

N
N .

6 Discussion
The most natural question left for future work is whether our bounds could be improved. Our lower
bounds for b-XHOG with Oψ or Uψ show that for constant ε, (2 + ε)-XHOG requires Ω

(
2n/4

poly(n)

)
queries to either oracle, while the best upper bound we know of solves (2 + ε)-XHOG in O

(
2n/3

)
queries. We conjecture that this upper bound is tight.

One possible approach towards improving the lower bound for b-XHOG with Oψ (and by ex-
tension, Uψ) is to use the polynomial method, as we did for the Fourier Sampling lower bound.
Indeed, the output probabilities of an algorithm that makes T queries to Oψ can be expressed as
degree-2T polynomials in the entries of Oψ. If we write |ψ〉 =

∑N
i=1 αi|i〉, then these are poly-

nomials in the amplitudes α1, . . . , αN and the conjugates of the amplitudes α∗1, . . . , α∗N . Because
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of the invariance of the Haar measure with respect to phases, and because the linear XEB score
depends only on the magnitudes of the amplitudes, we can further assume without loss of generality
that the output probabilities are polynomials in the variables |α1|2, . . . , |αN |2, which are equiva-
lently the measurement probabilities of |ψ〉 in the computational basis. We can also assume that
these polynomials are homogeneous, because the input variables satisfy

∑N
i=1 |αi|2 = 1, so we can

multiply any lower-degree terms by this sum to make all terms have the same degree. Like in our
Fourier Sampling lower bound, the polynomials are constrained to represent a probability distri-
bution for all valid inputs. However, unlike the Fourier Sampling lower bound, this introduces
uncountably many constraints in the primal linear program: the polynomials representing the out-
put probabilities must be nonnegative for all inputs (|α1|2, . . . , |αN |2) on the probability simplex.
It may still be possible to exhibit a solution to the dual linear program if only finitely many of
the constraints are relevant (such an approach was used in [18], for example). Put another way,
it might suffice to throw out all but finitely many of the primal constraints to obtain a nontrivial
upper bound on the value of the linear program.

Our b-XHOG bound for Fourier Sampling circuits is tight, but it only applies to single-
query algorithms. In principle, our lower bound approach via the polynomial method could be
generalized to algorithms that make additional queries, by increasing the degree of the polynomials
in the linear program (38) and exhibiting another dual solution. The challenge seems to be that
the parity constraint on the monomials with nonzero coefficients becomes unwieldy when working
with polynomials of larger degree.

Beyond possible improvements to the query complexity bounds, it would be interesting to give
some evidence that beating the naive XHOG algorithm is hard in the real world. Aaronson and Gunn
[3] showed that (1 + ε)-XHOG is classically hard, assuming the classical hardness of nontrivially
estimating the output probabilities of random quantum circuits. It is not clear whether a similar
argument could work for quantum algorithms, though, because sampling from a random quantum
circuit gives a better-than-trivial algorithm for estimating its output probabilities.

Acknowledgements
Thanks to Scott Aaronson, Sabee Grewal, Sam Gunn, Robin Kothari, Daniel Liang, Patrick Rall,
Andrea Rocchetto, and Justin Thaler for helpful discussions and illuminating insights. Thanks also
to anonymous reviewers for helpful comments regarding the presentation of this work. This work
was supported by a Vannevar Bush Fellowship and a National Defense Science and Engineering
Graduate (NDSEG) Fellowship from the US Department of Defense.

References
[1] Scott Aaronson. Random circuit sampling: Thoughts and open problems. The Quantum Wave

in Computing, 2020. URL https://simons.berkeley.edu/talks/tbd-124. 2
[2] Scott Aaronson and Lijie Chen. Complexity-Theoretic Foundations of Quantum Supremacy

Experiments. In Ryan O’Donnell, editor, 32nd Computational Complexity Conference (CCC
2017), volume 79 of Leibniz International Proceedings in Informatics (LIPIcs), pages 22:1–
22:67, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN
978-3-95977-040-8. DOI: 10.4230/LIPIcs.CCC.2017.22. URL http://drops.dagstuhl.de/
opus/volltexte/2017/7527. 3, 4

24

https://simons.berkeley.edu/talks/tbd-124
https://doi.org/10.4230/LIPIcs.CCC.2017.22
http://drops.dagstuhl.de/opus/volltexte/2017/7527
http://drops.dagstuhl.de/opus/volltexte/2017/7527


[3] Scott Aaronson and Sam Gunn. On the classical hardness of spoofing linear cross-entropy
benchmarking. Theory of Computing, 16(11):1–8, 2020. DOI: 10.4086/toc.2020.v016a011. URL
http://www.theoryofcomputing.org/articles/v016a011. 2, 24

[4] Scott Aaronson, Robin Kothari, William Kretschmer, and Justin Thaler. Quantum Lower
Bounds for Approximate Counting via Laurent Polynomials. In Shubhangi Saraf, editor, 35th
Computational Complexity Conference (CCC 2020), volume 169 of Leibniz International Pro-
ceedings in Informatics (LIPIcs), pages 7:1–7:47, Dagstuhl, Germany, 2020. Schloss Dagstuhl–
Leibniz-Zentrum für Informatik. ISBN 978-3-95977-156-6. DOI: 10.4230/LIPIcs.CCC.2020.7.
URL https://drops.dagstuhl.de/opus/volltexte/2020/12559. 4, 6

[5] Dorit Aharonov, Alexei Kitaev, and Noam Nisan. Quantum circuits with mixed states. In
Proceedings of the Thirtieth Annual ACM Symposium on Theory of Computing, STOC ’98, page
20–30, New York, NY, USA, 1998. Association for Computing Machinery. ISBN 0897919629.
DOI: 10.1145/276698.276708. URL https://doi.org/10.1145/276698.276708. 6, 8

[6] Andris Ambainis. Understanding quantum algorithms via query complexity. In Proceedings of
the 2018 International Congress of Mathematicians, volume 3, pages 3249–3270, 2018. DOI:
10.1142/9789813272880_0181. 3

[7] Andris Ambainis, Loïck Magnin, Martin Roetteler, and Jeremie Roland. Symmetry-assisted
adversaries for quantum state generation. In Proceedings of the 2011 IEEE 26th Annual Con-
ference on Computational Complexity, CCC ’11, page 167–177, USA, 2011. IEEE Computer
Society. ISBN 9780769544113. DOI: 10.1109/CCC.2011.24. URL https://doi.org/10.1109/
CCC.2011.24. 3

[8] Andris Ambainis, Ansis Rosmanis, and Dominique Unruh. Quantum attacks on classical proof
systems: The hardness of quantum rewinding. In Proceedings of the 2014 IEEE 55th Annual
Symposium on Foundations of Computer Science, FOCS ’14, page 474–483, USA, 2014. IEEE
Computer Society. ISBN 9781479965175. DOI: 10.1109/FOCS.2014.57. URL https://doi.
org/10.1109/FOCS.2014.57. 4, 5, 6, 9

[9] Srinivasan Arunachalam, Aleksandrs Belovs, Andrew M. Childs, Robin Kothari, Ansis Ros-
manis, and Ronald de Wolf. Quantum Coupon Collector. In Steven T. Flammia, editor,
15th Conference on the Theory of Quantum Computation, Communication and Cryptography
(TQC 2020), volume 158 of Leibniz International Proceedings in Informatics (LIPIcs), pages
10:1–10:17, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN
978-3-95977-146-7. DOI: 10.4230/LIPIcs.TQC.2020.10. URL https://drops.dagstuhl.de/
opus/volltexte/2020/12069. 6

[10] Frank Arute, Kunal Arya, Ryan Babbush, et al. Quantum supremacy using a programmable
superconducting processor. Nature, 574(7779):505–510, 2019. DOI: 10.1038/s41586-019-1666-5.
URL https://doi.org/10.1038/s41586-019-1666-5. 1, 2, 3, 8

[11] Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald de Wolf. Quantum
lower bounds by polynomials. J. ACM, 48(4):778–797, July 2001. ISSN 0004-5411. DOI:
10.1145/502090.502097. URL https://doi.org/10.1145/502090.502097. 3, 5, 18

[12] John Bell. On the Einstein-Podolsky-Rosen paradox. Physics, 1:195–200, Nov 1964.
DOI: 10.1103/PhysicsPhysiqueFizika.1.195. URL https://link.aps.org/doi/10.1103/
PhysicsPhysiqueFizika.1.195. 2

[13] Aleksandrs Belovs. Variations on quantum adversary, 2015. 3
[14] Aleksandrs Belovs and Ansis Rosmanis. Tight quantum lower bound for approximate counting

with quantum states, 2020. 4, 6

25

https://doi.org/10.4086/toc.2020.v016a011
http://www.theoryofcomputing.org/articles/v016a011
https://doi.org/10.4230/LIPIcs.CCC.2020.7
https://drops.dagstuhl.de/opus/volltexte/2020/12559
https://doi.org/10.1145/276698.276708
https://doi.org/10.1145/276698.276708
https://doi.org/10.1142/9789813272880_0181
https://doi.org/10.1142/9789813272880_0181
https://doi.org/10.1109/CCC.2011.24
https://doi.org/10.1109/CCC.2011.24
https://doi.org/10.1109/CCC.2011.24
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.1109/FOCS.2014.57
https://doi.org/10.4230/LIPIcs.TQC.2020.10
https://drops.dagstuhl.de/opus/volltexte/2020/12069
https://drops.dagstuhl.de/opus/volltexte/2020/12069
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1038/s41586-019-1666-5
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1145/502090.502097
https://doi.org/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195
https://link.aps.org/doi/10.1103/PhysicsPhysiqueFizika.1.195


[15] Fernando G. S. L. Brandão, Aram W. Harrow, and Michał Horodecki. Local random quan-
tum circuits are approximate polynomial-designs. Communications in Mathematical Physics,
346(2):397–434, 2016. DOI: 10.1007/s00220-016-2706-8. URL https://doi.org/10.1007/
s00220-016-2706-8. 4

[16] Gilles Brassard, Peter Høyer, and Alain Tapp. Quantum cryptanalysis of hash and
claw-free functions. SIGACT News, 28(2):14–19, June 1997. ISSN 0163-5700. DOI:
10.1145/261342.261346. URL https://doi.org/10.1145/261342.261346. 5, 14

[17] Gilles Brassard, Peter Høyer, Michele Mosca, and Alain Tapp. Quantum amplitude ampli-
fication and estimation. In Quantum Computation and Quantum Information, volume 305
of Contemporary Mathematics, pages 53–74. American Mathematical Society, 2002. ISBN
9780821821404. DOI: 10.1090/conm/305. 6, 14

[18] Mark Bun and Justin Thaler. Dual lower bounds for approximate degree and Markov-
Bernstein inequalities. Inf. Comput., 243(C):2–25, August 2015. ISSN 0890-5401. DOI:
10.1016/j.ic.2014.12.003. URL https://doi.org/10.1016/j.ic.2014.12.003. 24

[19] Boris Cirel’son (Tsirelson). Quantum generalizations of Bell’s inequality. Letters in Mathe-
matical Physics, 4(2):93–100, 1980. DOI: 10.1007/BF00417500. URL https://doi.org/10.
1007/BF00417500. 2

[20] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A. Holt. Proposed exper-
iment to test local hidden-variable theories. Phys. Rev. Lett., 23:880–884, Oct 1969. DOI:
10.1103/PhysRevLett.23.880. URL https://link.aps.org/doi/10.1103/PhysRevLett.23.
880. 2

[21] Richard Cleve, Peter Høyer, Benjamin Toner, and John Watrous. Consequences and limits
of nonlocal strategies. In Proceedings of the 19th IEEE Annual Conference on Computational
Complexity, CCC ’04, page 236–249, USA, 2004. IEEE Computer Society. ISBN 0769521207.
DOI: 10.1109/CCC.2004.1313847. 2

[22] Aram Harrow and Saeed Mehraban. Approximate unitary t-designs by short random quantum
circuits using nearest-neighbor and long-range gates, 2018. 4

[23] Norman L. Johnson and Samuel Kotz. Urn models and their application: an approach to
modern discrete probability theory. Wiley, 1977. ISBN 9780471446309. 12

[24] Shelby Kimmel, Cedric Yen-Yu Lin, Guang Hao Low, Maris Ozols, and Theodore J. Yo-
der. Hamiltonian simulation with optimal sample complexity. npj Quantum Informa-
tion, 3(1):13, 2017. DOI: 10.1038/s41534-017-0013-7. URL https://doi.org/10.1038/
s41534-017-0013-7. 6

[25] William Kretschmer. The Quantum Supremacy Tsirelson Inequality. In James R. Lee, edi-
tor, 12th Innovations in Theoretical Computer Science Conference (ITCS 2021), volume 185
of Leibniz International Proceedings in Informatics (LIPIcs), pages 13:1–13:13, Dagstuhl, Ger-
many, 2021. Schloss Dagstuhl–Leibniz-Zentrum für Informatik. ISBN 978-3-95977-177-1. DOI:
10.4230/LIPIcs.ITCS.2021.13. URL https://drops.dagstuhl.de/opus/volltexte/2021/
13552. 1

[26] Troy Lee, Rajat Mittal, Ben W. Reichardt, Robert Špalek, and Mario Szegedy. Quantum query
complexity of state conversion. In Proceedings of the 2011 IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS ’11, page 344–353, USA, 2011. IEEE Computer
Society. ISBN 9780769545714. DOI: 10.1109/FOCS.2011.75. URL https://doi.org/10.
1109/FOCS.2011.75. 3

[27] Nathan Lindzey and Ansis Rosmanis. A Tight Lower Bound For Non-Coherent Index Erasure.

26

https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1007/s00220-016-2706-8
https://doi.org/10.1145/261342.261346
https://doi.org/10.1145/261342.261346
https://doi.org/10.1145/261342.261346
https://doi.org/10.1090/conm/305
https://doi.org/10.1016/j.ic.2014.12.003
https://doi.org/10.1016/j.ic.2014.12.003
https://doi.org/10.1016/j.ic.2014.12.003
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1007/BF00417500
https://doi.org/10.1103/PhysRevLett.23.880
https://doi.org/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://link.aps.org/doi/10.1103/PhysRevLett.23.880
https://doi.org/10.1109/CCC.2004.1313847
https://doi.org/10.1038/s41534-017-0013-7
https://doi.org/10.1038/s41534-017-0013-7
https://doi.org/10.1038/s41534-017-0013-7
https://doi.org/10.4230/LIPIcs.ITCS.2021.13
https://doi.org/10.4230/LIPIcs.ITCS.2021.13
https://drops.dagstuhl.de/opus/volltexte/2021/13552
https://drops.dagstuhl.de/opus/volltexte/2021/13552
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1109/FOCS.2011.75
https://doi.org/10.1109/FOCS.2011.75


In Thomas Vidick, editor, 11th Innovations in Theoretical Computer Science Conference (ITCS
2020), volume 151 of Leibniz International Proceedings in Informatics (LIPIcs), pages 59:1–
59:37, Dagstuhl, Germany, 2020. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik. ISBN
978-3-95977-134-4. DOI: 10.4230/LIPIcs.ITCS.2020.59. URL https://drops.dagstuhl.de/
opus/volltexte/2020/11744. 3

[28] Frederic Magniez, Ashwin Nayak, Jeremie Roland, and Miklos Santha. Search via quantum
walk. In Proceedings of the Thirty-Ninth Annual ACM Symposium on Theory of Computing,
STOC ’07, page 575–584, New York, NY, USA, 2007. Association for Computing Machin-
ery. ISBN 9781595936318. DOI: 10.1145/1250790.1250874. URL https://doi.org/10.1145/
1250790.1250874. 6

[29] Ryan O’Donnell. Analysis of Boolean Functions. Cambridge University Press, USA, 2014.
ISBN 1107038324. DOI: 10.1017/CBO9781139814782. 23

[30] Martin Raab and Angelika Steger. “Balls into bins” - a simple and tight analysis. In Proceedings
of the Second International Workshop on Randomization and Approximation Techniques in
Computer Science, RANDOM ’98, pages 159–170, Berlin, Heidelberg, 1998. Springer-Verlag.
ISBN 354065142X. DOI: 10.1007/3-540-49543-6_13. 12

[31] Ben W. Reichardt. Reflections for quantum query algorithms. In Proceedings of the Twenty-
Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’11, page 560–569, USA,
2011. Society for Industrial and Applied Mathematics. DOI: 10.1137/1.9781611973082.44. 6

[32] Alfréd Rényi. On the theory of order statistics. Acta Mathematica Academiae Scientiarum
Hungarica, 4(3):191–231, 1953. DOI: 10.1007/BF02127580. URL https://doi.org/10.1007/
BF02127580. 8

27

https://doi.org/10.4230/LIPIcs.ITCS.2020.59
https://drops.dagstuhl.de/opus/volltexte/2020/11744
https://drops.dagstuhl.de/opus/volltexte/2020/11744
https://doi.org/10.1145/1250790.1250874
https://doi.org/10.1145/1250790.1250874
https://doi.org/10.1145/1250790.1250874
https://doi.org/10.1017/CBO9781139814782
https://doi.org/10.1007/3-540-49543-6_13
https://doi.org/10.1137/1.9781611973082.44
https://doi.org/10.1007/BF02127580
https://doi.org/10.1007/BF02127580
https://doi.org/10.1007/BF02127580

	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	2.1 Notation
	2.2 Oracles for Quantum States
	2.3 Other Useful Facts

	3 Canonical State Preparation Oracles
	4 Random State Preparation Oracles
	5 Fourier Sampling Circuits
	6 Discussion
	References

