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We consider a model of quantum compu-
tation using qubits where it is possible to
measure whether a given pair are in a sin-
glet (total spin 0) or triplet (total spin 1)
state. The physical motivation is that we
can do these measurements in a way that
is protected against revealing other infor-
mation so long as all terms in the Hamil-
tonian are SU(2)-invariant. We conjecture
that this model is equivalent to BQP. To-
wards this goal, we show: (1) this model
is capable of universal quantum compu-
tation with polylogarithmic overhead if it
is supplemented by single qubit X and Z
gates. (2) Without any additional gates, it
is at least as powerful as the weak model
of “permutational quantum computation”
of Jordan [14, 18]. (3) With postselection,
the model is equivalent to PostBQP.

Imperfect physical gates are a major challenge
for building a scalable quantum computer. One
possible way to overcome this challenge is to use
error correcting codes to build high fidelity log-
ical gates from the lower fidelity physical gates
[10]. Another approach is to use a topologically
ordered state to store and manipulate quantum
information, directly obtaining good logical gates
[17]. Here, we propose a third approach, to pro-
tect the operations by symmetries of the physical
Hamiltonian.

In particular, we consider qubits encoded in
quantum spins, and we assume that the Hamilto-
nian and any noise terms respect an SU(2) sym-
metry acting on all the qubits simultaneously.
We need a quick introduction into the represen-
tation theory of SU(2). The irreducible repre-
sentations of SU(2) are indexed by a quantity
S ∈ {0, 1/2, 1, 3/2, . . .}, called the spin. The
dimensionality of a representation of spin S is
2S + 1. The spin-1/2 representation has dimen-

sion 2, so can be regarded as a qubit. The tensor
product of two spin-1/2 representations is the di-
rect sum of a spin 0 and spin 1 representation.
The singlet state of a pair of qubits is, up to
an arbitrary phase, 1√

2(|01〉 − |10〉), while states

{|00〉, |11〉, 1√
2(|01〉 + |10〉)} in the subspace or-

thogonal to the singlet state are called triplet.
The singlet state is anti-symmetric under ex-
change of qubits, while the triplet states are sym-
metric.

In the idealized case, a single qubit is not sub-
ject to any noise of any kind, since there are no
terms that we can write down which are invari-
ant under SU(2) on that qubit. If we bring a
pair of qubits together, then the total spin (ei-
ther 0 or 1) is the only SU(2)-invariant term on
both qubits. Thus, dephasing may happen be-
tween spin 0 (singlet) and spin 1 (triplet) states;
however, it also becomes possible to measure this
total spin.

Our focus in this paper is on the power of
these singlet/triplet measurements in an ideal-
ized model. To state our physical model: we as-
sume that there are n qubits for some n, initially
in some state which is a tensor product of sin-
glets. We then allow arbitrary pairs of qubits to
be selected and the total spin of those two qubits
to be selected. We use the notation s/t to indi-
cate this operation, which projectively measures
a pair of qubits to be in either the singlet (s) or
triplet (t) subspace. From this physical model,
we define a computational complexity class that
we call STP, where a sequence of polynomially
many such s/t measurements is allowed. More
precisely,

Definition 1. STP is the class of problems that
can be correctly answered, with constant prob-
ability larger than 1

2 , using polynomially many
s/t measurements where the sequence of mea-
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surements to make is determined by a polyno-
mial time classical algorithm based on the in-
put string and on the previous measurement out-
comes. Similarly, the decision of whether the in-
put string is accepted or rejected is also deter-
mined by a polynomial time classical algorithm
based on the string and the measurement out-
comes.

As perhaps the “smallest” physical example
where this can be realized, imagine a single elec-
tron and a single proton far separated from each
other. Each has spin 1/2, and (assuming no
magnetic fields are present and assuming that
spin-orbit coupling can be ignored which depends
on the electric fields and on the orbital degrees
of freedom) then these spins are not subject to
any decoherence. If the electron and proton are
brought near each other, then there is a hyper-
fine coupling between these spins, and the ground
state splits into singlet and triplet levels with
slightly different energies which can in principle
be measured. One might then try to compute by
having a large number of electrons and protons
and occasionally bringing a single electron near a
single proton and measuring the total spin. This
simple example is slightly different from the ide-
alized model above, as some of the qubits are
associated with electrons and some with protons,
and pairs must have one electron and one proton.

More realistic examples include trapped ions
where interaction between ions may be depen-
dent on total spin, or spin blockade in quantum
dots [13].

This paper considers the question: what is
the computational power of STP? We believe the
study of such a simple model, in addition to its
symmetry protection, is of interest itself and we
conjecture that STP is equivalent to BQP. Even
if our conjecture is wrong and STP falls some-
where between P and BQP, the study of STP is
still well-motivated as it is so distinct from other
quantum computational models. While we do
not show STP = BQP, we present several partial
results1.

We emphasize that this kind of physical protec-
tion by symmetry is distinct from the approach

1After this paper appeared, it was shown that
STP=BQP [22], building on [21]. Even given that
STP=BQP, the constructions here are of interest as they
may give a lower overhead way to implement BQP in prac-
tice using additional approximate gates.

using measurement based quantum computation
in a symmetry-protected topological phase [19].

First, in Section 1, we show how to implement
universality using s/t measurements as well as
certain single qubit Cliffords and Pauli measure-
ments. Our discussion will be in reverse order of
the number of single qubit operations we allow:
we will start with the full single qubit Clifford
group and all Pauli measurements, and gradu-
ally reduce the number of single qubit opera-
tions required, until what is required is X,Z Clif-
ford operations in addition to s/t measurements.
A related previous result is that s/t operations
combined with a source of many copies of three
different states whose Bloch vectors span is also
universal [21]; s/t operations are used to purify
mixed states and build any pure state, which are
then used to build cluster states. This purifica-
tion result, impossible to do using Clifford oper-
ations, further motivates the study of STP. We
refer to the introduction in [21] for further moti-
vation behind the study of STP.

In Section 2, we show that STP is at least as
powerful as the model of “weak permutational
computing” [14] (it has been shown [12] that
there is an efficient classical algorithm to com-
pute amplitudes in this permutational comput-
ing model, but no classical algorithm is known to
solve the sampling problem in this model).

In Section 3, in line with our investigation of
STP, we consider generalizations of STP, showing
that allowing higher spin qudits does not increase
the power of the model.

Finally, in Section 4, we define a postselected
version of STP, called PostSTP, and show that
it is equivalent to PostBQP. This implies that ef-
ficient exact sampling from an STP protocol is
impossible assuming the polynomial hierarchy is
infinite [11, See “Sidebar: The Polynomial Hier-
archy and Post-Selection”]. An approximate ef-
ficient sampling, related to quantum supremacy
experiments, is discussed in Appendix C (Prob-
lem 1). Showing PostSTP = PostBQP does not
imply STP = BQP, as there are other models,
such as boson sampling and IQP which are not
believed to be BQP and yet their postselection
version equals PostBQP (see [11] for more on
PostBQP and quantum supremacy experiments).

There are several interesting open questions,
such as the obvious question of the hardness
of sampling measurement outcomes for some se-
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quence of s/t measurements, with the sequence
randomly chosen or chosen in some other way.

A final result that may be of independent in-
terest is given in Appendix A, namely a relation
between the “irrationality measure” of an irra-
tional angle and how many times one may need
to rotate by that angle to approximate some de-
sired target angle to some desired accuracy. Al-
though we use this result in Section 1.1.2, it is
only to show an efficient approximation that can
also be done with more elementary facts. Likely
the result in Appendix A is well-known, but since
we did not find it elsewhere we record it here.

1 X, Z and s/t is Universal for Quan-
tum Computation

We show that:

Theorem 1. Using s/t measurements, and sin-
gle qubit X,Z unitaries, we can approximate a
gate set consisting of one and two qubit Clifford
operations and Pauli measurements, as well as T
gates, with an expected overhead that is only poly-
logarithmic in the error in this approximation.

Remark 1. The polylogarithmic overhead arises
for a familiar reason: we will exactly implement
Clifford gates and then implement T gates by
magic state distillation using as input approxi-
mate T gates that we can form from the given
operations. The overhead scales polylogarithmi-
cally in the accuracy of the distilled T gates. The
implementation of the circuit is probabilistic, as
certain operations are repeated until they suc-
ceed, which is why the theorem refers to an ex-
pected overhead.

1.1 s/t and Single Qubit Clifford and Pauli
Measurement is Universal for Quantum Com-
puting

We first show that s/t on arbitrary pairs of
qubits, combined with arbitrary Cliffords on a
single qubit (i.e., X,Z,H, S) and single qubit
Pauli measurements, is universal for quantum
computing. In particular, we can approximate
a gate set consisting of one and two qubit Clif-
fords operations and Pauli measurements, as well
as T gates, with an overhead that is only poly-
logarithmic in the error.

In subsequent sections, we reduce the number
of single qubit operations required at the cost of
making the construction more complicated.

We begin by showing that we can implement
the full Clifford group, and then show universal-
ity.

1.1.1 Implementing the Full Clifford Group

First, we prove:

Lemma 1 (Bell basis measurement). We can im-
plement a four outcome projective measurement
on two qubits A,B in a Bell basis:

1√
2

(
|01〉 − |10〉

)
; 1√

2

(
|01〉+ |10〉

)
;

1√
2

(
|00〉+ |11〉

)
; 1√

2

(
|00〉 − |11〉

)
.

Proof. To do this, first apply an s/t measure-
ment. If the outcome is s, then the qubits are
in the first Bell state. If the outcome is t, apply
ZA and again measure s/t. If the outcome is s,
then the qubits were in the second Bell state. If
the outcome is t, apply XA and again measure
s/t; if the outcome is s, then the qubits were in
the third Bell state. If the outcome is t, then the
qubits were in the fourth Bell state.

Remark 2. Since we can do Bell basis measure-
ments, we can teleport: given a pair of qubits
labeled B,C in a Bell state, we can bring in an
additional qubit labeled A and measure A,B in
the Bell basis. This teleports the state of A to
C, up to some correction on C which is a single
qubit Clifford.

Further, we can teleport more than one qubit,
and use this to perform Clifford operations if we
can prepare appropriately entangled states. To
prove that for the case of CNOT, consider a state
ψCNOT on four qubits C,D,E, F obtained by
taking C,E in a singlet and D,F in a singlet,
and then applying a CNOT from E to F . We
then bring in two extra qubits A,B, and mea-
sure A,C in the Bell basis and measure B,D in
a Bell basis. This teleports the state of A,B to
E,F and then applies a CNOT, again up to some
single qubit Cliffords on E,F .

So, if we can prepare this state ψCNOT , then
we can perform CNOT operations. Combined
with the ability to perform single qubit Cliffords,
this gives the full Clifford group. It seems at this
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point that we are trying to get a “free lunch”:
the most obvious way to prepare ψCNOT is to
perform a CNOT operation, which is precisely
the operation we are trying to produce.

However, it is possible to prepare ψCNOT us-
ing just s/t and single qubit Cliffords, as we now
show. First we construct a double spin operation
OZZ .

Lemma 2 (OZZ). We can produce an operation
OZZ which acts on a pair of qubits A,B and pro-
jectively measures ZAZB and, if ZAZB = −1,
then it also measures XAXB.

Proof. To do this, simply perform only the first
two measurements of the protocol above to mea-
sure in the Bell basis: if either of the first two
measurements are s, then ZAZB = −1 and we
have also measured XAXB. If both measure-
ments are t, then ZAZB = +1 but no other in-
formation is revealed; we should then apply ZA
to undo the first application of ZA.

Corollary 1 (ÔZZ). Using the operation OZZ ,
it is possible to produce an operation ÔZZ which
always measures ZAZB and, with probability 1/2,
also measures XAXB.

Proof. To do this, flip an unbiased coin: if it
is heads, apply OZZ ; if it is tails, apply XA,
then apply OZZ , then apply XA again. Then,
if ZAZB = 1 we measure XAXB if the coin is
tails but not if it is heads, while if ZAZB = −1,
we measure XAXB if the coin is heads but not if
it is tails.

Remark 3 (OXX , OY Y , ÔXX , ÔY Y ). Similarly,
we can produce an operation OXX which mea-
sures XAXB and, if XAXB = −1, also mea-
sures ZAZB, and we can produce an operation
ÔXX which measures XAXB and, with proba-
bility 1/2 measures ZAZB otherwise measuring
nothing else. To construct OXX , we use the same
construction as OZZ except we apply XA after
the first measurement if the result is t, rather
than applying ZA. We construct ÔXX similarly.
Also (we will use this in Section 1.2.2), we can
produce operations OY Y and ÔY Y . To construct
OY Y , ÔY Y , we apply YA = XAZA (up to scalar
phase) after the first measurement if it is t.

We will say that OZZ , ÔZZ succeed if they mea-
sure only ZAZB without measuring additional
information. Similarly, we say that OXX , ÔXX

(respectively, OY Y , ÔY Y ) succeed if they measure
only XAXB (respectively, YAYB) without reveal-
ing any additional information.

Lemma 3 (CNOT). We can produce a CNOT
gate using an ancilla, given the ability to perform
single qubit Cliffords and Pauli measurements as
well as to apply OZZ , OXX on an arbitrary pair
of qubits.

Proof. The circuit [15, 23] is: prepare the an-
cilla in the |+〉 state, measure ZZ on the source
and ancilla, measure XX on the ancilla and tar-
get, and finally measure Z on the ancilla, and
apply single qubit Clifford corrections if needed.
The original reference [23] writes the circuit with
additional Hadamard gates so that all measure-
ments are Z or ZZ, but it conjugates to the cir-
cuit we give here.

Now, to produce the CNOT gate action, recall
that we only need to prepare the state ψCNOT .
We do so by a probabilistic protocol: prepare
two entangled qubits. Then, attempt to produce
a CNOT gate by using operations OZZ and OXX
in place of the ZZ and XX measurements in
the aforementioned protocol for a CNOT. If both
OZZ and OXX succeed, we have produced the de-
sired ψCNOT . If one does not succeed, we may
simply try again.

Remark 4. Note that in this probabilistic proto-
col, indeed OZZ and OXX will each succeed with
probability 1/2, without any need to use ÔZZ
and ÔXX .

Thus, this protocol to perform a CNOT gate
can be understood simply as, first, we have a
protocol that sometimes succeeds in perform-
ing the desired CNOT, and, second, by prepar-
ing entangled states “offline”. Offline opera-
tions use expendable qubits where, without any
loss in efficiency, we can start again the opera-
tions/measurements on new qubits if the desired
result was not obtained. This is in contrast to
online operations applied on the data (compu-
tational+ancilla) qubits. By teleporting through
the entangled states, we can use this to perform
CNOTs on data qubits by “only using the CNOT
when it will succeed”.

1.1.2 Universality

Now we show universality. The construction here
is not intended to be optimal in terms of minimiz-
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ing overhead in any way. It is simply intended to
be a simple way to show universality by leverag-
ing standard results.

Lemma 4. We can prepare (offline) a non-
stabilizer pure state on a single qubit.

Proof. Prepare two qubits in states |0〉 and |+〉
using Z,X measurements and applying X,Z if
the wrong outcome occurs. Project into the
triplet state (if instead they are in a singlet, re-
prepare and try again). The result is, up to nor-
malization, |00〉 + 1

2(|01〉 + |10〉). Measure the
second qubit in the X basis; we assume with-
out loss of generality that the result is |+〉. The
result state on the first qubit is, up to normal-
ization, 3|0〉 + |1〉. With normalization this is
cos(θ)|0〉+ sin(θ)|1〉, where θ = arctan(1/3) is an
irrational angle [2].

Any such state cos(θ)|0〉+ sin(θ)|1〉 is equal to
exp(iθY )|0〉. Using this as a resource for state
injection produces a rotation by

exp(±iθY ),

where the sign is chosen uniformly at random
(our basis for state injection is a little different
from the standard one since we rotate by Y in-
stead of by Z). This state injection can be done,
e.g., as in [4, Section III] by modifying the follow-
ing appropriately using a Hadamard and phase
gate:

MZ2 · CNOT (|ψ〉 ⊗ (|0〉+ eiθ|1〉)) (1.1)

→ Λ(e±2iθ)|ψ〉

where MZ2 is a Z-measurement on the second
qubit, and Λ(e±2iθ) the controlled e±2iθ rota-

tion

(
1 0
0 e±2iθ

)
. Note that XHS(cos(θ)|0〉 +

sin(θ)|1〉) ∝ 1√
2(|0〉 + e2iθ|1〉), with H,S the

Hadamard and phase gate. We shall address the
issue of sign ± in Λ(e±2iθ) shortly.

In the simplest applications of state injection,
one imagines a situation where rotation by twice
the angle is available as a primitive (for exam-
ple, using state injection to produce T gates and
assume that one has S gates available). In that
case, if the sign is not what one wants, one can
recover with a rotation by twice the angle. We
do not have that option here.

We use a different approach. Pick any desired
target angle φtarget, and any error ε > 0. Then,
repeatedly apply state injection (like in Eq. (1.1))
to a qubit |ψ〉 initialized in the |0〉 state, until
the result is cos(φ)|0〉 + sin(φ)|1〉 where φ ≡ mθ
(mod 2π) for some m ∈ N and

|φ− φtarget| ≤ ε.

Here, when we apply state injection, we do not
care whether the plus sign or minus sign is cho-
sen. The result is some random walk in an-
gles and since θ is irrational, in expected time
O( 1

εµ+1 ), where µ is the irrationality measure of
π
8 (Appendix A), we get |φ− φtarget| ≤ ε.

Choosing φtarget = π/8, we can then produce
states arbitrarily close to a magic state for a ro-
tation by π/8, i.e., a magic state for a “T” gate,
where the quotes are because this is rotation by
Y rather than Z. Choosing ε sufficiently small,
one can then use this gate as input into any stan-
dard T gate distillation protocol (like in Eq. (1.1)
but for θ → φ) [4, Section III] to obtain univer-
sality with only polylogarithmic overhead in the
target error.

1.2 Reducing the Single Qubit Operations
Needed
We now reduce the single qubit operations re-
quired.

1.2.1 Avoiding Use of Hadamard and S gates

First, we note that it is possible to avoid us-
ing both Hadamard and S gates. Without these
gates, our construction of Section 1.1.1 gives the
subgroup of the Clifford group generated by sin-
gle qubit X and Z and two qubit CNOT. Call
this subgroup C. We now show that we can gen-
erate the full Clifford group using just s/t, X,Z
and single qubit Pauli measurements.

Lemma 5. The Hadamard and phase gates can
be derived by using gate distillation with the help
of CNOT and single qubit Pauli measurements.

Proof. Since we can measure single qubit Paulis,
prepare qubits in state Y = +1. Using these
Y = +1 qubits as a target for state injection for
rotations by Z, we can produce the S = exp(iπ4Z)
gate. This state injection protocol requires only
X,Z, and CNOT gates and single qubit Pauli
measurements, so it requires only the subgroup
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C above. Note that since we have the single qubit
Z = S2 available, we can recover state injection
if we instead produce S† (Eq. (1.2)).

MZ2 · CNOT (|ψ〉 ⊗ |Y = +1〉)→ S±|ψ〉 (1.2)

We can also use the same Y = +1 state in
state injection to produce rotation by exp(iπ4X)
(Eq. (1.3)). To do this we use the usual state in-
jection protocol, except we interchange the con-
trol and target on the CNOT gate in state in-
jection, and we replace the final Z measurement
in state injection with an X measurement. The
effect of this is to perform state injection in a
Hadamard basis (even though no Hadamards are
used!), since (H ⊗ H)CNOT(H ⊗ H) is equal
to a CNOT gate with control and target inter-
changed.

MX2 · CNOT (|Y = +1〉 ⊗ |ψ〉) (1.3)

→ HS±H|ψ〉

Combining rotations exp(iπ4Z), exp(iπ4X), we
can produce the full single qubit Clifford group,
including H.

1.2.2 X,Z and s/t is Universal

Let us now show finish the proof of Theorem 1
by showing:

Lemma 6. Single qubit Pauli measurements can
be derived using X,Z and s/t.

Proof. Recall that using just X,Z and s/t, we
have a protocol ÔZZ which measures ZZ on any
two qubits A,B and which measures nothing else
with probability 1/2. So, imagine that we have a
set S of qubits such that the product ZZ = +1
for all pairs of qubits in S. Consider another
qubit q in any state. Then, pick any qubit r
from S and measure ZqZr. With probability 1/2
nothing else is measured and if ZqZr = +1, we
can add q to the set; if ZqZr = −1, we can apply
X to q and then add q to the set. On the other
hand, with probability 1/2, additional informa-
tion is measured; in this case, we remove r from
S.

So, with probability 1/2, |S| → |S+1| and with
probability 1/2, |S| → |S − 1|. This allows us to
build up large sets S. Since the size of S does an
unbiased random walk, it takes ∼ n2 operation
to produce a set S with |S| = n. We can then use

such a set as a “standard”: throw out any qubit
in S. The remaining qubits are then in a state
which is an incoherent mixture of |0〉⊗(n−1) and
|1〉⊗(n−1).

So, let us analyze these two cases, where
the remaining qubits are either in |0〉⊗(n−1) or
|1〉⊗(n−1), separately. First suppose that the
state is |0〉⊗(n−1). Call each of these n− 1 qubits
“Z standards”. Then, any time we want to mea-
sure Z on a single qubit, we get a Z standard and
use ÔZZ to measure ZZ on the given qubit and
the standard. If we measure no other informa-
tion other than ZZ, we can now in fact use both
qubits as standards; if we also measure XX, we
discard both qubits. So, at most one Z standard
is consumed per measurement. Note that even if
ÔZZ does not succeed, so that we also measure
XX, we still have learned the value of Z on the
given qubit: the effect is to measure the value of
Z on the given qubit and then bring that qubit
and the standard into a Bell pair.

We assumed that the standards were in the
state |0〉⊗(n−1). If instead they are in the state
|1〉⊗(n−1), nothing changes: our labels |0〉 and |1〉
are arbitrary and can be interchanged. This is
a consequence of a symmetry of our operations
X,Z, s/t, which are invariant (up to an unob-
servable phase) under conjugation by X. Indeed,
if our labels were not arbitrary, then some se-
quence would reveal the difference between these
two states, in which case we could, assuming we
had |1〉⊗(n−1), apply X to every qubit to obtain
|0〉⊗(n−1).

So, we can measure single qubit Z with a
quadratic overhead: the number of operations
is proportional to the square of the number of
measurements. Similarly, we can measure sin-
gle qubit X and single qubit Y by preparing X
standards (respectively, Y standards), which are
sets of qubits where XX = +1 (respectively,
Y Y = +1) for every pair in the set. This fin-
ishes the proof of the lemma and as a result The-
orem 1.

Remark 5. In fact, the quadratic overhead can
easily be reduced to linear. Suppose we have
some such set S. In O(1) operations we can pre-
pare another set T with |T | ≥ 2 such that all pairs
of qubits in T also have ZZ = +1. Then, pick one
qubit from S and one from T and apply ÔZZ . If
this succeeds with ZZ = +1, add all qubits from
T to S and if it succeeds with ZZ = −1, apply X
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to all qubits in T and then add all qubits in T to
S. If it fails, remove the given qubit from S and
discard T . Thus, with probability 1/2 with have
|S| → |S|+ |T | ≥ |S|+ 2, while with probability
1/2 we have |S| → |S| − 1.

This gives a biased random walk in |S| and
so |S| increases linearly in the number of oper-
ations with high probability. We leave it to the
reader to consider optimizing the linear increase.
For example, what is the best |T | to use; should
one in fact apply this construction recursively by
constructing T using a similar process; one can
in fact avoid discarding all of T but only discard
the measured qubit if ÔZZ does not succeed and
so on.

2 Permutational Quantum Computa-
tion
The model of permutational quantum computing
[14] is as follows.

For any binary tree T with n leaves, we de-
fine a set of commuting operators on a system
of n qubits. Each qubit corresponds to one leaf.
For every vertex v (including the root), there is
an operator ~S2

v = (
∑
l
~Sl)2 with eigenvalues cor-

responding to the total spin of the qubits corre-
sponding to leaves which are descendants of that
vertex. Additionally, for the root, there is an-
other operator with eigenvalues corresponding to
the total spin in the Z-direction of the qubits,
denoted SZ = 1

2
∑
l leaf Zl.

The eigenvalues of these operators (all together
forming a tuple of half-integers) define a complete
eigenbasis. We say that a labelled tree is a binary
tree with labels at each vertex (Fig. 2.1), with the
labels at each vertex being chosen from the set
of eigenvalues of the operator(s) corresponding
to that vertex. We use T, T ′, . . . to denote un-
labelled binary trees (Fig. 2.2). We use λ, λ′, . . .
to denote labeled binary trees, and use |λ〉, . . .
to denote the corresponding states. There are
two models of permutational quantum comput-
ing. In the weak model, one can prepare any
state |λ〉 corresponding to any labelled tree. One
can then pick any any other tree T ′ and projec-
tively measure the corresponding operators for
that tree. If λ′ is a labeling of S, then one can
measure |〈λ|λ′〉|2 to inverse polynomial accuracy
by repeating this projective measurement poly-
nomially many times. In the strong model, we

1/2 1/21/2

1/2, +1/2

1/2 1/21/2

1/2, −1/2

1/2 1/21/2

1/2, +1/2

1/2 1/21/2

1/2, −1/2

1/2 1/21/2

3/2, +3/2

1/2 1/21/2

3/2, +1/2

1/21/2

3/2, −1/2

0 0

1 1

1 1 1

1/2 1/2 1/21/2

3/2, −3/2

1

Figure 2.1: Eight labelled trees, corresponding to an
orthonormal basis of 3 spins, i.e. (C2)⊗3 (Figure from
[14]). Each label corresponds to the spins of the descen-
dant leaves. However, the root has two coordinates; the
first is the total spin of all leaves (total spin), and the
second is the total azimuthal angular momentum, an
eigenvalue of SZ . Every labelled tree can be expressed
in the standard basis of (C2)⊗3. For example, the left
tree from the second row is |λ〉 =

√
2
3 |001〉− |010〉+|100〉√

6 .

Figure 2.2: Examples of unlabelled trees (T, T ′, . . .) for
4 spins (Figure from [14]). Measuring, say, the leftmost
unlabelled tree, is sampling a labelling of that tree called
|λ′〉 with probability |〈λ|λ′〉|2 for |λ〉 a labelled tree with
4 spins.

assume that one can also measure 〈λ|λ′〉 (with-
out taking the absolute value) to inverse polyno-
mial accuracy. While this problem of computing
〈λ|λ′〉 can be done classically [12], there is no
known efficient classical algorithm for the prob-
lem of sampling from λ′ with probability |〈λ|λ′〉|2.

We show that:

Theorem 2. Using just s/t, one can simulate
the weak model in polynomial time.

2.1 Reducing to case that root has spin 0
First note that it suffices to consider the case
that the root has spin 0. The reader may prefer
to skip this section on first reading.

Indeed, consider any λ, λ′ such that λ has
spin Sroot 6= 0. Introduce notation: let |λ, SZ〉
be a state defined by some labeled tree λ with
the Z-spin at root replaced by SZ . Then,
〈λ′, S′Z |λ, SZ〉 = 0 unless Sroot = S′root and SZ =
S′Z . Fix some unlabelled tree T ′. To sample λ′

with probability |〈λ|λ′〉|2 , we do the following.
Adjoin an additional 2Sroot ancilla qubits, defin-
ing some tree λ′′ which constrains those ancillas
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to be in the spin Sroot state (there are many pos-
sible such λ′′ as all we care about is the root spin;
choose an arbitrary such λ′′). Then join the root
of λ to the root of λ′′ to produce2 some λ̂ with
spin Ŝroot = 0. Let T ′′ be an unlabelled tree,
obtained by removing the labels from λ′′. Join
the root of T ′ to T ′′ to produce some T̂ ′. Then,
prepare |λ̂〉 and projectively measure the eigen-
values corresponding to tree T̂ ′. Note that we will
always measure Ŝ′root = 0. This projective mea-
surement gives a labeling of T̂ ′, which induces a
labeling of T ′ since T ′ is contained in T̂ ′ (we can
assume that the root of T ′ has S′Z = SZ since
otherwise the amplitude is zero).

We claim that this correctly samples the am-
plitudes. That is, if λ̂′ is a labeling of T̂ ′, which
induces some labeling λ′ of T ′, then |〈λ̂|λ̂′〉|2 is
equal to |〈λ|λ′〉|2. To see that this, note that

|λ̂〉 =
+Sroot∑

SZ=−Sroot
A(SZ)|λ, SZ〉 ⊗ |λ′′,−SZ〉,

where A(SZ) are some Clebsch-Gordan coeffi-
cients. Do the same expansion for |λ̂′〉 and then

〈λ̂′|λ̂〉 =
+Sroot∑

SZ=−Sroot
|A(SZ)|2〈λ′, SZ |λ, SZ〉.

Since the inner product on the right-hand side is
independent3 of SZ , the result follows.

2.2 Measuring operators for some tree
Next we describe how to projectively measure op-
erators corresponding to any tree T ′ with root
having total spin 0. The key is that given any set
U of qubits with |U | = M for some M , we can
approximately measure the total spin of those
qubits as follows. Simply repeat the following
operation many times: choose a random pair of
qubits, and measure s/t. We show below that

2The root of λ has two labels, since it also has a label
by some SZ . This root becomes an internal vertex of λ̂
which should have only one label. We drop the label SZ
when we build λ̂.

3We show this here. Let (in a slight overuse of no-
tation) X denote the sum of Pauli X operators on all
qubits. The state exp(iθX)|λ, SZ = Sroot〉 is a super-
position of states |λ, SZ〉 with different SZ . The in-
ner product

(
〈λ′, Sroot| exp(−iθX)

)(
exp(iθX)|λ, Sroot〉

)
is independent of θ and by expanding in θ it follows that
〈λ′, SZ |λ, SZ〉 is independent of the particular SZ .

the number of measurements needed is at most
inverse polynomial in the accuracy.

Then, letting S2 denote the squared spin, and
~Si denote a vector of spin operators (one-half the
Pauli operators) on qubit i,

S2 =
M∑
i=1

M∑
j=1

~Si · ~Sj (2.1)

= 3
4M +

∑
i 6=j

~Si · ~Sj

= 3
4M +M(M − 1)

∑
i 6=j

~Si · ~Sj
M(M − 1)

Hence, averaging over randomly selected i, j,
the expectation value of ~Si · ~Sj equals (S2 −
3
4M)/(M(M−1)). In a triplet state, ~Si · ~Sj = 1/4
while in a singlet it equals −3/4. So, the proba-
bility of triplet is

(S2 − 3
4M)/(M(M − 1)) + 3/4.

Note that while this measurement of singlet or
triplet may change the state of the qubits in U ,
it does not change the total spin and since we
randomly choose i, j each time, the probability
of triplet depends only on the total spin. Hence,
since the measurements are independent, we may
estimate the spin in a time which is inverse poly-
nomial in the accuracy. Indeed, since the spin
is quantized, the convergence is actually faster
than polynomial. Once the number of measure-
ments is polynomially large compared to S2, the
convergence in accuracy becomes exponential4.

Using this ability to measure total spin of a
set of particles as a primitive, we can measure
the operators corresponding to any tree T ′. The
key is to start at the leaves and work towards
the root. Measure operators corresponding first
to vertices closest to the leaves. Proceed toward
the root, only measuring an operator on a given
vertex once all operators below that vertex have
been measured.

The point is, that while the operators corre-
sponding to different vertices commute with each
other, our measurement process reveals extra in-
formation. Our measurement process need not
commute for different vertices. However, our
measurement process for a given vertex does not
affect the total spin on vertices closer to the root.

4This fact was used in [22] for the STP=BQP proof.
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2.3 Preparing states

We now explain how to prepare a state |λ〉 in
polynomial expected time. In this case, we work
in the reverse direction: we start at the root
and work towards the leaves. In particular, we
will prepare a sequence of states |λ0〉, |λ1〉, . . ..
This corresponds to a sequence of partially labeled
trees λ0, λ1, . . .. In a partially labeled tree, some
set of vertices will have labels, and if a vertex v
is labeled, then all vertices which are ancestors
of v will also be labeled. The partially labeled
tree λ0 will have the root labeled with Sroot = 0
and no other labels. Each tree λi+1 will have two
more vertices labeled than the previous tree λi
in the sequence; this will be done by labeling a
pair of vertices which are children of some vertex
vi which is labeled in λi, and the last tree in the
sequence will have all vertices labeled and will be
the same as λ.

Each state |λi〉 corresponding to some partially
labeled tree λi will have the property that for
every operator corresponding to a labeled vertex
of λi, the state |λi〉 will have the corresponding
expectation value for that operator. No other
properties of the state are assumed, so a partially
labeled tree does not uniquely specify a state.

Preparing the first state |λ0〉 is easy: one may
simply create any choice of n/2 singlets. We
will construct a primitive operation that we call
splitting which has the following properties. 1:
The splitting primitive takes as input a set of
n qubits with total spin S for some n, S; there
are no other assumptions on the input state. 2:
One fixes some m < n and some S′, S′′ with
|S′′ − S′| ≤ S ≤ S′′ + S′. 3: The splitting primi-
tive applies s/tmeasurements to qubits from that
set, taking polynomial expected time. 4: The re-
sulting state has (up to exponentially small er-
ror) the first m qubits with total spin S′ and the
remaining n−m qubits with total spin S′′.

Given this splitting primitive, we can then pro-
duce each state |λi+1〉 from the state |λi〉, by ap-
plying splitting to the set of qubits corresponding
to descendants of vi, with S′, S′′ depending on the
labels in λi+1 for the children of vi.

We now construct the splitting primitive
above. First, let us say that a set of n qubits
with total spin S are in canonical form if there are
n− 2S singlet pairs (in some fixed configuration,
rather than a superposition) and the remaining
2S qubits are in a totally symmetric state. For

example, a state on 8 qubits with qubits 1, 3 in
an singlet and 4, 7 in a singlet and 2, 5, 6, 8 in a
totally symmetric state is in canonical form.

We divide the construction of splitting into
four steps.

First Step— First, we take the n qubits and
bring them to canonical form. The construction
is recursive. If n = 2S, then they are already in
canonical form. If not, pick a pair of qubits at
random and measure s/t. If the result is triplet,
pick another pair at random, and try again, con-
tinuing until eventually some pair is in a singlet.
That gives one singlet; we then bring the remain-
ing n−2 qubits to canonical form using the same
algorithm recursively. This takes polynomial ex-
pected time.

Second Step— Recall that we wish to divide
the set of n qubits into two sets, with m and
n−m qubits respectively, and with total spin S′

and S′′, with S′′ ≥ S′. Let ∆ = S′′ − S′. Let
S′min and S′′min be the two values for total spin
such that S′′min−S′min = ∆ and S′′min+S′min = S.

Our second step will be to take the state af-
ter the first step which is already in canonical
form, and divide it into two sets of qubits, of
sizes m,n−m respectively, with total spins S′min
and S′′min respectively, with each set in canonical
form. Call these two sets Q1 and Q2. This divi-
sion can be done easily: take the n−2S qubits in
a totally symmetric state, and place 2S′min qubits
in Q1 and the remaining 2S′′min in Q2. Then, take
the singlets from the state in the first step, and
place each singlet into one of the two sets (either
Q1 or Q2), so that the total sizes of the two sets
are correct.

Third Step— Our third step acts only on cer-
tain subsets of sets Q1, Q2. We call these subsets
R1, R2 and both have size 2∆. These subsets
R1, R2 are given by choosing ∆ singlets from Q1
and letting those be in R1 and choosing ∆ sin-
glets from Q2 and letting those be in R2. Qubits
will remain in the subset they are in after the
second step, but their state will change due to
this step. What the step will do is bring it to
a state where those qubits are now in a totally
symmetric state in each set individually (i.e., the
2∆ qubits in R1 are totally symmetric, as are the
2∆ qubits in R2), while the total spin of those 4∆
qubits is still 0.

To do this, we use an iterative algorithm. First,
A: bring both subsets R1, R2 into canonical form.
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If there are no singlets in either one, terminate.
Otherwise, B: if either subset has a singlet, then
so must the other5. Pick a pair of qubits, one
from a singlet in each subset, and measure s/t.
Call these qubits 1, 2 and call the singlets that
they are in respectively s1, s2. Then, regardless of
the measurement outcome, measure s/t on both
qubits in s1. If the result is s, this pair of mea-
surements has had no effect on the spins; in this
case repeat the pair of measurements, continuing
until the second measurement give t. Once the
second measurement gives t, go back to step A.

We claim that this takes polynomial expected
time. Consider the effect of B. Suppose that be-
fore measuring B the total spin in each set was
S. After B, the total spin in each set must be
one of the possibilities S − 1, S, S + 1. The to-
tal spin squared6 before B is S(S + 1) and the
total spin squared after B has expectation value
S(S+1)+2. The process of bringing into canon-
ical form measures the total spin in each set.
We claim that the probability that the total spin
squared is S + 1 is greater than the probability
that it is S − 1. Indeed, this must follow in or-
der for the total spin squared to have expectation
value S(S + 1) + 2 after B because

(S − 1)S + (S + 1)(S + 2)
2 = S2 + S + 1

< S(S + 1) + 2.

Hence, the total spin does a biased random walk
with the bias toward increasing spin, and so the
spin must become maximal in at most polynomial
time.

Fourth Step— After the third step, we have the
following. Each of the two sets Q1, Q2 has three
subsets. Let 1A, 1B, 1C denote the three subsets
of the first set and 2A, 2B, 2C denote the three
subsets of the second set, with 1A, 1B comprising
R1 and 2A, 2B comprising R2. The sets 1A, 2A
each contain qubits in some product of singlets.
The sets 1B and 2B each contain qubits in a
totally symmetric state, with the union of 1B
and 2B having total spin 0. The sets 1C and 2C

5This is because the total spin of qubits in R1, R2 is 0.
If R1 has at least one singlet, then R1 has total spin less
than the maximal value of ∆ and so R2 must also have
total spin less than ∆ in order for total spin of R1, R2 to
be 0.

6We remind the reader that the spin squared is S(S +
1), not S2.

also each contain qubits in a totally symmetric
state, but now the union of 1C and 2C is also in
a totally symmetric state. In the fourth step, we
act on sets 1B and 1C to try to bring them to
a totally symmetric state (we also do the same
procedure to 2B and 2C with the same goal but
we just describe it for 1B, 1C). To do this, we
we apply a large number of s/t measurements on
qubits randomly chosen from the union of 1B and
1C. If all measurement outcomes are t, then the
application of these measurements converges to
projecting onto the state where those qubits in
1B union 1C are in a totally symmetric state of
total spin S′ and we succeed. The convergence to
this projector is exponential, once one has more
than polynomially many measurements.

The probability that all measurements are t in
this step is at least inverse polynomial. This may
be seen by computing the projection of the ini-
tial state onto the space where 1B, 1C are totally
symmetric and 2B, 2C are totally symmetric. If
we fail, so that some measurement is s, we repeat
all steps of this process.

3 Generalizing the Model

The model STP can be generalized in several
ways. One natural generalization is to consider
symmetries other than SU(2), such as SU(m) for
m > 2. Another natural generalization is to con-
sider higher spin representations of SU(2).

In such a higher spin representation model, we
have qudits, for d = 2S+1 with S integer or half-
integer. We may consider having several different
kinds of qudits simultaneously, for example hav-
ing both qubits (S = 1/2) and qutrits (S = 1).
We allow any two qudits (perhaps of different di-
mensions) to be brought together, and the total
spin to be measured.

As a toy physical example, one might imagine
deuterium. The deuterium nucleus has total spin
1, while the electron has spin 1/2. The deuterium
atom then has total spin 1/2 or 3/2 and there is
a hyperfine splitting between these states.

Interestingly, this higher spin model can be
simulated using just s/t on qubits. To simulate a
qudit with spin S, use 2S qubits in a totally sym-
metric state. When two qudits with spin S, S′ are
brought together, we can measure the total spin
of the 2S + 2S′ qubits by repeatedly selecting
pairs of qubits uniformly at random and measur-
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ing s/t. Exactly as in Section 2, the convergence
in accuracy is exponential once we have a num-
ber of measurements which is polynomial in the
total spin.

After measuring the total spin, we can then
bring the 2S+ 2S′ qubits into two sets of 2S, 2S′
qubits respectively, both in a totally symmetric
state, again as in Section 2. Indeed, this is done
by the splitting primitive.

4 PostSTP Equals PostBQP
Let us formally define STP with postelection.

Definition 2. Let PostSTP be the class of lan-
guages L ⊂ {0, 1}∗ such that for all inputs x the
following holds. A quantum state is initialized as
a product of polynomially many singlets. Then
some classical algorithm (determined by L) takes
x as input and outputs a sequence of polynomially
many s/t measurements (as well as outcomes to
postselect upon for all but the last measurement),
taking polynomial time to output this sequence.
The sequence of measurements is applied to the
input state. Postselection is applied on all but the
last measurement, with the promise that the out-
comes postselected on have nonzero probability.
Finally, if x ∈ L, then the last measurement is s
with probability at least p for some p > 0 and if
x 6∈ L, then the last measurement is s with prob-
ability at most p′ for some p′ strictly less than p.
The quantities p, p′ are independent of input size.

Remark 6. To define postselection in symbols, let
ψ0 be the product of singlets which is the ini-
tial state. Let Πj be a projector which projects
onto the desired outcome (either s or t) of the
j-th measurement. Let Aj = ΠjΠj−1 . . .Π1 be
the product of these projectors up to the j-th
one. Let there be K = poly(N) measurement
outcomes that we postselect on, and let Πk+1 de-
note the projector onto the singlet outcome for
the last (the (K + 1)-st) measurement. Then,
the probability that the last outcome is s is

〈ψ0|A†KΠK+1AK |ψ0〉
〈ψ0|A†KAK |ψ0〉

,

where we are promised that the denominator is
nonzero.

We will show

Theorem 3. PostSTP equals PostBQP.

In outline, we prove this result by first show-
ing in Section 4.2 that we can use postselection to
simulate imaginary time evolution with Heisen-
berg interactions. Ref. [5] showed that approxi-
mating the ground state energy of Hamiltonian
with Heisenberg interactions is QMA-hard (see
also [6]), so this shows already PostSTP is at
least as powerful as QMA: simply evolve under
the desired Heisenberg Hamiltonian for a poly-
nomially long imaginary time. To show that we
get PostBQP, we use the ability to produce evo-
lution “time-dependent” Heisenberg interactions
in imaginary time, i.e., to vary the Heisenberg
Hamiltonian that we evolve under. We use the
same encoding as in [5] to show in Section 4.3
that this gives us PostBQP. Appropriate choices
of time-dependent Heisenberg Hamiltonians will
give us both circuits and measurement. We will
have to pay some attention to making errors ex-
ponentially small when we do this.

Before doing this, we show in Section 4.1 that
the probabilities that we postselect on can only
ever become exponentially small in poly(N).

4.1 A Remark On How Small Amplitudes Can
Become
Let ψ0 be the product of singlets which is the
initial quantum state for PostSTP.

We show

Lemma 7. The nonzero probabilities that can
occur in PostSTP are all Ω(exp(−poly(N)).

Proof. The probability that the j-th measure-
ment outcome has the desired value is

〈ψ0|A†jAj |ψ0〉
〈ψ0|A†j−1Aj−1|ψ0〉

.

Clearly, the denominator is at most 1. So, we
lower bound the numerator.

Note that every t postselection can be replaced
by (1/2)(1 + SWAP), where SWAP is the gate
that swaps a pair of qubits. Similarly, every s
postselection can be replaced by 1/2(1−SWAP).
Hence, the numerator is the sum of 4j different
terms, corresponding to replacing individual pro-
jectors Πj by either the identity or SWAP. The
contribution of any such term to the expectation
value is of the form 4−j〈ψ0|Permute|ψ0〉, where
Permute is the composition of some SWAPs,
hence some permutation to the qubits. Recall
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that ψ0 is the product of singlets, and there-
fore it is easy to see that for any permutation
Permute of the qubits, the expectation value
〈ψ0|Permute|ψ0〉 is ±2−J for some 0 ≤ J ≤ N−1.
So, the expectation value is a sum of 4j different
terms, each of which equals ±4−j2−JPermute , for
some JPermute depending on the permutation Per-
mute. Hence, if nonzero, the expectation value is
at least 4−j2−N−1, where j ≤ poly(N).

4.2 Simulating Imaginary Time Evolution
Let ψresource(ε) be the four qubit state, on four
qubits called C,D,E, F , with total spin 0 given
by first preparing C,E in a singlet and D,F in a
singlet and then acting with 1 + ε~SE · ~SF , and fi-
nally appropriately normalizing the state to unit
norm.

Now consider the effect of bringing in two ex-
tra qubits A,B in some arbitrary state ψAB, and
postselecting on A,C being s and on B,D being
s. One may commute the postselection on A,C
and B,D being in s with the action of 1+ε~SE · ~SF
used to define ψresource(ε). So, the effect of this
operation is to teleport the state (1+ε~SA·~SB)ψAB
to qubits E,F , while leaving A,C and B,D in
singlets.

So, if we can produce ψresource(ε), we can apply
the operation 1 + ε~SA · ~SB. Of course, the abil-
ity to apply 1 + ε~SA · ~SB correspondingly implies
the ability to create ψresource(ε). Thus, the two
things (the state and the operation) are equiva-
lent as resources.

Note that the projection onto t is given (up to
normalization) by the operation (1 + ε0~SA · ~SB)
with ε0 = 4/3, so we can create ψresource(4/3).

We will give a protocol to reduce ε, consuming
a pair of states ψresource(ε) with given ε and ap-
plying the operation (1+ε′~SA·~SB) to an arbitrary
pair of qubits A,B, with

ε′ = ε2

4 . (4.1)

If A,B were in a singlet initially, this cre-
ates ψresource(ε′). By applying this protocol re-
peatedly, we can produce a sequence of states
ψresource(εi) with ε0 = 4/3 and

εi+1 = ε2i
4 .

Remark 7. Of course we could also start with
ε0 = −4 which projects onto s up to normaliza-

tion, but this does not lead to anything interest-
ing.

The protocol is as follows. Create a pair of
qubits C,D in a singlet, and let A,B be arbi-
trary. Then, apply (1 + ε~SA · ~SC)(1 + ε~SB · ~SD),
consuming the two copies of ψresource(ε) to do
this, and again project onto C,D in a singlet. A
little algebra shows that the resulting state (up
to normalization) is a singlet on C,D and the
operation (1 + ε′~SA · ~SB) is applied. We empha-
size that Eq. (4.1) is not a perturbative result for
small ε, but rather holds for all ε.

The cost of applying the i-th operation, (1 +
εi~SA · ~SB), is exponential in i. At the same
time, the magnitude of εi decreases doubly-
exponentially in i, roughly squaring at every step.
So, for any x ∈ (0, 1], we can construct the op-
eration 1 + ε~SA~SB for some ε in the interval
[x2, (4/3)x] using a number of operations at most
logarithmic in ε−1: simply search for the first
term in the sequence which lies in this interval.

To obtain operations with negative ε, con-
sider a slight modification of the above sequence
of operations. Create a pair of qubits C,D
in a singlet, and let A,B be arbitrary. Apply
(1 + ε0~SA · ~SC)(1 + εi~SB · ~SD), and again project
onto C,D in a singlet, with ε0 = −4/3 and εi
from the above sequence. So,

Lemma 8. For any ε̃ ∈ [−1, 1] and any δ > 0, we
can construct the operation 1 + ε~SA · ~SB for some
ε with |ε − ε̃| ≤ δ, using a number of operations
at most O(log(δ−1)δ−2).

Proof. Construct (1+x~SA · ~SB) for some x which
has the same sign as ε̃, with x sufficiently small
compared to δ, but x not much smaller than δ2,
i.e. x = Ω(δ2). Then, take powers of this op-
eration to obtain a suitable 1 + ε~SA · ~SB. Since
x is not much smaller than δ2, it takes at most
O(δ−2) operations to do this.

Remark 8. When constructing powers of the op-
eration, it is more convenient to work with an ex-
ponentiated form of the operation: 1+x~SA · ~SB =
exp(y~SA · ~SB), where y depends on x.
Remark 9. Likely the dependence of the num-
ber of operations on δ can be greatly reduced.
We have given an inefficient construction that in-
volves first constructing an operation with a very
small x and then taking powers of that operation.
One might instead apply operations with several
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different εi with different magnitudes to reduce
the total. We do not worry about that here.

So,

Lemma 9. In PostSTP, we can approximate
imaginary time evolution under a time-dependent
Heisenberg Hamiltonian, up to inverse polyno-
mial error.

The proof of this lemma is immediate, once
we define what we mean. A “Heisenberg Hamil-
tonian” means a Hamiltonian of the form H =∑
i,j Jij

~Si · ~Sj , where Jij is some polynomially-
bounded matrix. By imaginary time evolution
under such a Hamiltonian, we mean evolving an
initial state under the equation ∂tψ = Hψ, up
to normalization. By “time-dependent”, we al-
low H(t) =

∑
i,j Jij(t)~Si · ~Sj , where Jij(t) is

some polynomially bounded matrix which de-
pends on t and we allow ∂tψ(t) = H(t)ψ(t). Fi-
nally, the inverse polynomial error is an error
on the right-hand side of the evolution equation:
∂tψ = H(t)ψ+E(t), where E(t) is a state whose
norm may be made polynomially smaller than
ψ(t).

Then, to prove the lemma, we simply Trotter-
ize7 the imaginary time evolution equation, and
simulate the Trotter steps using postselection by
picking ε to be polynomially small in the state
ψresource(ε), and applying Lemma 8.

This already immediately implies that

Corollary 2. PostSTP contains QMA.

Proof. By [5], approximating the ground state of
a Heisenberg Hamiltonian to inverse polynomial
error is QMA-hard. The operator exp(−Ht) is a
ground state projector and hence by approximat-
ing this imaginary evolution up to inverse poly-
nomial error, we can estimate the ground state
of this Hamiltonian.

4.3 Simulating PostBQP
However, our goal is not just to prove that Post-
STP contains QMA, but rather than PostSTP is
equivalent to PostBQP.

To do this, we again use results from [5]. We
use the result (see section 5.1 of that paper) that
using Heisenberg interactions we can implement

7The evolution e
t(
∑

i
Hi) can be efficiently approxi-

mated by the Lie-Trotter product formula (
∏
i
etHi/n)n

for n small enough.

logical qubits (using three physical qubits for
each logical) and obtain terms X,Z on any given
logical qubit as well as terms XX,ZZ on pairs
(see also [7] for an encoding using the Heisen-
berg interaction). So, it suffices then to consider
a model of computation in which we have qubits
(which for the rest of this subsection refer to the
logical qubits of [5]), and the ability to implement
imaginary time evolution under time-dependent
X,Z,XX,ZZ, up to inverse polynomial error.
Throughout this subsection, when we refer to
time, we mean imaginary time.

By turning on an XX term on a pair of qubits
for a long time and then turning it off (while
leaving other terms off), we can approximately
project onto the XX = +1 or XX = −1 eigen-
states, and similarly using ZZ terms we can ap-
proximately project onto ZZ = +1 or ZZ = −1
eigenstates. Further, by turning on a sum of X
and Z terms on a single qubit (while leaving other
terms off), we can prepare an ancilla qubit in
a state which is approximately any desired pure
state cos(θ)|0〉+ sin(θ)|1〉.

These abilities suffice. First, we can approxi-
mately prepare a qubit in a |+〉 state, and then
using it as an ancilla, we can approximately apply
a CNOT from a source to a target by using the
ability to approximately postselect on ZZ = +1
and XX = +1 eigenstates. This is the same as
we used in Section 1.1.1 from [15, 23]. Note im-
portantly that here we are using imaginary time
evolution to approximately apply a unitary gate.
This should be not be surprising; after all, the
well-known idea of measurement based quantum
computation [20] uses a sequence of measure-
ments to apply unitary gates.

Also, by preparing ancillas which are approx-
imately in states cos(θ)|0〉 + sin(θ)|1〉 for other
choices of θ, and using the CNOT gates and state
injection, we can approximately implement uni-
tary rotations to produce approximate rotations
by exp(iθY ) where Y is the single qubit Pauli Y .

The ability to do CNOT and rotations
exp(iθY ) allows universal quantum computation.
So, if we ignore issues of error (i.e., the fact that
all our constructions only approximately gave
these gates), we can implement arbitrary quan-
tum circuits and further we can postselect on
measurement outcomes since we can implement
imaginary time evolution under Z, giving Post-
BQP.
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The issue of error can be resolved by imple-
menting a fault tolerant construction using these
approximate gates. Note that the error in the
gates can be made arbitrarily small. Indeed,
we can even make the error in individual gates
1/ poly(N) for any polynomial at the cost of a
polynomial overhead, so we can make the error
in gates polynomially smaller than the the inverse
of the total number of gates! Thus, if our goal
were simply to simulate BQP, where we would
be satisfied with an inverse polynomial error in
the output probabilities of our quantum circuit,
there would be no need for any fault tolerance.
However, since we want to simulate PostBQP, we
need exponentially small errors. So, some fault
tolerant construction is needed.

Of course, the ability to make the error in indi-
vidual gates polynomially small compared to the
inverse of the total number of gates certainly sim-
plifies the fault tolerant construction. However,
we claim that in fact the usual threshold theo-
rems can be applied to our setting and so long as
the error in individual gates is sufficiently small,
we can make the error in logical operations ex-
ponentially small.

The usual threshold theorems involve replac-
ing idealized unitary gates by CPTP maps that
approximate (in diamond norm) the desired uni-
tary operations. Instead, we are replacing ide-
alized unitary gates by linear operators that act
on pure states (rather than mixed states) that
are close in operator norm to the desired unitary.
However, we now show that the usual threshold
theorems can be adapted to this case.

Consider any given gate in the circuit, which
ideally would be implemented by some unitary
we will call U . Suppose instead we implement
some map A (which is a linear operator on pure
state) with ‖A− U‖ ≤ ε, where ‖ · · · ‖ is the op-
erator norm. Then, (1− ε)A has singular values
bounded by 1 and if we define B to be any oper-
ator such that B†B = I − (1− ε)2A†A then

E(ρ) ≡ (1− ε)2AρA† +BρB†

is a CPTP map with two Krauss operators, (1−
ε)A,B.

Making such a replacement for all gates in the
circuit, we get a “noisy circuit” where every gate
has two Krauss operators, with the first Krauss
operator being O(ε) close to the ideal unitary.
The usual threshold theorems apply to this noisy

circuit for sufficiently small ε showing that the
logical error is exponentially small. Then, the
situation relevant for us is one in which every
time a CPTP map is applied for some gate, we
pick the first Krauss operator (that is, (1 − ε)A
in this case), rather than the second. This can
be physically thought of as selecting a particular
noise pattern.

So, we ask: if we select the first Krauss op-
erator for every CPTP map in the noisy circuit,
is the error still exponentially small? Intuitively,
there is no problem: the first Krauss operator is
closer to what we want than the second Krauss
operator, so the situation in which we select that
Krauss operator every time should be even better
than a random choice.

To prove this, of course one could reprove the
threshold theorem, using our gates (which are
not noisy in that they map pure states to pure
states but which still only approximate the de-
sired gates). Indeed, this could be done simply
by following through some existing construction
and showing that the error is exponentially re-
duced if the first Krauss operator is selected ev-
ery time. However, we would like to minimize our
effort, and show that the error is exponentially
small using the standard threshold theorem as a
“black box”, without delving into the proof. To
do this, we use a simple trick. Use some hier-
archical construction to prove the threshold the-
orem, see for example [10] for a review of vari-
ous constructions. Using such a hierarchical con-
struction of the threshold theorem, one consid-
ers codes of some O(1) size, and proves that each
step of the hierarchy reduces the error rate. If the
error rate is ε at some level, then it is O(εk) for
some k > 1 at a higher level of the hierarchy and
so for sufficiently small ε the error rate reduces.
We regard this error rate as a sum over different
trajectories, corresponding to different choices of
Krauss operators in each CPTP map. The contri-
bution of the trajectory where we select the first
Krauss operator in every map is 1−O(ε), with the
constant hidden in the big-O notation depending
on the size of the code. So, for sufficiently small
ε, the contribution of the that trajectory is the
dominant one and so the error rate for that tra-
jectory at the next level of the hierarchy is also
O(εk), i.e., the hierarchical construction reduces
error rate for sufficiently small ε for this case as
well.
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Remark 10. Ref. [6] shows how to simulate 2D
topological phases from imaginary time Heisen-
berg evolution. Anyons may be built into these
simulations as boundary conditions, and time
dependence of the Hamiltonians allows these
anyons to be braided adiabatically, and then,
later, collective (topological) charge states to be
measured by simulating interferometry. In other
words, once one can build imaginary time Heisen-
berg evolution (as in Lemma 9), one can simu-
late the complete operation of a topological quan-
tum computer. This provides an alternative path
from Lemma 9 to showing that PostSTP equals
PostBQP, the post-selection in the conclusion
stemming from our ability to post-select mea-
surement outcomes of the simulated topological
quantum computer, and the topological protec-
tion of the state allowing us to make errors expo-
nentially small. While this is an extremely con-
cise argument in outline, some details regarding
efficiency should be filled in; this is why we gave
the more explicit argument first.

Acknowledgements
We would like to thank Dave Bacon for point-
ing out the relevance of [21], and anonymous ref-
erees for helpful comments to improve our pa-
per. The first named author would like to thank
the Aspen Center for Physics for their hospital-
ity. The third named author would like to ac-
knowledge the support of the Perimeter Institute
for Theoretical Physics and Microsoft. Research
at Perimeter Institute is supported by the Gov-
ernment of Canada through Innovation, Science
and Economic Development Canada and by the
Province of Ontario through the Ministry of Re-
search, Innovation and Science. The experiments
were conducted using Microsoft computational
resources.

References
[1] MathOverflow discussion.

[2] Mathematics Stack Exchange discussion.

[3] Frank Arute, Kunal Arya, Ryan Bab-
bush, Dave Bacon, Joseph C Bardin, Rami
Barends, Rupak Biswas, Sergio Boixo, Fer-
nando GSL Brandao, David A Buell, et al.
Quantum supremacy using a programmable
superconducting processor. Nature, 574

(7779):505–510, 2019. DOI: 10.1038/s41586-
019-1666-5.

[4] Sergey Bravyi and Alexei Kitaev. Univer-
sal quantum computation with ideal clif-
ford gates and noisy ancillas. Physical Re-
view A, 71(2), 2005. DOI: 10.1103/phys-
reva.71.022316.

[5] Toby Cubitt and Ashley Montanaro. Com-
plexity classification of local hamiltonian
problems. SIAM Journal on Computing, 45
(2):268–316, 2016. DOI: 10.1137/140998287.

[6] Toby S. Cubitt, Ashley Montanaro, and
Stephen Piddock. Universal quantum
hamiltonians. Proceedings of the National
Academy of Sciences, 115(38):9497–9502,
2018. DOI: 10.1073/pnas.1804949115.

[7] D. P. DiVincenzo, D. Bacon, J. Kempe,
G. Burkard, and K. B. Whaley. Universal
quantum computation with the exchange in-
teraction. Nature, 408(6810):339–342, nov
2000. DOI: 10.1038/35042541.

[8] Matthew PA Fisher. Quantum cogni-
tion: The possibility of processing with
nuclear spins in the brain. Annals
of Physics, 362:593–602, 2015. DOI:
10.1016/j.aop.2015.08.020.

[9] Michael Freedman, Modjtaba Shokrian-Zini,
and Zhenghan Wang. Quantum comput-
ing with octonions. Peking Mathemat-
ical Journal, 2(3):239–273, 2019. DOI:
10.1007/s42543-019-00020-3.

[10] Daniel Gottesman. An introduction to
quantum error correction and fault-tolerant
quantum computation. pages 13–58, 2010.
DOI: 10.1090/psapm/068/2762145.

[11] Aram W Harrow and Ashley Montanaro.
Quantum computational supremacy. Na-
ture, 549(7671):203–209, 2017. DOI:
https://doi.org/10.1038/nature23458.
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A Approximating rotations by powers of a fixed rotation
Let θ be an irrational multiple of 2π. Then, the integer multiples of θ are dense in the unit circle.
This has the implication that, given the ability to implement rotation exp(iZθ) on a single qubit, one
can approximate the rotation exp(iZφ) for any φ to any desired accuracy by repeating the operation
exp(iZθ) sufficiently many times.

However, it becomes interesting to ask: how many times must one repeat the operation exp(iZθ)
to attain some given accuracy. This is equivalent to the question: given some φ and some δ > 0, what
is the smallest n such that nθ is within distance δ of φ, modulo 2π.

The answer to the question depends on the irrationality measure µ of θ/(2π). The irrationality
measure µ of a number x is defined to be the smallest number such that for any ε > 0, we have

|x− p

q
| > 1

qµ+ε

for all sufficiently large integers q, for all p.
Some numbers have infinite irrationality measure; these are called Liouville numbers. As an example,

consider a number such as
∑
j>0 10−f(j), where f(j) is some fast growing function such as j!. Almost

all (in the sense of measure theory) real numbers have irrationality measure 2. The arctangent of any
algebraic number has finite irrationality measure [1].

Lemma 10. Assume θ/(2π) is irrational with irrationality measure µ. Let us define the distance
between angles in the obvious way, as the shortest distance between them on the circle; we write this
distance using an absolute value sign.

Then, for any ε > 0, for any φ and any δ > 0, there is some m with |mθ − φ| ≤ δ and with
m ≤ O( 1

δµ+ε ), where the constant hidden in the big-O notation depends on ε.

Proof. Consider the set {0, θ, 2θ, . . . , kθ}, where k = d2π/δe. All elements of this set are distinct. So,
there must be two different elements, call them j1θ, j2θ, with |j1θ− j2θ| ≤ (2π)/k. Let q = j2 − j1, so
qθ is within distance (2π)/k ≤ δ of 0.

By the definition of irrationality measure, multiplying both sides by 2πq, we get |qθ − 2πp| >
(2π
q )µ+ε−1 for sufficiently large q. So, for sufficiently large q, we have qθ at least distance (2π

q )µ+ε−1

from 0. For smaller q, it is possible that qθ is closer than that, but there are only finitely many such
q, so qθ is at least θmin for some θmin > 0 depending on ε.

Now consider the sequence of angles 0, qθ, 2qθ, 3qθ, . . . . These angles change by at most δ from one
to the next, so some angle in the sequence is within δ of φ.

At the same time, they change by at least ∆ ≡ min(θmin, (2π
q )µ+ε−1), so we only need to consider

terms up to d2π∆−1e in the sequence to get an angle within δ of φ. Note that q is bounded by 2k, so
it suffices to consider terms up to O(kµ+ε−1) in the sequence. Since q is O(k), this means we consider
m up to O(kµ+ε).

B No-leakage and equiangular sequences
Our paper has antecedents in a previous work [8], where the possibility of chemically protected quan-
tum computation [9, section 8] was introduced; the proposal has been to leverage the symmetry of
small molecules for quantum computation, by exploiting a coupling between orbital angular momen-
tum and nuclear spin. Such a coupling may prove useful in implementing STP, but in this paper we
have considered the abstracted problem where this simplest possible measurement, s/t, of a collective
spin state is taken as the primitive.

In contrast to the approach presented in the main text, a more geometrical approach for analyzing
the computational power of the s/t model is to consider no-leakage or equiangular sequences. This
approach also originates from [9] where it is shown that the notion of equiangularity is key to many
measurement based models that imitate unitary evolution. Indeed, the main result there, involves
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a model where the measurement based online part of the computation is done through equiangular
sequences, as these are sequences in which any undesired outcome of a measurement can be corrected
without leakage or starting the computation all over again.

In [9], equiangularity of a pair of projection is defined. Here, we need to define equiangularity for
an ordered pair and generalize some of the results in [9]. From now on, a projection P will refer to
the operator and the corresponding image (hyper-)plane.

Definition 3. We call the ordered pair of projection (Q,P ) equiangular if PQP = α2P for some
α > 0.

Remark 11. Equiangular is a suitable name for the above algebraic equation. In fact, if PQP = α2P
for some α > 0, then α is equal to cos(θ) with all dihedral angles from P to Q being equal to θ. Also
note that (Q,P ) being equiangular implies the same for (1 − Q,P ). The proof of all these involves
elementary linear algebra; see [9].
Remark 12. An intuitive consequence of the above is that the application of Q to a computational
space defined in the plane P is a unitary embedding up to some positive scale, meaning restricted to
the image of P , the map is a unitary up to some positive scale (see [9] for the detailed proof).

The above remark can also be paraphrased as Q defines a no-leakage map from the plane P to the
plane Q.

Suppose we want to apply the projective measurement {Q, 1 − Q} following P . Then, we can
always force the outcome to be Q. Indeed, assume we get (1−Q)P . We try {P, 1−P} and get either
P (1−Q)P ∝ P (so back at P ), or (1− P )(1−Q)P . In the latter case, we try {Q, 1−Q} again, and
get either Q(1−P )(1−Q)P = −QP (1−Q)P ∝ QP (the desired result), or (1−Q)(1−P )(1−Q)P =
−(1 −Q)(1 − P )QP = (1 −Q)PQP ∝ (1 −Q)P , which means we are back at our first unsuccessful
measurement. Notice the last case happens with a fixed probability depending on α. Thus, repetition
always exponentially suppresses the probability of failure.

The above process is the key reason behind the use of equiangular ordered pairs in a measure-
ment model, as it ensures recovery in case of failure. Let us now define an equiangular sequence of
projections, where the same recovery protocol works.

Definition 4. An equiangular sequence (Pk, . . . , P1) satisfies:

PiPi+1Pi . . . P1 = α2
i,i+1Pi . . . P1, αi,i+1 > 0, for 1 ≤ i ≤ k − 1.

Remark 13. In an equiangular sequence, applying Pi+1 onto the image of Pi . . . P1 is a unitary embed-
ding up to some positive scale. The argument is simply a more involved version of the ordered pair
case. Recovery is similarly ensured, i.e. we can always force Pi+1 on Pi . . . P1.

Next, we define a no-leakage sequence. Intuitively, this is a sequence where the measurements do
not “leak” quantum information to the environment. Precisely, we mean:

Definition 5. The sequence (Pk, . . . , P1) is no-leakage if the projection Pi+1 is a unitary embedding
up to some scale from the image of Pi . . . P1 for all 1 ≤ i ≤ k − 1 to a subspace of Pi+1.

Is a no-leakage sequence necessarily equiangular? The answer is yes when k = 2. In general, linear
algebra tells us that the orthogonal eigenspaces Ei of PiPi+1Pi that are a subspace of Pi decompose
Pi =

∑
Ei to subspaces that have all dihedral angles with Pi+1 equal. It is not hard to show that

in an equiangular sequence, the image of Pi . . . P1 falls inside one of those eigenspaces and αi,i+1 is
the cosine of that dihedral angle. However, in a no-leakage sequence, the only requirement is that the
image of Pi . . . P1 is a plane with dihedral angles all equal with Pi+1, and that plane could be formed
by some complicated combination of vectors in different eigenspaces.

In contrast to the equiangular case, there is generally no guarantee for recovery in a no-leakage
sequence. Still, such sequences are of interest in the case of PostSTP, since by definition, we are
allowed to force the outcome.

Accepted in Quantum 2021-09-26, click title to verify. Published under CC-BY 4.0. 18



Now, we investigate the computational power of each type of sequence, first equiangular sequences
of s/t. For a computation to be done on a spin-0 subspace of 2N spins, called spin0(2N), initialized
at a singlet dimerization, we use an even number 2M of ancillas, similarly initialized at a singlet
dimerization. The sequence starts and ends with the projection onto a particular singlet state for the
ancilla pairs, i.e.

∏
ancilla pairs s, and in between, s/t measurements can be made on the N +M pairs.

This ensures that we start and end at the same computational space spin0(2N). Hence we define:

Definition 6. An s/t equiangular sequence refers to an equiangular sequence of the form

(
∏

ancilla pairs
s, Pk, . . . , P1,

∏
ancilla pairs

s),

where Pi are s or t on a pair from the 2(N +M) spins.

Equiangularity forbids a dimension decrease of the computational space, as the map at each stage
must be unitary. Notice dimensional decrease is even ’worse’ than leakage, as leakage can occur if the
map is invertible but not unitary. Thus at each stage of the computation, we must observe a matching
of M pairs of spins on which a projection have been made, meaning that each projection Pi is applied
on a pair that shares exactly one spin with the previous M pairs; sharing no spins would decrease
dimension, and sharing both spins would either decrease dimension or be a redundant projection. This
is shown in more details in the proof of the next lemma.

For example, let us denote all ancillas by a1, . . . , a2M and the computational spins by c1, . . . , c2N .
At first, a2i−1, a2i are paired in a singlet state. Then, it is not hard to show that P1 can be any s or
t on any pair of the form aicj . If M = 1 (only two ancillas), then each step involves applying s or t
on a pair sharing one spin with the previous measurement. Of course, to satisfy equiangularity. there
may not be complete freedom in choosing the other spin. If M > 1, then assuming P1 applies on a1c1,
P2 must share a spin with {a1, c1, a3, a4}; notice that a2 has been discarded, as it was paired with a1.

Remark 14. We may allow consecutive projections onto pairs that are disjoint, if the goal is to apply
an equiangular sequence on a particular subspace of spin0(2N), i.e. the computational space is a
subspace of spin0(2N). We explored this approach in our simulations to some extent, but without
success.

We now show that no-leakage sequences (and therefore equiangular sequences) with one pair of an-
cillas only perform signed permutations. This limitation is a reason behind the use of alternative/more
analytical methods in Theorem 1.

Lemma 11. With M = 1 pair of ancillas, every s/t no-leakage sequence is some signed permutation
on the 2N computational spins.

Proof. Let us assume N = 2. Ancillas are a1, a2 and computational spins are c1, ..., c4. At the start,
up to permutation, the only possible measurement is on a1, c1. Indeed, if we measure a1, a2 then it
leaves the state unchanged and if we measure any p, q with p, q ∈ {c1, . . . , c4}, then it decreases the
dimension of the computational space. So we must measure one ancilla and one non-ancilla; without
loss of generality, let it be a1 and c1.

If the outcome of the a1, c1 measurement is singlet, then the a1, a2 ancilla pair has simply been
replaced by an a1, c1 ancilla pair with c1 being teleported to a2. This is a simple permutation. So, we
may assume the outcome is triplet.

What is the next possible measurement? It can not be a pair p, q ∈ {c2, c3, c4}, as that would again
decrease dimension. One may readily see this as spins c2, c3, c4 have not been touched yet, so for some
initial states it is possible that such a pair is definitely in a singlet, but not for all.

Notice the state after the first measurement is symmetric under a1 and c1 interchanged, as they
are a triplet. So suppose the pair a1, a2 or c1, a2 is measured. If the outcome is a singlet, the whole
sequence has gained nothing: we return to a1, a2 being an ancilla in a singlet, and the initial spin c1 is
returned back to itself after this sequence. So, suppose we measure a1, a2 and the outcome is a triplet.
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To analyze this situation, let us make some notation for the state after the first measurement.
After the first measurement, the state is (1 + Swap(c1, a1))ψ where ψ is the initial state. The state
ψ is annihilated by the projection onto a1, a2 triplet. So, we can assume the state after the first
measurement is Swap(c1, a1)ψ. However, this is equivalent to the initial state up to permutation of
spins (i.e. we can replace the first measurement by a permutation) so nothing is gained.

The next possibility for the second measurement is to measure p, q with p = a1 and q ∈ {c2, c3, c4}.
Equivalently, we could pick p = c1, as a1, c1 are symmetric. This case also leaks information, though
a more detailed check is needed. If spin c1 started out as some σ at the start of the sequence, then
spin a1 and spin c1 both are “correlated” with that initial σ after the first measurement. Therefore,
measurement on such a p, q pair leaks information (this can also be checked on a computer).

Finally, we might pick p = a2 and q ∈ {c2, c3, c4} but this also leaks information. Say q = c2 is
picked. If at the start of the sequence, we had spins c1, c2 in a singlet, then a measurement of a2, c2
will always yield triplet, therefore leakage occurs in this case as well.

Notice the proof does not rely on N = 2 and works for all N .

Remark 15. Given equiangular sequences, computer search, of hundreds of thousands iterations for
ten different random seeds for producing random s/t sequences, shows that increasing the number of
ancillas does not make any difference in the statement of the theorem above.

As previously mentioned, there could be interesting operators for PostSTP from no-leakage se-
quences. In fact, by increasing the number of ancillas, the previous lemma no longer holds:

Lemma 12. With no-leakage sequences, we can obtain an infinite order unitary on 2N = 4 spins
given 2M = 6 ancillas and a unitary which is not a signed permutation given 2M = 4 ancillas.

Proof. The proof is by computer search. The following is no-leakage:

(sa1,a2sa3,a4sa5,a6 , ta6,c1 , sa2,a6 , ta6,c2 , sa4,a6 , ta6,c4 , sa1,a2sa3,a4sa5,a6),

where s−, t− is singlet or triplet projection on pair −. The sequence gives a unitary with infinite order
on spin0(4), as its eigenvalues are 3

√
3

2
√

7 ±
1

2
√

7 i, which correspond to an irrational angle [2].
The following sequence of projections is no-leakage and gives a unitary with order 12 on the space

spin0(4), hence can not be a signed permutation on 4 spins:

(sa1,a2sa3,a4 , ta3,c3 , ta2,c2 , sa2,c3 , ta3,c2 , sa3,c4 , sa1,a2sa3,a4).

Unlike the case of N = 2, computer search surprisingly was unable to get any interesting operator
for N > 2, even when using higher number of ancillas and different variations on the operators that
can be used (for example, simultaneous projection of triplet and/or singlet on different pairs). Thus,
we are unable to use no-leakage sequences to prove PostSTP = PostBQP.

We can relax the requirement even further, by simply demanding the result of the sequence to be
no-leakage, i.e. give a unitary operator, thereby not requiring each step to be no-leakage. One should
imagine an elliptical distortion created by one projection being canceled by a subsequent one. This is
still allowed as in PostSTP we can force the outcome. This makes it possible to obtain infinite order
unitaries with a sequence of length 3 on spin0(4) with only 2 ancillas, such as

(sa1,a2 , ta2,c2 , ta2,c1 , ta2,c4 , sa1,a2).

This corresponds to a unitary with eigenvalues 3
√

3
2
√

7 ±
1

2
√

7 i, even though ta2,c1 leaks information (gives

an invertible but nonunitary map). However, computer search does not deliver any interesting unitary
(i.e. not a signed permutation) given higher numbers of spins and ancillas.
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C Statistics of amplitudes from random s/t sequences

In this appendix, we provide informal arguments independent from the main text, supplemented
with numerical results which support the inference that the s/t model is not classically simulable.
Indeed, we believe that it is not possible to efficiently classically compute the probability of a single
measurement being s or t with inverse polynomial error. We present a series of numerical experiments,
and then finally use these to propose an average case sampling problem in Problem 1.

To this end, we examine the statistics of amplitudes from random s/t sequences. Suppose we start
with a singlet dimerization on 2N spins and pick random pairs and measure whether they are singlet
or triplet without postselection. After many rounds of measurement, we pick one final random pair
and consider the probability that the pair is a singlet. If this probability is exponentially close to 1

4 ,
this is not very useful as it can be classically simulated trivially by simply guessing that the value is
1
4 . On the other hand, if this probability has some fluctuations of magnitude 1

poly , then it may be
hard to simulate classically, and allow one to devise an experiment similar to the Google “quantum
supremacy” experiment [3].

However, the naive experiment discussed above fails to deliver any interesting result. To under-
stand this, consider the random sampling performed in [3] using random circuits and individual spin
measurements instead of our s/t measurements. There, the standard approximation is to guess that
the random circuit produces a random state (Haar random, as an approximation). This random state
is well described by choosing the amplitude of every single computational basis state from a Gaussian
distribution. So, if one measures a single spin on the final state, the distribution is exponentially
close to flat (1

2 ,
1
2 probability). The reason is, for 2N spins, there are are 22N−1 basis states where

the selected spin is up and 22N−1 where it is down, and adding all those random numbers gives very
small fluctuations that cancel each other out to give a probability exponentially close to (1

2 ,
1
2). The

same holds if one measures 2, 3, 4, . . . , O(1) spins; their joint probability distribution is still very close
to flat. So, we expect a similar behavior that the simple protocol of the above paragraph will not be
too interesting, and we give a more interesting protocol later.

We can see this flatness in practice using a simulation of a sequence of 1000 measurements on 18
spins (Fig. C.1) in this protocol, followed by computing the probability of triplet on each pair, of which
there are 153. At first glance, there seem to be interesting fluctuations with high magnitude, but what
we actually see, as explained later, is a rather boring deviation from exponential flatness. As expected,
most of the graph is hovering around 3

4 ; but notice that there some triplets and singlets (values 1 and 0
on the graph respectively). We present an informal argument regarding these (extreme) fluctuations,
why they exist even for very long runs like 1000 or more, and why they are not an indication of
quantum supremacy.

Figure C.1: Probability (y-axis) of being a triplet pair for the
(18

2
)

= 153 pairs (x-axis) of 18 spins after 1000 random
measurements performed on one randomly chosen sequence of 1000 pairs from a singlet dimerization.

Consider a gas of spins and draw a straight line between two spins when they form a singlet, and a
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wiggly line for a triplet, and otherwise no line. Suppose the gas reaches a state where there are no lines.
Then, as we select a pair and measure s/t, some line (straight or wiggly) forms. By selecting another
random pair, likely disjoint from the first, another line forms. By the time about (1 − 1/

√
2)2N of

the spins are paired off by lines of one kind or the other, it becomes equally probable that the next
randomly selected pair will touch/not touch a paired spin and that the measurement will break the
preexisting line and replace it with another. We should note that breaking a line is the worst case,
corresponding to the singlet measurement outcome, and we are assuming such an outcome for every
measurement, giving us the ratio (1− 1/

√
2) (if triplet is the outcome, the previous line may remain,

and we get more lines as a result). On this “fresh” subpopulation, the process, even if it is at step
1001, looks like it is starting from scratch. More generally, there is also an O(1) fraction subpopulation
whose parents, or grandparents were all fresh - part of a singlet sub-dimerization, which could provide
an explanation on the rest of the fluctuations in Fig. C.1. This constant “refreshment” prevents
exponential flatness, but should not be mistaken for evidence of quantum supremacy. We noted how
sampling an O(1) number of spins would not break the exponential flatness (other than the deviations
described in the above paragraph). However, once we sample almost all the spins, then amplitudes
can get interesting. For example, after sampling 2N − k spins, for some k, then the deviation of the
next spin from flatness is only exponentially small in k. So, the last few measurements are not close
to flat.

To implement such a sampling, imagine a protocol that “detangles” a state: take a pair of spins at
random, and measure. If the answer is a singlet, then remove that pair from the collection of spin, and
continue the algorithm on the remaining spins. If it is not a singlet, then take another random pair
(potentially not disjoint from the previous pair found to be a triplet). Eventually, this fully detangles
the state, and at some point only a few spins are left entangled, and finally none at all.

As one detangles, the probabilities start exponentially close to flat but become less and less flat.
When there are only 4 spins left, the last measurements are far from flat. Notice if we stop at 2 spins,
the result is already determined: a singlet, as the total spin of our original state had to be zero.

Let us call those spins 1, 2, 3, 4. Then, we might guess that after many measurements, we have a
“random” spin 0 state on 1, 2, 3, 4. So, we want to compute: given a random singlet on 4 spins, what
is the distribution of the probability that a given pair, say 1, 2, will be in a singlet?

The space spin0(4) is two-dimensional, and is spanned by an orthogonal basis which amounts to
symmetrizing or anti-symmetrizing on the pair 1, 2, implying there is one state |S〉 which is a singlet
on 1, 2, and one state |T 〉 which is a triplet on 1, 2. We ask: For a randomly chosen state, what is the
distribution of probability on the |S〉 outcome of the measurement?

A simple guess would be a random (real) state of the form cos(θ) |S〉 + sin(θ) |T 〉, with θ picked

uniformly on the circle. Since dθ = −d cos(θ)
sin(θ) , a uniform measure on θ is a measure proportional

to 1/| sin(θ)| on the amplitude cos(θ) (Fig. C.2) and as we would measure probabilities, we should
consider cos(θ)2. However, due to the subpopulation refreshment phenomena described earlier, we
would expect to see certain number of spikes on the distribution over probabilities 1, 3

4 ,
1
4 , 0 and

possibly other numbers. To sum it up, we expect a continuous measure which hopefully delivers
arbitrary looking numbers, plus some inevitable discrete terms.

We illustrate the probability of |S〉 for a simulation of 10 runs of the algorithm on 1000 random
sequences of 1000 measurements on 14, 16, and 18 spins (Fig. C.3). We see some spikes at 1, 3

4 , 0
for |S〉 and 1, 1

4 , 0 for |T 〉. Overall, we see a continuous measure plus some discrete terms, and the
continuous measure delivers the arbitrary looking numbers, apparently quite distinct from cos(θ)2.
This may indicate a difficulty for classical simulation, and a route to quantum supremacy.

Thus, we propose the following random sampling problem, STSample, which can be viewed as an
average case sampling problem:

Problem 1. [STSample] Considering preparing 2N spins in a singlet. Perform Θ(poly(N)) rounds
of s/t measurements on random pairs. Then, apply the detangling protocol, until 4 spins are left,
and then finally perform one last s/t measurement. Given a choice of random pairs, this defines a
probability distribution over bit strings (where each bit being 0 or 1 denotes whether a measurement
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Figure C.2: Histogram distribution of cos(θ)2 for θ picked uniformly from the circle using 10000 samples and 100
equal bins.

was s or t). Suppose the pairs are chosen randomly and then a bit string is chosen randomly from this
distribution, and a classical computer is given as input the list of pairs and given all but the last bit of
the bit string. Can it, with probability 1 − o(1), efficiently compute the probability distribution of the
last bit with at most inverse polynomial error?

D A numerical/representation theory approach to PostSTP = PostBQP
We present another alternative approach, this time involving representation theory 8, to proving
PostSTP = PostBQP. The “theory” is easy, but numerical difficulties have prevented us from making
this approach rigorous.

Given 2N = 8 spins in a spin-0 subspace and 2M spins as ancillas initialized in a singlet dimerization,
taking out dilation, we aim to prove density in the group SL(14,R), where 14 = dim spin0(8). Then
we define our logical qubit as the two dimensional spin0(4). We may think spin0(8) as containing
two spin0(4) qubits: spin0(1, 2, 3, 4) ad spin0(5, 6, 7, 8), and 10 additional (unwanted) directions. This
density result would give the entangling gates for the logical qubits, as the SO(4) gates are included
in the larger SL(14,R) group.

We know that by simply using singlet projections, we can permute the spins. Thus, we have an
action of the symmetric group S8 is given on spin0(8). This irreducible representation corresponds to
the Young tableau with partition (4, 4), as also shown in [14]. An action is induced (by conjugation)
on the endomorphism algebra End(spin0(8)) ∼= M(14,R), and similarly on its Lie algebra A which is
isomorphic to M(14,R). Note that we mention the Lie algebra as we will take logs of operators later
on.

Using the mathematical package SAGE, A decomposes, in Young diagram notation, to (8)⊕(6, 2)⊕
(5, 1, 1, 1)⊕ (4, 4)⊕ (4, 2, 2)⊕ (3, 3, 1, 1)⊕ (2, 2, 2, 2) under the aforementioned action. Notice (8) is the
trivial irrep containing the identity. Henceforth, we replace O by normalized O

det(O) . This projects out

the (8) summand leaving A0 ∼= sl(14,R).
We thus consider only these normalized operators with determinant 1 in SL(14,R) given as sequences

of s/t. To get a dense set, ideally the set of gates should be closed under inverse, allowing a variant
of the Solovay-Kitaev algorithm [16] to be implemented. But how can we approximate the inverse of
a sequence of s/t? If the operator is not orthogonal, we can not simply take the conjugate sequence,
which is the sequence applied in reverse order.

Take the (smallest) log of one of these operators (assuming it exists), say log(O). Then consider
the orbits of log(O), which are also the logs of the orbit of O. Adding them up produces an element
X =

∑
ρ∈S8 ρ(log(O)) in A0 which is invariant under S8. Since (8) has been projected out, 0 is the

8We thank Monica Vazirani for her tutoring on the representation theory of the symmetric group
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Figure C.3: Left/Right histogram shows the distribution of the probability of |S〉/|T 〉 being the outcome of the
measurement on the last 4 spins after implementing the detangling process. For each value of 2N ∈ {14, 16, 18},
the 10000 datapoints are from 10 runs of the algorithm on 1000 random sequences of 1000 measurements.

only fixed vector in A0. Thus we have,

X = 0 =⇒ − log(O) =
∑

id6=ρ∈S8

ρ(log(O)).

Exponentiation and using Baker-Campbell-Hausdorff formula for the error analysis now allow us to
approximate the inverse of O.

In the numerical studies, we have normalized the operators by the determinant, thus eliminating
the trivial irrep (8), leaving six irreps spanning the Lie algebra A0 ∼= sl(14,R). To achieve density in
SL(14,R), we need to search for:

Lemma 13. Density in SL(14,R) follows given a set of operators “arbitrarily” close to identity (e.g.
in the operator norm) with logs having nonzero component in each of the six irreps.

Proof. Given such an operator O, define VO := span 〈{ρ(log(O))}ρ∈S8〉. Clearly VO is invariant and
since it has nonzero projection onto each of the six irreps, it must be the whole Lie algebra sl(14,R).

However, density must be achieved by positive integral linear combinations of {ρ(log(O))}ρ∈S8 , as
we only have access to positive integer multiplies of ρ(log(O)) by composing their corresponding s/t
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sequences. But we previously showed how to approximate inverses (negative multiples) with positive
linear combinations, thus giving access to integral linear combinations. Having operators arbitrarily
close to id, meaning (the smallest) log(O) very close to zero (in, say, the operator norm), serves the
purpose of establishing density with just positive integral linear combinations.

Moreover, it is not necessary to have operators arbitrarily close to identity, as the threshold theorem
states; see also the last argument in Section 4.3 regarding the issue of error. Nevertheless, the threshold
error required in this case is very small, especially as we build the inverse of an operator by taking
8!− 1 other operators, which introduces even more errors. A very rough estimate would be 10−10, but
it is likely much less than that, as the usual error correction threshold is around 10−3 and 8!−1 ∼ 104

terms are used in a composition to compute the inverse of any element. Thus, numerical assisted proof
by searching sequences of s/t is out of reach. However, a search can provide evidence of the existence
of such operators, by showing one can find operators closer and closer to identity as the length of the
s/t sequence increases. We have found such examples in the smaller case of 4 computational spins.

We find two operators

O1 =

 √
15

2
√

7
1

2
√

35
−
√

5
2
√

7
9
√

3
2
√

35

 , O2 =
(

0.7 −
√

3
10

− 1
2
√

3 1.5

)
,

corresponding to

O1 ← (sa1,a2 , ta2,c2 , tc1,c2 , ta1,c1 , ta1,c4 , tc3,c4 , tc2,c3 , tc1,c2 , ta1,c1 , sa1,a2),
O2 ← (sa1,a2 , ta2,c2 , tc1,c2 , tc1,c3 , ta1,c3 , ta1,a2 , ta2,c2 , tc1,c2 , ta1,c1 , sa1,a2),

both satisfying
∏
ρ∈S4 ρ(Oi) = id where ρ acts by conjugation. Therefore, we have exact access to the

inverse of these operators and can compute their commutators. O1 and O2 are obtained by a sequence
of length 8 of triplet measurements on 4 computational spins and 2 ancillas. It should be noted that
these operators are not orthogonal, and their orbits {ρ(Oi)}ρ∈S4 do not pairwise commute. Hence the
identity

∏
ρ∈S4 ρ(Oi) = id holds for nonobvious reasons. Following the technique in Solovay-Kitaev

theorem [16], by taking repeatedly the commutators [O1, [O1, . . . , [O1, O2]] . . .], we can find operators
closer to identity (Fig. D.1).

Figure D.1: Distance of [O1, [O1, . . . , [O1, O2]] . . .] (M times) to identity. The x-axis is the length of the commutator
which is M and the y-axis has been log-scaled to show the exponential decay of distance to identity.
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