Qulacs: a fast and versatile quantum circuit simulator for research purpose

Yasunari Suzuki1,2, Yoshiaki Kawase3, Yuya Masumura4, Yuria Hiraga5, Masahiro Nakadai6, Jiabao Chen7, Ken M. Nakanishi7,8, Kosuke Mitarai3,7,9, Ryosuke Imai7, Shiro Tamiya7,10, Takahiro Yamamoto7, Tennin Yan7, Toru Kawakubo7, Yuya O. Nakagawa7, Yohei Ibe7, Youyuan Zhang7,8, Hirotsugu Yamashita11, Hikaru Yoshimura11, Akihiro Hayashi12, and Keisuke Fujii2,3,9,13

1NTT Computer and Data Science Laboratories, NTT Corporation, Musashino 180-8585, Japan
2JST PRESTO, Kawaguchi, Saitama 332-0012, Japan
3Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531, Japan
4Graduate School of Information Science and Technology, Osaka University, 1-1 Yamadaoka, Suita, Osaka 565-0871, Japan
5Graduate School of Information and Science, Nara Institute of Science and Technology, Takayama, Ikoma, Nara 630-0192, Japan
6Graduate School of Science, Kyoto University, Yoshida-Ushinomiya, Sakyo, Kyoto 606-8302, Japan
7QunaSys Inc., Aqua Hakusan Building 9F, 1-13-7 Hakusan, Bunkyo, Tokyo 113-0001, Japan
8Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
9Center for Quantum Information and Quantum Biology, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Japan
10Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
11Individual researcher
12School of Computer Science, Georgia Institute of Technology, Atlanta, GA, 30332, USA
13Center for Emergent Matter Science, RIKEN, Wako Saitama 351-0198, Japan

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

To explore the possibilities of a near-term intermediate-scale quantum algorithm and long-term fault-tolerant quantum computing, a fast and versatile quantum circuit simulator is needed. Here, we introduce Qulacs, a fast simulator for quantum circuits intended for research purpose. We show the main concepts of Qulacs, explain how to use its features via examples, describe numerical techniques to speed-up simulation, and demonstrate its performance with numerical benchmarks.

► BibTeX data

► References

[1] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando GSL Brandao, David A Buell, et al. Quantum supremacy using a programmable superconducting processor. Nature, 574 (7779): 505–510, 2019. 10.1038/​s41586-019-1666-5.
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[2] Laird Egan, Dripto M Debroy, Crystal Noel, Andrew Risinger, Daiwei Zhu, Debopriyo Biswas, Michael Newman, Muyuan Li, Kenneth R Brown, Marko Cetina, et al. Fault-tolerant operation of a quantum error-correction code. arXiv preprint arXiv:2009.11482, 2020.
arXiv:2009.11482

[3] Qulacs website. https:/​/​github.com/​qulacs/​qulacs, 2018.
https:/​/​github.com/​qulacs/​qulacs

[4] Gaël Guennebaud, Benoı̂t Jacob, et al. Eigen v3. http:/​/​eigen.tuxfamily.org, 2010.
http:/​/​eigen.tuxfamily.org

[5] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 – seamless operability between c++11 and python. https:/​/​github.com/​pybind/​pybind11, 2017.
https:/​/​github.com/​pybind/​pybind11

[6] GoogleTest. https:/​/​github.com/​google/​googletest, 2019.
https:/​/​github.com/​google/​googletest

[7] Holger Krekel, Bruno Oliveira, Ronny Pfannschmidt, Floris Bruynooghe, Brianna Laugher, and Florian Bruhin. pytest x.y. https:/​/​github.com/​pytest-dev/​pytest, 2004.
https:/​/​github.com/​pytest-dev/​pytest

[8] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, and Hartmut Neven. Simulation of low-depth quantum circuits as complex undirected graphical models. arXiv preprint arXiv:1712.05384, 2017.
arXiv:1712.05384

[9] Igor L Markov and Yaoyun Shi. Simulating quantum computation by contracting tensor networks. SIAM Journal on Computing, 38 (3): 963–981, 2008. 10.1137/​050644756. URL https:/​/​doi.org/​10.1137/​050644756.
https:/​/​doi.org/​10.1137/​050644756

[10] Igor L Markov, Aneeqa Fatima, Sergei V Isakov, and Sergio Boixo. Quantum supremacy is both closer and farther than it appears. arXiv preprint arXiv:1807.10749, 2018.
arXiv:1807.10749

[11] Sergey Bravyi and David Gosset. Improved classical simulation of quantum circuits dominated by clifford gates. Phys. Rev. Lett., 116: 250501, Jun 2016. 10.1103/​PhysRevLett.116.250501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.116.250501.
https:/​/​doi.org/​10.1103/​PhysRevLett.116.250501

[12] Sergey Bravyi, Dan Browne, Padraic Calpin, Earl Campbell, David Gosset, and Mark Howard. Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum, 3: 181, September 2019. ISSN 2521-327X. 10.22331/​q-2019-09-02-181. URL https:/​/​doi.org/​10.22331/​q-2019-09-02-181.
https:/​/​doi.org/​10.22331/​q-2019-09-02-181

[13] Quantum AI team and collaborators. Cirq, October 2020a. URL https:/​/​doi.org/​10.5281/​zenodo.4062499.
https:/​/​doi.org/​10.5281/​zenodo.4062499

[14] Héctor Abraham et al. Qiskit: An open-source framework for quantum computing, 2019. URL https:/​/​doi.org/​10.5281/​zenodo.2562110.
https:/​/​doi.org/​10.5281/​zenodo.2562110

[15] Robert S Smith, Michael J Curtis, and William J Zeng. A practical quantum instruction set architecture. arXiv preprint arXiv:1608.03355, 2016.
arXiv:1608.03355

[16] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, Carsten Blank, Keri McKiernan, and Nathan Killoran. Pennylane: Automatic differentiation of hybrid quantum-classical computations. arXiv preprint arXiv:1811.04968, 2018.
arXiv:1811.04968

[17] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. Q#: Enabling scalable quantum computing and development with a high-level dsl. RWDSL2018, New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450363556. 10.1145/​3183895.3183901. URL https:/​/​doi.org/​10.1145/​3183895.3183901.
https:/​/​doi.org/​10.1145/​3183895.3183901

[18] Benjamin Villalonga, Sergio Boixo, Bron Nelson, Christopher Henze, Eleanor Rieffel, Rupak Biswas, and Salvatore Mandrà. A flexible high-performance simulator for verifying and benchmarking quantum circuits implemented on real hardware. npj Quantum Information, 5 (1): 86, Oct 2019. ISSN 2056-6387. 10.1038/​s41534-019-0196-1. URL https:/​/​doi.org/​10.1038/​s41534-019-0196-1.
https:/​/​doi.org/​10.1038/​s41534-019-0196-1

[19] Chase Roberts, Ashley Milsted, Martin Ganahl, Adam Zalcman, Bruce Fontaine, Yijian Zou, Jack Hidary, Guifre Vidal, and Stefan Leichenauer. Tensornetwork: A library for physics and machine learning. arXiv preprint arXiv:1905.01330, 2019.
arXiv:1905.01330

[20] Matthew Fishman, Steven R White, and E Miles Stoudenmire. The ITensor Software Library for Tensor Network Calculations. arXiv preprint arXiv:2007.14822, 2020.
arXiv:2007.14822

[21] Benjamin Villalonga, Dmitry Lyakh, Sergio Boixo, Hartmut Neven, Travis S Humble, Rupak Biswas, Eleanor G Rieffel, Alan Ho, and Salvatore Mandrà. Establishing the quantum supremacy frontier with a 281 pflop/​s simulation. Quantum Science and Technology, 5 (3): 034003, 2020. 10.1088/​2058-9565/​ab7eeb. URL https:/​/​doi.org/​10.1088/​2058-9565/​ab7eeb.
https:/​/​doi.org/​10.1088/​2058-9565/​ab7eeb

[22] Koen De Raedt, Kristel Michielsen, Hans De Raedt, Binh Trieu, Guido Arnold, Marcus Richter, Th Lippert, Hiroshi Watanabe, and Nobuyasu Ito. Massively parallel quantum computer simulator. Computer Physics Communications, 176 (2): 121–136, 2007. 10.1016/​j.cpc.2006.08.007. URL https:/​/​doi.org/​10.1016/​j.cpc.2006.08.007.
https:/​/​doi.org/​10.1016/​j.cpc.2006.08.007

[23] Hans De Raedt, Fengping Jin, Dennis Willsch, Madita Willsch, Naoki Yoshioka, Nobuyasu Ito, Shengjun Yuan, and Kristel Michielsen. Massively parallel quantum computer simulator, eleven years later. Computer Physics Communications, 237: 47–61, 2019. 10.1016/​j.cpc.2018.11.005. URL https:/​/​doi.org/​10.1016/​j.cpc.2018.11.005.
https:/​/​doi.org/​10.1016/​j.cpc.2018.11.005

[24] Thomas Häner and Damian S Steiger. 0.5 petabyte simulation of a 45-qubit quantum circuit. In Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, pages 1–10, 2017. 10.1145/​3126908.3126947. URL https:/​/​doi.org/​10.1145/​3126908.3126947.
https:/​/​doi.org/​10.1145/​3126908.3126947

[25] Gian Giacomo Guerreschi, Justin Hogaboam, Fabio Baruffa, and Nicolas PD Sawaya. Intel Quantum Simulator: A cloud-ready high-performance simulator of quantum circuits. Quantum Science and Technology, 5 (3): 034007, 2020. 10.1088/​2058-9565/​ab8505. URL https:/​/​doi.org/​10.1088/​2058-9565/​ab8505.
https:/​/​doi.org/​10.1088/​2058-9565/​ab8505

[26] Mikhail Smelyanskiy, Nicolas PD Sawaya, and Alán Aspuru-Guzik. qHiPSTER: The quantum high performance software testing environment. arXiv preprint arXiv:1601.07195, 2016.
arXiv:1601.07195

[27] Nader Khammassi, Imran Ashraf, Xiang Fu, Carmen G Almudever, and Koen Bertels. QX: A high-performance quantum computer simulation platform. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pages 464–469. IEEE, 2017. 10.23919/​DATE.2017.7927034. URL https:/​/​doi.org/​10.23919/​DATE.2017.7927034.
https:/​/​doi.org/​10.23919/​DATE.2017.7927034

[28] Nader Khammassi, Imran Ashraf, J v Someren, Razvan Nane, AM Krol, M Adriaan Rol, L Lao, Koen Bertels, and Carmen G Almudever. OpenQL: A portable quantum programming framework for quantum accelerators. arXiv preprint arXiv:2005.13283, 2020.
arXiv:2005.13283

[29] Damian S Steiger, Thomas Häner, and Matthias Troyer. ProjectQ: an open source software framework for quantum computing. Quantum, 2: 49, 2018. 10.22331/​q-2018-01-31-49. URL https:/​/​doi.org/​10.22331/​q-2018-01-31-49.
https:/​/​doi.org/​10.22331/​q-2018-01-31-49

[30] Tyson Jones, Anna Brown, Ian Bush, and Simon C Benjamin. QuEST and High Performance Simulation of Quantum Computers. Scientific reports, 9 (1): 1–11, 2019. 10.1038/​s41598-019-47174-9. URL https:/​/​doi.org/​10.1038/​s41598-019-47174-9.
https:/​/​doi.org/​10.1038/​s41598-019-47174-9

[31] Quantum AI team and collaborators. qsim, September 2020b. URL https:/​/​doi.org/​10.5281/​zenodo.4023103.
https:/​/​doi.org/​10.5281/​zenodo.4023103

[32] Xiu-Zhe Luo, Jin-Guo Liu, Pan Zhang, and Lei Wang. Yao.jl: Extensible, Efficient Framework for Quantum Algorithm Design. Quantum, 4: 341, October 2020. ISSN 2521-327X. 10.22331/​q-2020-10-11-341. URL https:/​/​doi.org/​10.22331/​q-2020-10-11-341.
https:/​/​doi.org/​10.22331/​q-2020-10-11-341

[33] Adam Kelly. Simulating quantum computers using OpenCL. arXiv preprint arXiv:1805.00988, 2018.
arXiv:1805.00988

[34] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza. Qibo: a framework for quantum simulation with hardware acceleration. arXiv preprint arXiv:2009.01845, 2020. 10.5281/​zenodo.3997194. URL https:/​/​doi.org/​10.5281/​zenodo.3997194.
https:/​/​doi.org/​10.5281/​zenodo.3997194
arXiv:2009.01845

[35] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J Love, Alán Aspuru-Guzik, and Jeremy L O’brien. A variational eigenvalue solver on a photonic quantum processor. Nature communications, 5: 4213, 2014. 10.1038/​ncomms5213. URL https:/​/​doi.org/​10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[36] Seth Lloyd. Universal quantum simulators. Science, pages 1073–1078, 1996. 10.1126/​science.273.5278.1073. URL https:/​/​doi.org/​10.1126/​science.273.5278.1073.
https:/​/​doi.org/​10.1126/​science.273.5278.1073

[37] Suguru Endo, Iori Kurata, and Yuya O Nakagawa. Calculation of the green's function on near-term quantum computers. Physical Review Research, 2 (3): 033281, 2020. 10.1103/​PhysRevResearch.2.033281. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033281.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.033281

[38] Kosuke Mitarai, Yuya O Nakagawa, and Wataru Mizukami. Theory of analytical energy derivatives for the variational quantum eigensolver. Physical Review Research, 2 (1): 013129, 2020. 10.1103/​PhysRevResearch.2.013129. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013129.
https:/​/​doi.org/​10.1103/​PhysRevResearch.2.013129

[39] Kosuke Mitarai, Tennin Yan, and Keisuke Fujii. Generalization of the output of a variational quantum eigensolver by parameter interpolation with a low-depth ansatz. Phys. Rev. Applied, 11: 044087, Apr 2019. 10.1103/​PhysRevApplied.11.044087. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevApplied.11.044087.
https:/​/​doi.org/​10.1103/​PhysRevApplied.11.044087

[40] Yuta Matsuzawa and Yuki Kurashige. Jastrow-type decomposition in quantum chemistry for low-depth quantum circuits. Journal of Chemical Theory and Computation, 16 (2): 944–952, 2020. 10.1021/​acs.jctc.9b00963. URL https:/​/​doi.org/​10.1021/​acs.jctc.9b00963.
https:/​/​doi.org/​10.1021/​acs.jctc.9b00963

[41] Hiroki Kawai and Yuya O. Nakagawa. Predicting excited states from ground state wavefunction by supervised quantum machine learning. Machine Learning: Science and Technology, 1 (4): 045027, oct 2020. 10.1088/​2632-2153/​aba183. URL https:/​/​doi.org/​10.1088.
https:/​/​doi.org/​10.1088/​2632-2153/​aba183

[42] Jakob Kottmann, Mario Krenn, Thi Ha Kyaw, Sumner Alperin-Lea, and Alán Aspuru-Guzik. Quantum computer-aided design of quantum optics hardware. Quantum Science and Technology, 2021. 10.1088/​2058-9565/​abfc94. URL https:/​/​doi.org/​10.1088/​2058-9565/​abfc94.
https:/​/​doi.org/​10.1088/​2058-9565/​abfc94

[43] Yasunari Suzuki, Suguru Endo, and Yuuki Tokunaga. Quantum error mitigation for fault-tolerant quantum computing. arXiv preprint arXiv:2010.03887, 2020.
arXiv:2010.03887

[44] Cirq-Qulacs. https:/​/​github.com/​qulacs/​cirq-qulacs, 2019.
https:/​/​github.com/​qulacs/​cirq-qulacs

[45] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan. t$|$ket$\rangle$: A retargetable compiler for NISQ devices. Quantum Science and Technology, 2020. 10.1088/​2058-9565/​ab8e92. URL https:/​/​doi.org/​10.1088/​2058-9565/​ab8e92.
https:/​/​doi.org/​10.1088/​2058-9565/​ab8e92

[46] Orquestra. https:/​/​orquestra.io/​, 2020.
https:/​/​orquestra.io/​

[47] Jakob S. Kottmann and Sumner Alperin-Lea, Teresa Tamayo-Mendoza, Alba Cervera-Lierta, Cyrille Lavigne, Tzu-Ching Yen, Vladyslav Verteletskyi, Abhinav Anand, Matthias Degroote, Maha Kesebi, and Alán Aspuru-Guzik. tequila: A generalized development library for novel quantum algorithms. https:/​/​github.com/​aspuru-guzik-group/​tequila, 2020.
https:/​/​github.com/​aspuru-guzik-group/​tequila

[48] Peter W Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM review, 41 (2): 303–332, 1999. 10.1137/​S0097539795293172. URL https:/​/​doi.org/​10.1137/​S0097539795293172.
https:/​/​doi.org/​10.1137/​S0097539795293172

[49] Craig Gidney and Martin Ekerå. How to factor 2048 bit rsa integers in 8 hours using 20 million noisy qubits. Quantum, 5: 433, 2021. 10.22331/​q-2021-04-15-433. URL https:/​/​doi.org/​10.22331/​q-2021-04-15-433.
https:/​/​doi.org/​10.22331/​q-2021-04-15-433

[50] Ian D Kivlichan, Craig Gidney, Dominic W Berry, Nathan Wiebe, Jarrod McClean, Wei Sun, Zhang Jiang, Nicholas Rubin, Austin Fowler, Alán Aspuru-Guzik, et al. Improved fault-tolerant quantum simulation of condensed-phase correlated electrons via trotterization. Quantum, 4: 296, 2020. 10.22331/​q-2020-07-16-296. URL https:/​/​doi.org/​10.22331/​q-2020-07-16-296.
https:/​/​doi.org/​10.22331/​q-2020-07-16-296

[51] Aram W Harrow, Avinatan Hassidim, and Seth Lloyd. Quantum algorithm for linear systems of equations. Physical review letters, 103 (15): 150502, 2009. 10.1103/​PhysRevLett.103.150502. URL https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502.
https:/​/​doi.org/​10.1103/​PhysRevLett.103.150502

[52] Austin G Fowler, Matteo Mariantoni, John M Martinis, and Andrew N Cleland. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86 (3): 032324, 2012. 10.1103/​PhysRevA.86.032324. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.86.032324.
https:/​/​doi.org/​10.1103/​PhysRevA.86.032324

[53] Sergio Boixo, Sergei V Isakov, Vadim N Smelyanskiy, Ryan Babbush, Nan Ding, Zhang Jiang, Michael J Bremner, John M Martinis, and Hartmut Neven. Characterizing quantum supremacy in near-term devices. Nature Physics, 14 (6): 595–600, 2018. 10.1038/​s41567-018-0124-x. URL https:/​/​doi.org/​10.1038/​s41567-018-0124-x.
https:/​/​doi.org/​10.1038/​s41567-018-0124-x

[54] Jarrod McClean, Nicholas Rubin, Kevin Sung, Ian David Kivlichan, Xavier Bonet-Monroig, Yudong Cao, Chengyu Dai, Eric Schuyler Fried, Craig Gidney, Brendan Gimby, et al. OpenFermion: the electronic structure package for quantum computers. Quantum Science and Technology, 2020. 10.1088/​2058-9565/​ab8ebc. URL https:/​/​doi.org/​10.1088/​2058-9565/​ab8ebc.
https:/​/​doi.org/​10.1088/​2058-9565/​ab8ebc

[55] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, 2010. 10.1017/​CBO9780511976667. URL https:/​/​doi.org/​10.1017/​CBO9780511976667.
https:/​/​doi.org/​10.1017/​CBO9780511976667

[56] Andrew W Cross, Lev S Bishop, John A Smolin, and Jay M Gambetta. Open quantum assembly language. arXiv preprint arXiv:1707.03429, 2017.
arXiv:1707.03429

[57] Shiro Tamiya and Yuya O Nakagawa. Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers. arXiv preprint arXiv:2003.01706, 2020. 10.1103/​PhysRevResearch.3.023244. URL https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023244.
https:/​/​doi.org/​10.1103/​PhysRevResearch.3.023244
arXiv:2003.01706

[58] Yohei Ibe, Yuya O Nakagawa, Takahiro Yamamoto, Kosuke Mitarai, Qi Gao, and Takao Kobayashi. Calculating transition amplitudes by variational quantum eigensolvers. arXiv preprint arXiv:2002.11724, 2020.
arXiv:2002.11724

[59] Pascual Jordan and Eugene P Wigner. About the pauli exclusion principle. Z. Phys, 47 (631): 14–75, 1928. 10.1007/​BF01331938. URL https:/​/​doi.org/​10.1007/​BF01331938.
https:/​/​doi.org/​10.1007/​BF01331938

[60] Sergey B Bravyi and Alexei Yu Kitaev. Fermionic quantum computation. Annals of Physics, 298 (1): 210–226, 2002. 10.1006/​aphy.2002.6254. URL https:/​/​doi.org/​10.1006/​aphy.2002.6254.
https:/​/​doi.org/​10.1006/​aphy.2002.6254

[61] Intel Intrinsics Guide. https:/​/​software.intel.com/​sites/​landingpage/​IntrinsicsGuide/​, 2020.
https:/​/​software.intel.com/​sites/​landingpage/​IntrinsicsGuide/​

[62] OpenMP Specifications. https:/​/​www.openmp.org/​specifications/​, 2020.
https:/​/​www.openmp.org/​specifications/​

[63] quantum-benchmarks. https:/​/​github.com/​Roger-luo/​quantum-benchmarks, 2020.
https:/​/​github.com/​Roger-luo/​quantum-benchmarks

[64] Benchmark codes of this paper will be uploaded to. https:/​/​github.com/​qulacs/​benchmark-qulacs, 2020.
https:/​/​github.com/​qulacs/​benchmark-qulacs

[65] Intel-QS repository . https:/​/​github.com/​iqusoft/​intel-qs, 2020.
https:/​/​github.com/​iqusoft/​intel-qs

[66] Daniel Gottesman. The heisenberg representation of quantum computers. arXiv preprint quant-ph/​9807006, 1998.
arXiv:quant-ph/9807006

[67] Scott Aaronson and Daniel Gottesman. Improved simulation of stabilizer circuits. Physical Review A, 70 (5): 052328, 2004. 10.1103/​PhysRevA.70.052328. URL https:/​/​10.1103/​PhysRevA.70.052328.
https:/​/​doi.org/​10.1103/​PhysRevA.70.052328

[68] Leslie G Valiant. Quantum circuits that can be simulated classically in polynomial time. SIAM Journal on Computing, 31 (4): 1229–1254, 2002. 10.1137/​S0097539700377025. URL https:/​/​doi.org/​10.1137/​S0097539700377025.
https:/​/​doi.org/​10.1137/​S0097539700377025

[69] Barbara M Terhal and David P DiVincenzo. Classical simulation of noninteracting-fermion quantum circuits. Physical Review A, 65 (3): 032325, 2002. 10.1103/​PhysRevA.65.032325. URL https:/​/​doi.org/​10.1103/​PhysRevA.65.032325.
https:/​/​doi.org/​10.1103/​PhysRevA.65.032325

[70] Emanuel Knill. Fermionic linear optics and matchgates. arXiv preprint quant-ph/​0108033, 2001.
arXiv:quant-ph/0108033

Cited by

[1] Kosuke Ito, Wataru Mizukami, and Keisuke Fujii, "Universal noise-precision relations in variational quantum algorithms", Physical Review Research 5 2, 023025 (2023).

[2] Zhong-Xia Shang, Ming-Cheng Chen, Xiao Yuan, Chao-Yang Lu, and Jian-Wei Pan, "Schrödinger-Heisenberg Variational Quantum Algorithms", Physical Review Letters 131 6, 060406 (2023).

[3] B Jaderberg, L W Anderson, W Xie, S Albanie, M Kiffner, and D Jaksch, "Quantum self-supervised learning", Quantum Science and Technology 7 3, 035005 (2022).

[4] Takahiro Yoshikura, Seiichiro L. Ten-no, and Takashi Tsuchimochi, "Quantum Inverse Algorithm via Adaptive Variational Quantum Linear Solver: Applications to General Eigenstates", The Journal of Physical Chemistry A 127 31, 6577 (2023).

[5] Shi-Xin Zhang, Jonathan Allcock, Zhou-Quan Wan, Shuo Liu, Jiace Sun, Hao Yu, Xing-Han Yang, Jiezhong Qiu, Zhaofeng Ye, Yu-Qin Chen, Chee-Kong Lee, Yi-Cong Zheng, Shao-Kai Jian, Hong Yao, Chang-Yu Hsieh, and Shengyu Zhang, "TensorCircuit: a Quantum Software Framework for the NISQ Era", Quantum 7, 912 (2023).

[6] Yasunari Suzuki, Suguru Endo, Keisuke Fujii, and Yuuki Tokunaga, "Quantum Error Mitigation as a Universal Error Reduction Technique: Applications from the NISQ to the Fault-Tolerant Quantum Computing Eras", PRX Quantum 3 1, 010345 (2022).

[7] He-Liang Huang, Xiao-Yue Xu, Chu Guo, Guojing Tian, Shi-Jie Wei, Xiaoming Sun, Wan-Su Bao, and Gui-Lu Long, "Near-term quantum computing techniques: Variational quantum algorithms, error mitigation, circuit compilation, benchmarking and classical simulation", Science China Physics, Mechanics, and Astronomy 66 5, 250302 (2023).

[8] Nguyen Tan Viet, Nguyen Thi Chuong, Vu Thi Ngoc Huyen, and Le Bin Ho, "tqix.pis: A toolbox for quantum dynamics simulation of spin ensembles in Dicke basis", arXiv:2209.01168, (2022).

[9] Kouhei Nakaji, Mohsen Bagherimehrab, and Alán Aspuru-Guzik, "High-Order Randomized Compiler for Hamiltonian Simulation", PRX Quantum 5 2, 020330 (2024).

[10] Takeru Kusumoto, Kosuke Mitarai, Keisuke Fujii, Masahiro Kitagawa, and Makoto Negoro, "Experimental quantum kernel trick with nuclear spins in a solid", npj Quantum Information 7, 94 (2021).

[11] Kouhei Nakaji, Suguru Endo, Yuichiro Matsuzaki, and Hideaki Hakoshima, "Measurement optimization of variational quantum simulation by classical shadow and derandomization", Quantum 7, 995 (2023).

[12] Sofiene Jerbi, Casper Gyurik, Simon C. Marshall, Hans J. Briegel, and Vedran Dunjko, "Parametrized quantum policies for reinforcement learning", arXiv:2103.05577, (2021).

[13] Keisuke Fujii, Kaoru Mizuta, Hiroshi Ueda, Kosuke Mitarai, Wataru Mizukami, and Yuya O. Nakagawa, "Deep Variational Quantum Eigensolver: A Divide-And-Conquer Method for Solving a Larger Problem with Smaller Size Quantum Computers", PRX Quantum 3 1, 010346 (2022).

[14] Stavros Efthymiou, Sergi Ramos-Calderer, Carlos Bravo-Prieto, Adrián Pérez-Salinas, Diego García-Martín, Artur Garcia-Saez, José Ignacio Latorre, and Stefano Carrazza, "Qibo: a framework for quantum simulation with hardware acceleration", Quantum Science and Technology 7 1, 015018 (2022).

[15] Kouhei Nakaji, Hiroyuki Tezuka, and Naoki Yamamoto, "Quantum-classical hybrid neural networks in the neural tangent kernel regime", Quantum Science and Technology 9 1, 015022 (2024).

[16] Zi-Jian Zhang, Jinzhao Sun, Xiao Yuan, and Man-Hong Yung, "Low-Depth Hamiltonian Simulation by an Adaptive Product Formula", Physical Review Letters 130 4, 040601 (2023).

[17] Mateusz Ostaszewski, Lea M. Trenkwalder, Wojciech Masarczyk, Eleanor Scerri, and Vedran Dunjko, "Reinforcement learning for optimization of variational quantum circuit architectures", arXiv:2103.16089, (2021).

[18] Keisuke Fujii, Kaoru Mizuta, Hiroshi Ueda, Kosuke Mitarai, Wataru Mizukami, and Yuya O. Nakagawa, "Deep Variational Quantum Eigensolver: a divide-and-conquer method for solving a larger problem with smaller size quantum computers", arXiv:2007.10917, (2020).

[19] Kaitlin Gili, Mohamed Hibat-Allah, Marta Mauri, Chris Ballance, and Alejandro Perdomo-Ortiz, "Do quantum circuit Born machines generalize?", Quantum Science and Technology 8 3, 035021 (2023).

[20] Alba Cervera-Lierta, Jakob S. Kottmann, and Alán Aspuru-Guzik, "Meta-Variational Quantum Eigensolver: Learning Energy Profiles of Parameterized Hamiltonians for Quantum Simulation", PRX Quantum 2 2, 020329 (2021).

[21] Jakob S. Kottmann, Sumner Alperin-Lea, Teresa Tamayo-Mendoza, Alba Cervera-Lierta, Cyrille Lavigne, Tzu-Ching Yen, Vladyslav Verteletskyi, Philipp Schleich, Abhinav Anand, Matthias Degroote, Skylar Chaney, Maha Kesibi, Naomi Grace Curnow, Brandon Solo, Georgios Tsilimigkounakis, Claudia Zendejas-Morales, Artur F. Izmaylov, and Alán Aspuru-Guzik, "TEQUILA: a platform for rapid development of quantum algorithms", Quantum Science and Technology 6 2, 024009 (2021).

[22] Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, "Hybrid Quantum-Classical Graph Convolutional Network", arXiv:2101.06189, (2021).

[23] Alex Tritt, Joshua Morris, Joel Hochstetter, R. P. Anderson, James Saunderson, and L. D. Turner, "Spinsim: A GPU optimized python package for simulating spin-half and spin-one quantum systems", Computer Physics Communications 287, 108701 (2023).

[24] Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, "Quantum Convolutional Neural Networks for High Energy Physics Data Analysis", arXiv:2012.12177, (2020).

[25] Amit Jamadagni, Andreas M. Läuchli, and Cornelius Hempel, "Benchmarking quantum computer simulation software packages", arXiv:2401.09076, (2024).

[26] Juan Miguel Arrazola, Soran Jahangiri, Alain Delgado, Jack Ceroni, Josh Izaac, Antal Száva, Utkarsh Azad, Robert A. Lang, Zeyue Niu, Olivia Di Matteo, Romain Moyard, Jay Soni, Maria Schuld, Rodrigo A. Vargas-Hernández, Teresa Tamayo-Mendoza, Cedric Yen-Yu Lin, Alán Aspuru-Guzik, and Nathan Killoran, "Differentiable quantum computational chemistry with PennyLane", arXiv:2111.09967, (2021).

[27] Marc Illa, Caroline E. P. Robin, and Martin J. Savage, "Quantum simulations of SO(5) many-fermion systems using qudits", Physical Review C 108 6, 064306 (2023).

[28] Valentin Senicourt, James Brown, Alexandre Fleury, Ryan Day, Erika Lloyd, Marc P. Coons, Krzysztof Bieniasz, Lee Huntington, Alejandro J. Garza, Shunji Matsuura, Rudi Plesch, Takeshi Yamazaki, and Arman Zaribafiyan, "Tangelo: An Open-source Python Package for End-to-end Chemistry Workflows on Quantum Computers", arXiv:2206.12424, (2022).

[29] Masaya Kohda, Ryosuke Imai, Keita Kanno, Kosuke Mitarai, Wataru Mizukami, and Yuya O. Nakagawa, "Quantum expectation-value estimation by computational basis sampling", Physical Review Research 4 3, 033173 (2022).

[30] Rihito Sakurai, Oliver J. Backhouse, George H. Booth, Wataru Mizukami, and Hiroshi Shinaoka, "Comparative study on compact quantum circuits of hybrid quantum-classical algorithms for quantum impurity models", Physical Review Research 6 2, 023110 (2024).

[31] Nobuyuki Yoshioka, Takeshi Sato, Yuya O. Nakagawa, Yu-ya Ohnishi, and Wataru Mizukami, "Variational quantum simulation for periodic materials", Physical Review Research 4 1, 013052 (2022).

[32] Ken N. Okada, Keita Osaki, Kosuke Mitarai, and Keisuke Fujii, "Classically optimized variational quantum eigensolver with applications to topological phases", Physical Review Research 5 4, 043217 (2023).

[33] Thi Ha Kyaw, Tim Menke, Sukin Sim, Abhinav Anand, Nicolas P. D. Sawaya, William D. Oliver, Gian Giacomo Guerreschi, and Alán Aspuru-Guzik, "Quantum Computer-Aided Design: Digital Quantum Simulation of Quantum Processors", Physical Review Applied 16 4, 044042 (2021).

[34] Samuel Yen-Chi Chen, Tzu-Chieh Wei, Chao Zhang, Haiwang Yu, and Shinjae Yoo, "Quantum convolutional neural networks for high energy physics data analysis", Physical Review Research 4 1, 013231 (2022).

[35] Samuel Yen-Chi Chen and Shinjae Yoo, "Federated Quantum Machine Learning", arXiv:2103.12010, (2021).

[36] Jakob S. Kottmann and Alán Aspuru-Guzik, "Optimized low-depth quantum circuits for molecular electronic structure using a separable-pair approximation", Physical Review A 105 3, 032449 (2022).

[37] Alan Morningstar, Markus Hauru, Jackson Beall, Martin Ganahl, Adam G. M. Lewis, Vedika Khemani, and Guifre Vidal, "Simulation of Quantum Many-Body Dynamics with Tensor Processing Units: Floquet Prethermalization", PRX Quantum 3 2, 020331 (2022).

[38] Jakob S. Kottmann, "Molecular Quantum Circuit Design: A Graph-Based Approach", Quantum 7, 1073 (2023).

[39] Takuya Yoshioka, Keita Sasada, Yuichiro Nakano, and Keisuke Fujii, "Fermionic quantum approximate optimization algorithm", Physical Review Research 5 2, 023071 (2023).

[40] Akash Kundu, "Reinforcement learning-assisted quantum architecture search for variational quantum algorithms", arXiv:2402.13754, (2024).

[41] William M. Watkins, Samuel Yen-Chi Chen, and Shinjae Yoo, "Quantum machine learning with differential privacy", Scientific Reports 13, 2453 (2023).

[42] Yohei Ibe, Yuya O. Nakagawa, Nathan Earnest, Takahiro Yamamoto, Kosuke Mitarai, Qi Gao, and Takao Kobayashi, "Calculating transition amplitudes by variational quantum deflation", arXiv:2002.11724, (2020).

[43] Kohdai Kuroiwa and Yuya O. Nakagawa, "Penalty methods for a variational quantum eigensolver", Physical Review Research 3 1, 013197 (2021).

[44] Yohei Ibe, Yuya O. Nakagawa, Nathan Earnest, Takahiro Yamamoto, Kosuke Mitarai, Qi Gao, and Takao Kobayashi, "Calculating transition amplitudes by variational quantum deflation", Physical Review Research 4 1, 013173 (2022).

[45] Kentaro Yamamoto, David Zsolt Manrique, Irfan T. Khan, Hideaki Sawada, and David Muñoz Ramo, "Quantum hardware calculations of periodic systems with partition-measurement symmetry verification: Simplified models of hydrogen chain and iron crystals", Physical Review Research 4 3, 033110 (2022).

[46] Taichi Kosugi, Hirofumi Nishi, and Yu-ichiro Matsushita, "Exhaustive search for optimal molecular geometries using imaginary-time evolution on a quantum computer", npj Quantum Information 9, 112 (2023).

[47] Shiro Tamiya, Sho Koh, and Yuya O. Nakagawa, "Calculating nonadiabatic couplings and Berry's phase by variational quantum eigensolvers", Physical Review Research 3 2, 023244 (2021).

[48] Yosuke Mitsuhashi and Nobuyuki Yoshioka, "Clifford Group and Unitary Designs under Symmetry", PRX Quantum 4 4, 040331 (2023).

[49] Hrushikesh Patil, Yulun Wang, and Predrag S. Krstić, "Variational quantum linear solver with a dynamic ansatz", Physical Review A 105 1, 012423 (2022).

[50] Lento Nagano, Aniruddha Bapat, and Christian W. Bauer, "Quench dynamics of the Schwinger model via variational quantum algorithms", Physical Review D 108 3, 034501 (2023).

[51] Fong Yew Leong, Wei-Bin Ewe, and Dax Enshan Koh, "Variational quantum evolution equation solver", Scientific Reports 12, 10817 (2022).

[52] Ali Asadi, Amintor Dusko, Chae-Yeun Park, Vincent Michaud-Rioux, Isidor Schoch, Shuli Shu, Trevor Vincent, and Lee James O'Riordan, "Hybrid quantum programming with PennyLane Lightning on HPC platforms", arXiv:2403.02512, (2024).

[53] Shigeo Hakkaku, Yuichiro Tashima, Kosuke Mitarai, Wataru Mizukami, and Keisuke Fujii, "Quantifying fermionic nonlinearity of quantum circuits", Physical Review Research 4 4, 043100 (2022).

[54] Samuel Yen-Chi Chen, Chih-Min Huang, Chia-Wei Hsing, and Ying-Jer Kao, "An end-to-end trainable hybrid classical-quantum classifier", arXiv:2102.02416, (2021).

[55] Cono Di Paola, Evgeny Plekhanov, Michal Krompiec, Chandan Kumar, Emanuele Marsili, Fengmin Du, Daniel Weber, Jasper Simon Krauser, Elvira Shishenina, and David Muñoz Ramo, "Platinum-based Catalysts for Oxygen Reduction Reaction simulated with a Quantum Computer", arXiv:2307.15823, (2023).

[56] Abhinav Anand, Lasse Bjørn Kristensen, Felix Frohnert, Sukin Sim, and Alán Aspuru-Guzik, "Information flow in parameterized quantum circuits", Quantum Science and Technology 9 3, 035025 (2024).

[57] Thi Ha Kyaw, Micheline B. Soley, Brandon Allen, Paul Bergold, Chong Sun, Victor S. Batista, and Alán Aspuru-Guzik, "Boosting quantum amplitude exponentially in variational quantum algorithms", Quantum Science and Technology 9 1, 01LT01 (2024).

[58] Stavros Efthymiou, Marco Lazzarin, Andrea Pasquale, and Stefano Carrazza, "Quantum simulation with just-in-time compilation", Quantum 6, 814 (2022).

[59] Shaozhi Li, M Sabbir Salek, Yao Wang, and Mashrur Chowdhury, "Quantum-inspired activation functions in the convolutional neural network", arXiv:2404.05901, (2024).

[60] Nicholas H. Stair and Francesco A. Evangelista, "QForte: an efficient state simulator and quantum algorithms library for molecular electronic structure", arXiv:2108.04413, (2021).

[61] Hasan Sayginel, Francois Jamet, Abhishek Agarwal, Dan E. Browne, and Ivan Rungger, "A fault-tolerant variational quantum algorithm with limited T-depth", Quantum Science and Technology 9 1, 015015 (2024).

[62] Ryo Watanabe, Keisuke Fujii, and Hiroshi Ueda, "Variational quantum eigensolver with embedded entanglement using a tensor-network ansatz", Physical Review Research 6 2, 023009 (2024).

[63] Koki Chinzei, Quoc Hoan Tran, Kazunori Maruyama, Hirotaka Oshima, and Shintaro Sato, "Splitting and parallelizing of quantum convolutional neural networks for learning translationally symmetric data", Physical Review Research 6 2, 023042 (2024).

[64] Rihito Sakurai, Wataru Mizukami, and Hiroshi Shinaoka, "Hybrid quantum-classical algorithm for computing imaginary-time correlation functions", Physical Review Research 4 2, 023219 (2022).

[65] Takashi Tsuchimochi, Masaki Taii, Taisei Nishimaki, and Seiichiro L. Ten-no, "Adaptive construction of shallower quantum circuits with quantum spin projection for fermionic systems", Physical Review Research 4 3, 033100 (2022).

[66] Takahiro Ohgoe, Hokuto Iwakiri, Masaya Kohda, Kazuhide Ichikawa, Yuya O. Nakagawa, Hubert Okadome Valencia, and Sho Koh, "Demonstrating quantum computation for quasiparticle band structures", Physical Review Research 6 2, L022022 (2024).

[67] Mirko Consiglio, Tony J. G. Apollaro, and Marcin Wieśniak, "Variational approach to the quantum separability problem", Physical Review A 106 6, 062413 (2022).

[68] Hans Hon Sang Chan, Nathan Fitzpatrick, Javier Segarra-Martí, Michael J. Bearpark, and David P. Tew, "Molecular excited state calculations with adaptive wavefunctions on a quantum eigensolver emulation: reducing circuit depth and separating spin states", Physical Chemistry Chemical Physics (Incorporating Faraday Transactions) 23 46, 26438 (2021).

[69] Matteo Paltenghi and Michael Pradel, "Bugs in Quantum Computing Platforms: An Empirical Study", arXiv:2110.14560, (2021).

[70] Mirko Consiglio, "Variational Quantum Algorithms for Gibbs State Preparation", arXiv:2305.17713, (2023).

[71] Nicholas C. Rubin, Klaas Gunst, Alec White, Leon Freitag, Kyle Throssell, Garnet Kin-Lic Chan, Ryan Babbush, and Toru Shiozaki, "The Fermionic Quantum Emulator", Quantum 5, 568 (2021).

[72] Teppei Suzuki, Tsubasa Miyazaki, Toshiki Inaritai, and Takahiro Otsuka, "Quantum AI simulator using a hybrid CPU-FPGA approach", Scientific Reports 13, 7735 (2023).

[73] Keita Omiya, Yuya O. Nakagawa, Sho Koh, Wataru Mizukami, Qi Gao, and Takao Kobayashi, "Analytical energy gradient for state-averaged orbital-optimized variational quantum eigensolvers and its application to a photochemical reaction", arXiv:2107.12705, (2021).

[74] Luca Erhart, Kosuke Mitarai, Wataru Mizukami, and Keisuke Fujii, "Constructing Local Bases for a Deep Variational Quantum Eigensolver for Molecular Systems", Physical Review Applied 18 6, 064051 (2022).

[75] William M Watkins, Samuel Yen-Chi Chen, and Shinjae Yoo, "Quantum machine learning with differential privacy", arXiv:2103.06232, (2021).

[76] Kosuke Mitarai, Yasunari Suzuki, Wataru Mizukami, Yuya O. Nakagawa, and Keisuke Fujii, "Quadratic Clifford expansion for efficient benchmarking and initialization of variational quantum algorithms", arXiv:2011.09927, (2020).

[77] Mitsuki Katsuda, Kosuke Mitarai, and Keisuke Fujii, "Simulation and performance analysis of quantum error correction with a rotated surface code under a realistic noise model", Physical Review Research 6 1, 013024 (2024).

[78] Kosuke Mitarai, Yasunari Suzuki, Wataru Mizukami, Yuya O. Nakagawa, and Keisuke Fujii, "Quadratic Clifford expansion for efficient benchmarking and initialization of variational quantum algorithms", Physical Review Research 4 3, 033012 (2022).

[79] Ken N. Okada, Hirofumi Nishi, Taichi Kosugi, and Yu-ichiro Matsushita, "Systematic study on the dependence of the warm-start quantum approximate optimization algorithm on approximate solutions", Scientific Reports 14, 1167 (2024).

[80] Georgia Christopoulou, Cono Di Paola, Floris Eelke Elzinga, Aurelie Jallat, David Muñoz Ramo, and Michal Krompiec, "Quantum hardware calculations of the activation and dissociation of nitrogen on iron clusters and surfaces", Physical Chemistry Chemical Physics (Incorporating Faraday Transactions) 26 7, 5895 (2024).

[81] Takashi Tsuchimochi, Yoohee Ryo, Siu Chung Tsang, and Seiichiro L. Ten-no, "Multi-state quantum simulations via model-space quantum imaginary time evolution", npj Quantum Information 9, 113 (2023).

[82] Bryan T. Gard and Adam M. Meier, "Classically efficient quantum scalable Fermi-Hubbard benchmark", Physical Review A 105 4, 042602 (2022).

[83] Jakob S. Kottmann, Philipp Schleich, Teresa Tamayo-Mendoza, and Alán Aspuru-Guzik, "Reducing qubit requirements while maintaining numerical precision for the Variational Quantum Eigensolver: A Basis-Set-Free Approach", arXiv:2008.02819, (2020).

[84] Hirotoshi Hirai, "Practical application of quantum neural network to materials informatics", Scientific Reports 14, 8583 (2024).

[85] Maria-Andreea Filip, Nathan Fitzpatrick, David Muñoz Ramo, and Alex J. W. Thom, "Reducing unitary coupled cluster circuit depth by classical stochastic amplitude prescreening", Physical Review Research 4 2, 023243 (2022).

[86] Zhiqian Xu, Yi Fan, Chu Guo, and Honghui Shang, "MPS-VQE: A variational quantum computational chemistry simulator with matrix product states", Computer Physics Communications 294, 108897 (2024).

[87] Abhinav Anand, Matthias Degroote, and Alán Aspuru-Guzik, "Natural Evolutionary Strategies for Variational Quantum Computation", arXiv:2012.00101, (2020).

[88] Bingzhi Zhang and Quntao Zhuang, "Fast decay of classification error in variational quantum circuits", Quantum Science and Technology 7 3, 035017 (2022).

[89] Adrián Pérez-Salinas, "Algorithmic Strategies for seizing Quantum Computing", arXiv:2112.15175, (2021).

[90] B. J. Alexander, J. J. Bollinger, and M. S. Tame, "Robustness of the projected squeezed state protocol", Physical Review A 109 5, 052614 (2024).

[91] Akihiro Hayashi, Austin Adams, Jeffrey Young, Alexander McCaskey, Eugene Dumitrescu, Vivek Sarkar, and Thomas M. Conte, "Enabling Multi-threading in Heterogeneous Quantum-Classical Programming Models", arXiv:2301.11559, (2023).

[92] Mohd Jawed Khan, Pankaj Pratap Singh, Biswajeet Pradhan, Abdullah Alamri, and Chang-Wook Lee, "Extraction of Roads Using the Archimedes Tuning Process with the Quantum Dilated Convolutional Neural Network", Sensors 23 21, 8783 (2023).

[93] Chenfeng Cao, Hiroshi Yano, and Yuya O. Nakagawa, "Accelerated variational quantum eigensolver with joint Bell measurement", Physical Review Research 6 1, 013205 (2024).

[94] Giovanni De Micheli, Jie-Hong R. Jiang, Robert Rand, Kaitlin Smith, and Mathias Soeken, "Advances in Quantum Computation and Quantum Technologies: A Design Automation Perspective", IEEE Journal on Emerging and Selected Topics in Circuits and Systems 12 3, 584 (2022).

[95] Joseph Peetz, Scott E. Smart, Spyros Tserkis, and Prineha Narang, "Simulation of Open Quantum Systems via Low-Depth Convex Unitary Evolutions", arXiv:2307.14325, (2023).

[96] Yoshiaki Kawase and Keisuke Fujii, "Fast classical simulation of Hamiltonian dynamics by simultaneous diagonalization using Clifford transformation with parallel computation", Computer Physics Communications 288, 108720 (2023).

[97] Yixiong Chen, "QDCNN: Quantum Dilated Convolutional Neural Network", arXiv:2110.15667, (2021).

[98] Saveliy Yusufov, Charlee Stefanski, and Constantin Gonciulea, "Designing a Fast and Flexible Quantum State Simulator", arXiv:2303.01493, (2023).

[99] Wang Fang and Mingsheng Ying, "Symbolic Execution for Quantum Error Correction Programs", arXiv:2311.11313, (2023).

[100] Maurice Weber, Abhinav Anand, Alba Cervera-Lierta, Jakob S. Kottmann, Thi Ha Kyaw, Bo Li, Alán Aspuru-Guzik, Ce Zhang, and Zhikuan Zhao, "Toward reliability in the NISQ era: Robust interval guarantee for quantum measurements on approximate states", Physical Review Research 4 3, 033217 (2022).

[101] Cenk Tüysüz, Carla Rieger, Kristiane Novotny, Bilge Demirköz, Daniel Dobos, Karolos Potamianos, Sofia Vallecorsa, Jean-Roch Vlimant, and Richard Forster, "Hybrid Quantum Classical Graph Neural Networks for Particle Track Reconstruction", arXiv:2109.12636, (2021).

[102] Nguyen Tan Viet, Nguyen Thi Chuong, Vu Thi Ngoc Huyen, and Le Bin Ho, "tqix.pis: A toolbox for quantum dynamics simulation of spin ensembles in Dicke basis", Computer Physics Communications 286, 108686 (2023).

[103] Hocheol Lim, Hyeon-Nae Jeon, June-Koo Rhee, Byungdu Oh, and Kyoung Tai No, "Quantum computational study of chloride attack on chloromethane for chemical accuracy and quantum noise effects with UCCSD and k-UpCCGSD ansatzes", Scientific Reports 12, 7495 (2022).

[104] Jun Doi, Hiroshi Horii, and Christopher Wood, "Efficient techniques to GPU Accelerations of Multi-Shot Quantum Computing Simulations", arXiv:2308.03399, (2023).

[105] Hasitha Muthumala Waidyasooriya, Hiroki Oshiyama, Yuya Kurebayashi, Masanori Hariyama, and Masayuki Ohzeki, "A Scalable Emulator for Quantum Fourier Transform Using Multiple-FPGAs With High-Bandwidth-Memory", IEEE Access 10, 65103 (2022).

[106] Enhua Xu, Yuma Shimomoto, Seiichiro L. Ten-no, and Takashi Tsuchimochi, "Many-Body-Expansion Based on Variational Quantum Eigensolver and Deflation for Dynamical Correlation", Journal of Physical Chemistry A 128 12, 2507 (2024).

[107] Yoshiaki Kawase, Kosuke Mitarai, and Keisuke Fujii, "Parametric t-stochastic neighbor embedding with quantum neural network", Physical Review Research 4 4, 043199 (2022).

[108] Samuel Duffield, Gabriel Matos, and Melf Johannsen, "qujax: Simulating quantum circuits with JAX", The Journal of Open Source Software 8 89, 5504 (2023).

[109] Oumarou Oumarou, Alexandru Paler, and Robert Basmadjian, "Fast quantum circuit simulation using hardware accelerated general purpose libraries", arXiv:2106.13995, (2021).

[110] Srikar Chundury, Jiajia Li, In-Saeng Suh, and Frank Mueller, "DiaQ: Efficient State-Vector Quantum Simulation", arXiv:2405.01250, (2024).

[111] Yusuke Kimura, Shaowen Li, Hiroyuki Sato, and Masahiro Fujita, "Accelerating Decision Diagram-based Multi-node Quantum Simulation with Ring Communication and Automatic SWAP Insertion", arXiv:2405.09033, (2024).

[112] Jarosław Adam Miszczak, "Symbolic quantum programming for supporting applications of quantum computing technologies", arXiv:2302.09401, (2023).

[113] Ryo Sakai, Hiromichi Matsuyama, Wai-Hong Tam, Yu Yamashiro, and Keisuke Fujii, "Linearly simplified QAOA parameters and transferability", arXiv:2405.00655, (2024).

[114] Soichiro Nishio, Yuki Oba, and Yuki Kurashige, "Statistical errors in reduced density matrices sampled from quantum circuit simulation and the impact on multireference perturbation theory", Physical Chemistry Chemical Physics (Incorporating Faraday Transactions) 25 44, 30525 (2023).

[115] Gian Giacomo Guerreschi, "Fast simulation of quantum algorithms using circuit optimization", Quantum 6, 706 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-01-18 01:01:56) and SAO/NASA ADS (last updated successfully 2024-05-21 13:10:39). The list may be incomplete as not all publishers provide suitable and complete citation data.

Could not fetch Crossref cited-by data during last attempt 2024-05-21 13:10:33: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2021-10-06-559.