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By taking a Poisson limit for a sequence of rare quantum objects, I derive simple
formulas for the Uhlmann fidelity, the quantum Chernoff quantity, the relative entropy,
and the Helstrom information. I also present analogous formulas in classical information
theory for a Poisson model. An operator called the intensity operator emerges as
the central quantity in the formalism to describe Poisson states. It behaves like a
density operator but is unnormalized. The formulas in terms of the intensity operators
not only resemble the general formulas in terms of the density operators, but also
coincide with some existing definitions of divergences between unnormalized positive-
semidefinite matrices. Furthermore, I show that the effects of certain channels on
Poisson states can be described by simple maps for the intensity operators.

1 Introduction
The Poisson limit theorems, also called the laws of rare events or the laws of small numbers, underlie
the ubiquity of Poisson statistics and enable a variety of simplifications in probability theory [1, 2].
In this paper, I examine the consequences of taking a similar limit in quantum information theory
and demonstrate that elegant formulas emerge under the limit. This body of work may be called
Poisson quantum information, which has the potential to grow into a fruitful research topic on par
with Gaussian quantum information [3, 4].

The results put forth are a generalization and culmination of our earlier efforts concerning weak
thermal light [5–8]. The results are especially relevant to the recent literature on the application
of quantum information theory to partially coherent imaging [8–17], where there is some confusion
regarding the correct formulas for the information quantities, leading to inconsistent results by
different groups. This paper resolves the debate in support of Refs. [6, 10] and extends the results,
beyond the Helstrom and Fisher information quantities considered there. While special weak-
thermal-light models have already found success by enabling substantial simplifications in many
previous studies in quantum optics [5, 6, 8, 18–21], the general theory here stands on its own and
does not require the quantum state to be bosonic or exactly thermal, so it may be applied to
particles and systems beyond photons, such as electrons and quasiparticles, whenever a quantum
treatment of rare objects is needed.

2 Poisson states
Let P(H) be the set of positive-semidefinite operators on a Hilbert space H and P1(H) be the
unit-trace subset P1(H) ≡ {τ ∈ P(H)| tr τ = 1}. Consider the Hilbert space (H0 ⊕ H1)⊗M for
M temporal modes, where H0 is a 1-dimensional vacuum Hilbert space and H1 is a d-dimensional
Hilbert space for a quantum object. Let the density operator ρM ∈ P1[(H0 ⊕H1)⊗M ] be

ρM = τ⊗M , τ =
1⊕
l=0

πlτl, π0 = 1− ε, π1 = ε, (2.1)
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where τ0 ∈ P1(H0) is the vacuum state, τ1 ∈ P1(H1) is the density operator for the quantum object,
and 0 ≤ ε ≤ 1 is the probability of having one object in each temporal mode. See, for example,
Ref. [22] for the definitions of the mathematical concepts. In the context of optics, τ1 may denote
the one-photon density operator in d spatial and polarization modes. The formalism, in itself, is
generic however—the object can be any elementary or composite quantum system. For example,
to study intensity interferometry [23], where two-photon-coincidence events are postselected and
one-photon events are ignored, τ1 can be used to denote the two-photon density operator.

Define the Poisson limit as

ε→ 0, M →∞, N ≡Mε fixed, (2.2)

where N is the expected object number in total. In this limit, a central quantity in the ensuing
theory is

Γ ≡ Nτ1 ∈ P(H1), (2.3)

which I call the intensity operator. Similar to τ1, it is a positive-semidefinite operator on H1.
Unlike τ1, however, its trace

tr Γ = N (2.4)

is not normalized, as the object number need not be conserved in a problem.

Let N (k) ≡ (N (k)
1 ,N (k)

2 , . . . ) be the vectoral random variable from a multi-output object-
counting measurement of the kth temporal mode. Let its probability distribution be

PN (k)(0, . . . , 0) = tr I0τ = 1− ε, (2.5)
PN (k)(0, . . . , nj = 1, . . . , 0) = trEjτ = ε trEjτ1, (2.6)

where Il is the projection operator into Hl and E is a positive operator-valued measure (POVM)
on H1 that satisfies Ej ∈ P(H1) and

∑
j Ej = I1. Under the Poisson limit, the integrated random

variable M≡
∑M
k=1N (k) has the Poisson distribution [1, 24]

PM(m) =
∏
j

exp(−Λj)
Λmj

j

mj !
, (2.7)

where each intensity value is given by

Λj = trEjΓ. (2.8)

Appendix A states, in more rigorous terms, a Poisson limit theorem that gives Eqs. (2.7) and (2.8).
In view of the Poissonian properties, the quantum state given by Eqs. (2.1), together with the

Poisson limit given by Eqs. (2.2), may be called a Poisson state, denoted as ρ without the subscript
M . Although a rigorous treatment of Poisson states may require quantum stochastic calculus [25]
or nonstandard analysis [26, 27], in the following I take the more convenient approach of assuming
Eqs. (2.1) and taking the Poisson limit at the end of a calculation. Appendix B discusses how
Poisson states may be defined more rigorously in terms of Fock spaces.

3 Information quantities
To define information quantities, assume two Poisson states ρ and ρ′. Assume that M and τ0 are
the same for the two states, while the other quantities may vary. The quantities for the second
state are denoted with a prime; for example, the intensity operator is Γ′ and N ′ ≡ Mε′ = tr Γ′.
Assume further that ε′ = O(ε) (order at most ε in the Poisson limit), such that the Poisson limit
applies to both states. My first proposition concerns the Uhlmann fidelity [28], the most notable
application of which is to set useful bounds for quantum hypothesis testing [29].
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Proposition 1. The Uhlmann fidelity

F (ρ, ρ′) ≡ tr
√√

ρρ′
√
ρ (3.1)

between two Poisson states is given by

F (ρ, ρ′) = exp
[
−N +N ′

2 + F (Γ,Γ′)
]
. (3.2)

Proof. Given Eqs. (2.1) and using basic linear algebra (see, for example, Refs. [22, Chap. 1] and
[25, Proposition 19.1]), it can be shown that

F (ρM , ρ′M ) = [F (τ, τ ′)]M =
[∑

l

F (πlτl, π′lτ ′l )
]M

=
[
1− ε+ ε′

2 +
√
εε′F (τ1, τ

′
1) +O(ε2)

]M
.

(3.3)

Taking the Poisson limit then leads to the proposition.

Equation (3.2) has a self-similar feature: it contains a fidelity expression, in terms of the inten-
sity operators Γ and Γ′, that has the same form as the general formula for the density operators.
Another remarkable feature is that the d2

B quantity, defined in the following expression

−2 lnF (ρ, ρ′) = N +N ′ − 2F (Γ,Γ′) ≡ d2
B(Γ,Γ′), (3.4)

coincides with the squared Bures-Wasserstein distance between unnormalized positive-semidefinite
operators [28, 30].

The next two propositions concern the quantum Chernoff quantity and the relative entropy.
The Chernoff quantity is used in the quantum Chernoff bound for hypothesis testing [29, 31, 32],
while the relative entropy is, of course, a fundamental quantity in quantum thermodynamics [33]
and communication theory [4, 29].

Proposition 2. The quantum Chernoff quantity

Cs(ρ, ρ′) ≡ tr ρsρ′1−s, 0 ≤ s ≤ 1 (3.5)

for two Poisson states is given by

Cs(ρ, ρ′) = exp [−sN − (1− s)N ′ + Cs(Γ,Γ′)] . (3.6)

The quantum Chernoff distance [31, 32] is then

− ln
[

inf
0≤s≤1

Cs(ρ, ρ′)
]

= sup
0≤s≤1

[sN + (1− s)N ′ − Cs(Γ,Γ′)] . (3.7)

Proposition 3. The relative entropy

D(ρ‖ρ′) ≡ tr ρ′ − tr ρ+ tr ρ (ln ρ− ln ρ′) (3.8)

between two Poisson states is given by

D(ρ‖ρ′) = D(Γ‖Γ′). (3.9)

If supp Γ 6⊆ supp Γ′, where supp denotes the support [4], then supp ρ 6⊆ supp ρ′, and D(ρ‖ρ′) =
D(Γ‖Γ′) =∞.

The proofs of Propositions 2 and 3 are delegated to Appendix C.
In Eq. (3.8), the relative entropy is expressed in a more general form so that it is appropriate

for unnormalized positive-definite operators as well [34–36]. Similar to Eq. (3.2), Eqs. (3.6) and
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(3.9) have a self-similar feature. It is also remarkable that the Ds(Γ,Γ′) and D(Γ‖Γ′) quantities,
defined in the following expressions

− 1
s(1− s) lnCs(ρ, ρ′) = 1

s(1− s) [sN + (1− s)N ′ − Cs(Γ,Γ′)] ≡ Ds(Γ,Γ′), (3.10)

D(Γ‖Γ′) ≡ N ′ −N + tr Γ (ln Γ− ln Γ′) , (3.11)

coincide with the alpha-divergences between unnormalized positive-semidefinite matrices in the
matrix-analysis literature [35, 36]—Ds(Γ,Γ′) here is identical to Eq. (4.179) in Ref. [36] if one sets
s = (1− α)/2 and D(Γ‖Γ′) here is identical to Eq. (4.166) in Ref. [36].

The classical Poisson model given by Eq. (2.7) leads to analogous formulas for the corresponding
quantities in classical information theory. The proofs are trivial and omitted for brevity; see, for
example, Ref. [37] for similar results. Assume two Poisson distributions and again denote the
quantities for the second distribution with a prime.

Proposition 4. The Chernoff quantity

Cs(PM, P ′M) ≡
∑
m

P sMP
′1−s
M , 0 ≤ s ≤ 1 (3.12)

for two Poisson distributions is given by

Cs(PM, P ′M) = exp [−sN − (1− s)N ′ + Cs(Λ,Λ′)] . (3.13)

The Chernoff distance is then

− ln
[

inf
0≤s≤1

Cs(PM, P ′M)
]

= sup
0≤s≤1

[sN + (1− s)N ′ − Cs(Λ,Λ′)] . (3.14)

Proposition 5. The relative entropy

D(PM‖P ′M) ≡
∑
m

(
P ′M − PM + PM ln PM

P ′M

)
(3.15)

between two Poisson distributions is given by

D(PM‖P ′M) = D(Λ‖Λ′). (3.16)

If supp Λ 6⊆ supp Λ′, then suppPM 6⊆ suppP ′M, and D(PM‖P ′M) = D(Λ‖Λ′) =∞.

Equations (3.13) and (3.16) resemble Eqs. (3.6) and (3.9) and also possess a self-similar fea-
ture. Similar to the quantum case, the Ds(Λ,Λ′) and D(Λ‖Λ′) quantities, defined in the following
expressions

− 1
s(1− s) lnCs(PM, P ′M) = 1

s(1− s) [sN + (1− s)N ′ − Cs(Λ,Λ′)] ≡ Ds(Λ,Λ′), (3.17)

D(Λ‖Λ′) ≡ N ′ −N +
∑
j

Λj ln Λj
Λ′j
, (3.18)

coincide with the alpha-divergences between unnormalized positive distributions [38]. D1/2(Λ,Λ′)/2,
in particular, is the squared Hellinger distance [30].

A fundamental relation between the quantum and classical information quantities is mono-
tonicity. It is interesting to note that it manifests for the Poisson states on two levels: on the level
of ρ and on the level of Γ.

Proposition 6.

F (ρ, ρ′) ≤ C1/2(PM, P ′M), (3.19)
Cs(ρ, ρ′) ≤ Cs(PM, P ′M), (3.20)
D(ρ‖ρ′) ≥ D(PM‖P ′M). (3.21)
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Proof. These bounds follow directly from the monotonicity relations [29]. Alternatively, one may
take Γ = Nτ1 and Γ′ = N ′τ ′1, define pj ≡ trEjτ1 = Λj/N and p′j ≡ trEjτ ′1 = Λ′j/N ′, and apply
the monotonicity relations with respect to (τ1, τ

′
1) and (p, p′) in order to obtain

F (Γ,Γ′) =
√
NN ′F (τ1, τ

′
1) ≤

√
NN ′C1/2(p, p′) = C1/2(Λ,Λ′), (3.22)

Cs(Γ,Γ′) = NsN ′1−sCs(τ1, τ
′
1) ≤ NsN ′1−sCs(p, p′) = Cs(Λ,Λ′), (3.23)

D(Γ‖Γ′) = N ′ −N +N ln N

N ′
+ND(τ1‖τ ′1) ≥ N ′ −N +N ln N

N ′
+ND(p‖p′) = D(Λ‖Λ′),

(3.24)

which also lead to the bounds via Propositions 1–5.

Last but not the least, I present propositions concerning the Helstrom information and the
Fisher information [18, 29], which play crucial roles in parameter estimation. Let ε and τ1 be
functions of an unknown vectoral parameter θ ≡ (θ1, . . . , θq) ∈ Θ ⊆ Rq. It follows that ρM and Γ
are also functions of θ.

Proposition 7. Define the q × q Helstrom information matrix as

Kµν(ρM ) ≡ tr (σµ ◦ σν) ρM , (3.25)

where a ◦ b ≡ (ab+ ba)/2 denotes the Jordan product and σµ is a symmetric logarthmic derivative
(SLD) of ρM , defined as a Hermitian-operator solution to

∂ρM
∂θµ

= σµ ◦ ρM . (3.26)

For a Poisson state, K is given by

Kµν(ρ) = Kµν(Γ) = tr (Sµ ◦ Sν) Γ, (3.27)

where Sµ is an SLD of Γ, viz., a Hermitian-operator solution to

∂Γ
∂θµ

= Sµ ◦ Γ. (3.28)

Proof. Given the tensor product in Eqs. (2.1), it is known that [29]

K(ρM ) = MK(τ). (3.29)

Given the direct sum in Eqs. (2.1), it can also be shown that

Kµν(τ) =
∑
l

tr
(
S(l)
µ ◦ S(l)

ν

)
πlτl, (3.30)

where S(l)
µ is an SLD of πlτl. Then S

(0)
µ = (∂π0/∂θµ)/π0 = −(∂ε/∂θµ)/(1− ε), S(1)

µ = Sµ, and

Kµν(ρM ) = 1
M(1− ε)

∂N

∂θµ

∂N

∂θν
+ tr (Sµ ◦ Sν) Γ. (3.31)

Taking the Poisson limit leads to the proposition.

Proposition 8 (well known; see, for example, Refs. [1, 2]). The Fisher information matrix

Jµν(PM) ≡
∑
m

PM
∂ lnPM
∂θµ

∂ lnPM
∂θν

(3.32)

for a Poisson distribution is given by

J(PM) = J(Λ). (3.33)
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Again, with the Poisson limit, the Helstrom and Fisher information quantities observe a self-
similar feature—they are given by the same formulas as the general ones, except that the unnor-
malized Γ or Λ is substituted into each.

The information quantities obey a monotonicity relation, which follows from the monotonicity
of Helstrom information in two ways.

Proposition 9.

K(ρ) = K(Γ) ≥ J(Λ) = J(PM), (3.34)

in the sense that K(ρ)− J(PM) and K(Γ)− J(Λ) are positive-semidefinite.

Proof. The monotonicity [29] holds on two levels: K(ρ) ≥ J(PM), and also K(Γ) ≥ J(Λ), which
can be proved independently by expressing Γ and Λ in terms of N , τ1, and p = Λ/N and applying
the monotonicity relation with respect to τ1 and p.

4 Poisson states versus Fock states
It is important to emphasize that the Poisson theory is in general different from the usual theory
for the Fock state τ⊗L1 . For example, from Eq. (3.2), the fidelity for the Poisson states can be
expressed in terms of τ1 and τ ′1 as

F (ρ, ρ′) = exp
[
−N +N ′

2 +
√
NN ′F (τ1, τ

′
1)
]
, (4.1)

which is quite different from

F (τ⊗L1 , τ ′⊗L1 ) = [F (τ1, τ
′
1)]L . (4.2)

As Γ and Γ′ are not normalized, their fidelity is bounded as

0 ≤ F (Γ,Γ′) =
√
NN ′F (τ1, τ

′
1) ≤

√
NN ′. (4.3)

When F (τ1, τ
′
1) = 1 and F (Γ,Γ′) =

√
NN ′, F (ρ, ρ′) in the Poisson theory is still less than 1 if

N 6= N ′, because the different expected object numbers still lead to distinguishability. On the
other hand, if F (τ1, τ

′
1) = 0 and F (Γ,Γ′) = 0, F (ρ, ρ′) is still positive, because both states contain

the identical τ0. Another example is the Helstrom information

Kµν(ρ) = Kµν(Γ) = N
∂ lnN
∂θµ

∂ lnN
∂θν

+NKµν(τ1), (4.4)

which is different from

K(τ⊗L1 ) = LK(τ1). (4.5)

It is not difficult to prove that, on the per-object basis,

K(Γ)
N

≥ K(τ1), (4.6)

as N may also depend on θ and the total object number may give extra information.
In the context of optics, the thermal state in an ultraviolet limit can be shown to approach

the Poisson state, with the mutual coherence matrix in statistical optics [23] becoming a matrix
representation of Γ [5, 6, 8]. Alternative analyses of the exact thermal state have yielded results
that are consistent with the Poisson theory [19, 39–41]. In the context of partially coherent
imaging, Propositions 7 and 8 are consistent with our treatment in Ref. [10], although many other
studies on this topic [9, 11–13, 15] compute the Helstrom information using K(τ1) only and may
underestimate the amount of information. The Poisson model is more realistic than the Fock model
because the former can account for the effects of inefficiency and loss, which are unavoidable for
sources imaged with a finite aperture [17]. The use of K(τ1) is justified only if N does not depend
on θ, in which case K(Γ) = NK(τ1). I illustrate these concepts with a concrete example.
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Example 1. Consider the imaging of two equally bright partially coherent optical sources via a
diffraction-limited system in one dimension [8–17]. The intensity operator can be modeled as [10]

Γ = N0 (|ψ1〉 〈ψ1|+ |ψ2〉 〈ψ2|+ γ |ψ1〉 〈ψ2|+ γ∗ |ψ2〉 〈ψ1|) , (4.7)

|ψ1〉 =
∫ ∞
−∞

dxψ

(
x+ θ

2

)
|x〉 , |ψ2〉 =

∫ ∞
−∞

dxψ

(
x− θ

2

)
|x〉 , (4.8)

where N0 ∈ R≥0 ≡ {x ∈ R|x ≥ 0} is the expected photon number from one isolated source, γ ∈ C is
the degree of coherence with |γ| ≤ 1, ψ : R→ C is the point-spread function of the imaging system,
|x〉 is the Dirac position eigenket that obeys 〈x|x′〉 = δ(x − x′), and θ ∈ R≥0 is the separation
between the two sources in Airy units. The expected total photon number is

N = tr Γ = 2N0 [1 + Re (γ 〈ψ2|ψ1〉)] . (4.9)

When γ = 0 (incoherent sources), N = 2N0 is independent of θ, but when γ 6= 0, N may depend
on θ, as the waves from the two sources can interfere, thus enhancing or suppressing the radiation
energy. For example, when γ = 1 (fully coherent and in-phase sources) and θ = 0, N = 4N0,
which is consistent with the elementary fact that n identical in-phase sources with zero separations
should radiate at a power ∝ n2 [42].

To compute the Helstrom information K(Γ), I assume the Gaussian point-spread function

ψ(x) = 1
(2π)1/4 exp

(
−x

2

4

)
(4.10)

and use the steps detailed in Appendix D to compute Eqs. (3.27) and (3.28) numerically. The
results are plotted in Fig. 1. Almost identical results are recently reported in Ref. [17, Fig. 2(a)],
which uses the rare-photon model given by Eqs. (2.1) and a theory consistent with the one here.
The use of the intensity operator here is arguably more direct and convenient, however, as Eq. (4.7)
comes naturally from optics and can be used directly in Eqs. (3.27) and (3.28), without returning
to the rare-photon model or treating ε and τ1 separately in the calculations.

Figure 1: Numerically computed Helstrom information K(Γ) for the estimation of the separation θ between two
partially coherent sources. Each curve assumes a fixed degree of coherence γ, as denoted by the legend.

As also noticed in Ref. [17], the Helstrom information plotted in Fig. 1 appears to be identical
to the Fisher information with the Hermite-Gaussian measurements plotted in Ref. [10, Fig. 1] for
all values of γ, suggesting that the measurements are optimal for any γ and not just for the γ = 0
case proven in Ref. [6].
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5 Poisson channels
For the Poisson theory to remain useful for problems involving quantum channels, the channels
should preserve the Poissonianity of a state. I call such channels Poisson channels. A trace-
preserving completely positive (TPCP) map Φ on ρM is Poisson if

Φ (ρM ) = [(1− ε′′)τ ′′0 ⊕ ε′′τ ′′1 ]⊗M , (5.1)

where τ ′′l ∈ P1(H′′l ), H′′0 is 1-dimensional, and ε′′ = O(ε), such that the output is still a Poisson
state in the Poisson limit. Let ρ(Γ) denote the Poisson state with intensity operator Γ in the sense
of Eqs. (2.1)–(2.3). The input-output relation in the Poisson limit can be abbreviated as

Φ [ρ(Γ)] = ρ
[
Φ̃(Γ)

]
, Φ̃(Γ) = N ′′τ ′′1 , N ′′ ≡Mε′′, (5.2)

where Φ̃ : P(H1) → P(H′′1 ) is a map from an intensity operator to another intensity operator in-
duced by Φ. Then the information quantities dB(Γ,Γ′), Ds(Γ,Γ′), D(Γ‖Γ′), and K(Γ) in Eqs. (3.4),
(3.10), (3.11), and (3.27) also observe monotonicity relations with respect to Φ̃.

Proposition 10. Let Φ̃ be a positive map defined in the sense of Eqs. (5.1) and (5.2) with respect
to a TPCP map Φ in the Poisson limit. Then

dB(Γ,Γ′) ≥ dB
[
Φ̃(Γ), Φ̃(Γ′)

]
, (5.3)

Ds(Γ,Γ′) ≥ Ds

[
Φ̃(Γ), Φ̃(Γ′)

]
, (5.4)

D(Γ‖Γ′) ≥ D
[
Φ̃(Γ)‖Φ̃(Γ′)

]
, (5.5)

K(Γ) ≥ K
[
Φ̃(Γ)

]
. (if Φ̃ does not depend on θ) (5.6)

Proof. These monotonicity relations follow from the monotonicity of the information quantities
with respect to the density operators in Eqs. (3.4), (3.10), (3.11), and (3.27).

To construct examples of Φ̃ in the following, I assume further that Φ is local, in the sense of

Φ(ρM ) = [φ (τ)]⊗M , (5.7)

where φ : P(H0 ⊕H1)→ P(H′′0 ⊕H′′1 ) is a TPCP map that gives

φ(τ) = (1− ε′′) τ ′′0 ⊕ ε′′τ ′′1 . (5.8)

Under the local assumption, Φ̃ is affine, as shown by Proposition 11 below, although Example 3
later demonstrates that Φ̃ need not be trace-preserving and Example 4 demonstrates that Φ̃ need
not be linear.

Proposition 11. Given Eqs. (5.7) and (5.8), Φ̃ is affine.

Proof. Let the Kraus form [22, 29] of φ be

φ(τ) =
∑
α

AατA
†
α. (5.9)

Expressing τ and Aα in the matrix forms [22, Eq. (1.64)]

τ =
(

(1− ε)τ0 0
0 ετ1

)
, Aα =

(
Aα00 Aα01
Aα10 Aα11

)
, (5.10)

where 0 denotes a zero operator and Aαlm is an operator that maps Hm to H′′l , it can be shown
that

ε′′τ ′′1 =
∑
α

[
Aα10(1− ε)τ0A

†
α10 +Aα11ετ1A

†
α11

]
. (5.11)
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For the ε′′ = O(ε) requirement to be satisfied, it is necessary for the map to satisfy

tr
∑
α

Aα10τ0A
†
α10 = O(ε), (5.12)

tr
∑
α

Aα11τ1A
†
α11 = O(1). (5.13)

Multiplying both sides of Eq. (5.11) by M and taking the Poisson limit, the output intensity
operator becomes

Φ̃(Γ) = Γ′ +
∑
α

Aα11ΓA†α11, (5.14)

where Γ′ is the Poisson limit of M(1 − ε)
∑
αAα10τ0A

†
α10 → M

∑
αAα10τ0A

†
α10, which does not

depend on Γ. Equation (5.14) is affine with respect to Γ (though not necessarily linear).

In the following examples, the Kraus form of each φ is most conveniently expressed in terms
of some orthonormal bases of H0, H′′0 , H1, and H′′1 , which are written as {|0〉}, {|0′′〉}, {|1j〉 |j =
1, . . . , d}, and {|1′′k〉 |k = 1, . . . , d′′}, respectively. The τ state, for example, can be expressed as

(1− ε) τ0 ⊕ ετ1 = (1− ε) |0〉 〈0|+ ε
∑
j,k

gjk |1j〉 〈1k| , (5.15)

where g is the density matrix of τ1 with respect to the basis above.

Example 2 (object-number-preserving channel). Let a Kraus form of φ be

φ(τ) = A0τA
†
0 +

∑
α

AατA
†
α, (5.16)

A0 = |0′′〉 〈0| , Aα =
∑
j,k

Aαjk |1′′j 〉 〈1k| , (5.17)

such that

φ [(1− ε) τ0 ⊕ ετ1] = (1− ε) τ ′′0 ⊕ εφ1(τ1), (5.18)

where

φ1(τ1) =
∑
α

Aατ1A
†
α (5.19)

is a TPCP map. In the Poisson limit,

Φ̃(Γ) = φ1(Γ). (5.20)

The trace-preserving nature of φ1 means that the channel preserves the object number. More
specific examples include the unitary map

φ1(Γ) = UΓU†, (5.21)

which models a lossless linear device via a unitary operator U , and the map

φ1(Γ) = Λ, Λj = trEjΓ, (5.22)

which models a 100%-efficient object-counting measurement via the POVM E that gives Eqs. (2.7)
and (2.8). Propositions 6 and 9 are hence special cases of Proposition 10.

As the object number need not be conserved, Φ̃ need not be trace-preserving. The next examples
of Φ̃ are noteworthy departures from the usual TPCP maps in quantum information theory.

Accepted in Quantum 2021-07-29, click title to verify. Published under CC-BY 4.0. 9



Example 3 (loss). Let H′′l = Hl and

φ(τ) = I0τI0 +
d∑
j=1

AjτA
†
j + TτT, (5.23)

I0 = |0〉 〈0| , Aj =
√

1− ηj |0〉 〈1j | , T =
d∑
j=1

√
ηj |1j〉 〈1j | , (5.24)

where 0 ≤ ηj ≤ 1 is the transmission coefficient for each mode. Then

φ [(1− ε)τ0 ⊕ ετ1] = (1− ε trTτ1T ) τ0 ⊕ εTτ1T. (5.25)

In the Poisson limit,

Φ̃(Γ) = TΓT. (5.26)

This Φ̃ is not trace-preserving if any ηj < 1, although it is still completely positive [22, Theo-
rem 2.22].

Example 4 (spontaneous emission). Let H′′l = Hl and

φ(τ) = A0τA
†
0 +

d∑
j=1

AjτA
†
j + I1τI1, (5.27)

A0 =
√

1− ε′ |0〉 〈0| , Aj =
√
ε′τ ′1jj |1j〉 〈0| , (5.28)

I1 =
d∑
j=1
|1j〉 〈1j | , (5.29)

where ε′ = O(ε) and τ ′1 =
∑
j τ
′
1jj |1j〉 〈1j | ∈ P1(H1) are properties of the channel and {|1j〉} is

assumed to be the eigenbasis of τ ′1 without loss of generality. Then

φ [(1− ε) τ0 ⊕ ετ1] = (1− ε) (1− ε′) τ0 ⊕ [ετ1 + ε′(1− ε)τ ′1] . (5.30)

In the Poisson limit,

Φ̃(Γ) = Γ + Γ′, (5.31)

where Γ′ = Mε′τ ′1. In particular, if the input intensity operator is the zero operator 0,

Φ̃(0) = Γ′. (5.32)

If Γ′ 6= 0, Eq. (5.32) implies that this Φ̃ is not trace-preserving and not even linear, as a trace-
preserving or linear map on the zero operator must give the zero operator.

Setting ε′, the spontaneous-emission probability per temporal mode, to be O(ε) ensures that
the occurrence of objects remains rare and N ′′ = N + N ′ remains finite under the Poisson limit.
In reality, however, a channel with a high spontaneous-emission probability may make the final
state non-Poisson and may also involve other processes such as stimulated emission, so one should
double-check the accuracy of the Poisson approximation before applying the Poisson theory to a
real spontaneous-emission channel.

Equation (5.31) is a quantum analog of the fact that the sum of two independent Poisson
processes is also a Poisson process. It may be useful for modeling dark counts or background noise
[43–45]. Another version of this fact is the following.

Example 5 (composition). The tensor product of two Poisson states may be expressed as

ρ(Γ)⊗ ρ(Γ′) = ρ(Γ⊕ Γ′). (5.33)
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To derive this relation, consider

τ ⊗ τ ′ = [(1− ε)(1− ε′)τ0 ⊗ τ ′0]⊕ [ε(1− ε′)τ1 ⊗ τ ′0]⊕ [ε′(1− ε)τ0 ⊗ τ ′1]⊕ (εε′τ1 ⊗ τ ′1) . (5.34)

Ignore all O(ε2) terms in Eq. (5.34), including the two-object component εε′τ1 ⊗ τ ′1. The output
intensity operator in the Poisson limit becomes

(Γ⊗ τ ′0)⊕ (τ0 ⊗ Γ′) . (5.35)

Since τ0 = |0〉 〈0| and τ ′0 = |0′〉 〈0′| are 1-dimensional, any tensor product of an operator with τ0
or τ ′0 is isomorphic to the original operator, and Eq. (5.35) can be abbreviated as Γ⊕ Γ′.

Example 6 (marginalization). Let Γ be an intensity operator on H1 ⊕ H′1 and τ be a density
operator on (H0 ⊕H1)⊗ (H′0 ⊕H′1). Let

φ(τ) = tr′ τ (5.36)

denote the partial trace with respect to H′0 ⊕H′1. A Kraus form is

φ(τ) = 〈0′| τ |0′〉+
d′∑
j=1
〈1′j | τ |1′j〉 . (5.37)

Expressing τ in terms of the basis {|0〉 ⊗ |0′〉 , |1j〉 ⊗ |0′〉 , |0〉 ⊗ |1′k〉 |j = 1, . . . , d, k = 1, . . . , d′}, it
is not difficult to show that

Φ̃(Γ) = I1ΓI1, (5.38)

where I1 is the projection operator into H1 given by Eq. (5.29).

Equations (5.20), (5.26), (5.31), (5.33), and (5.38) in the examples demonstrate that, for Poisson
channels, the maps can be much simplified if expressed in terms of the intensity operators. Whether
there exists a more comprehensive mathematical treatment of Poisson channels in the spirit of
quantum channel theory is an interesting open problem.

6 Conclusion
In conclusion, I have shown that the Poisson limit leads to elegant results in quantum information
theory, with the intensity operator emerging as the central quantity. The familiar appearances
of the formulas mean that one may borrow existing results from general information theory and
apply them to the intensity operators in the study of Poisson states. Although the unnormalized
nature of the operators may require extra care, one can still take advantage of many known
results concerning unnormalized positive-semidefinite matrices [22, 35, 36, 38], as the formulas
here coincide with many of them.

There are many potential generalizations and extensions. It should be possible to define the
Poisson limit more generally for a tensor product of non-identical states and an infinite-dimensional
Γ, in analogy with the more general Poisson limit theorems [1, 2]. The mathematical rigor of the
limit may be improved through quantum stochastic calculus [25] or nonstandard analysis [26, 27].
The mathematical theory of Poisson channels may be refined further.

In terms of applications, some specialized aspects of the Poisson theory have already found
success in the study of weak thermal light for optical sensing and imaging [8, 18], but a consolidation
of the results under the umbrella of Poisson quantum information may reveal new insights. Given
the importance of the classical Poisson theory in diverse areas [1, 2], the quantum Poisson theory
is envisioned to see wider applications in quantum technologies beyond optics, wherever a sequence
of rare objects may be encountered.
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A Poisson limit theorem
To state the Poisson limit theorem rigorously, I first rephrase the measurement model in terms
of measure theory. Consider a multi-output object-counting measurement of the kth temporal
mode. Let Y denote the set of outputs and B denote its σ-algebra. For example, for an ideal
direct-imaging measurement, each (x, y) ∈ Y = R2 is a possible position of the object on the image
plane, while each B ∈ B is a region of the image plane. Let Xk ∈ {0, 1} be the total object number
detected by the measurement. Assume

E [Xk = 0] = tr I0τ = 1− ε, (A.1)

where E denotes the expectation, [statement] is the Iverson bracket defined as

[statement] ≡
{

1, statement is true,
0, otherwise,

(A.2)

and E[statement] is the probability that the statement is true. Conditioned on Xk = 1, let Yk ∈ Y
be the output that detects the object. Assume

E [Yk ∈ B] = trE(B)τ1, (A.3)

where E : B → P(H1) is a POVM on H1. The object count in a set of outputs can then be
modeled by the random measure N (k) : B → {0, 1}, defined as

N (k)(B) ≡ Xk [Yk ∈ B] . (A.4)

Xk and Yk can be taken as independent random variables. Integrated over M temporal modes,
the random measure becomes

MM (B) ≡
M∑
k=1
N (k)(B) =

M∑
k=1

Xk [Yk ∈ B] =
LM∑
j=1

[Zj ∈ B] , (A.5)

where

LM ≡
M∑
k=1

Xk (A.6)

is the detected object number in total and the set {Z1, . . . , ZLM
} is simply a relabeling of {Yk|Xk =

1}, which is a set of LM independent and identically distributed (i.i.d.) random elements. As X
is Bernoulli, LM is binomial. In the Poisson limit, LM becomes Poisson, denoted by L, and
MM →M is called the Kac empirical point process [24].

Theorem 1 (see, for example, Ref. [24, Sec. 3.5.2]). With a Poisson L and a sequence of i.i.d.
random elements {Z1, Z2, . . . } that are independent of L, the Kac process M : B → N0, defined as

M(B) ≡
L∑
j=1

[Zj ∈ B] , (A.7)

is a Poisson process.

The intensity measure Λ : B → R≥0 of the Poisson process is given by

Λ(B) = E [M(B)] = N trE(B)τ1 = trE(B)Γ. (A.8)

In the main text, the abbreviations N (k)
j = N (k)(Bj),Mj =M(Bj), Ej = E(Bj), and Λj = Λ(Bj)

are used, where {B1, B2, . . . } is a disjoint partition of Y. {Mj} are independent Poisson random
variables by a basic property of Poisson processes, so their probability distribution is given by
Eq. (2.7).
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B Poisson states on Fock spaces
(H0⊕H1)⊗M is called a toy Fock space in Refs. [25, 46]. The Poisson limit of ρM on the toy Fock
space should remain well defined if one is willing to adopt nonstandard analysis, taking M to be
an unlimited natural number and ε = N/M to be infinitesimal [26, 27]. In the context of ordinary
calculus, one may think of ε as O(dt), where dt is an infinitesimal interval in time or a similar
continuous degree of freedom. In the Poisson channel theory, Eq. (5.12) implies that each Kraus
operator Aα10 should scale as O(

√
ε) = O(

√
dt), which is why quantum stochastic calculus may be

needed to define the operators rigorously in the Poisson limit.
A more standard way to deal with an infinite number of temporal modes in quantum stochastic

calculus is to abandon the toy Fock space and use instead the Fock space F(L2[0, 1]⊗H1), where
F is defined as [25]

F(H) ≡
∞⊕
l=0
H⊗l, H⊗0 = H0, (B.1)

and the L2[0, 1] space, modeling the temporal modes for one object, is defined as

L2[0, 1] ≡ {f |f : [0, 1]→ C, 〈f, f〉 <∞} , (B.2)

〈f, g〉 ≡
∫ 1

0
f∗(t)g(t)dt. (B.3)

See Refs. [25, 26, 46] for discussions of the relation between the toy Fock space and F(L2[0, 1]⊗H1).
It is an open problem, outside the scope of this paper, how Poisson states may be expressed on
F(L2[0, 1]⊗H1).

If the objects are collected in one place and their arrival times are ignored, one can assume a
simpler Fock space

F(H1) =
∞⊕
l=0
H⊗l1 (B.4)

and transform ρM into a state on F(H1) given by

Π(ρM ) =
M⊕
l=0

PLM
(l)τ⊗l1 , (B.5)

PLM
(l) =

(
M
l

)
πM−l0 πl1, (B.6)

where Π denotes an appropriate map, LM is the binomial random variable for the total object
number, and τ⊗0

1 = τ0 is assumed. This representation may be useful because any function
of density operators that satisfies a monotonicity relation with respect to TPCP maps can be
computed using Π(ρM ) instead of ρM , by virtue of the following proposition.

Proposition 12. Π is TPCP. Moreover, there exists another TPCP map Π′ such that Π′[Π(ρM )] =
ρM .

The proof is delegated to Appendix C.
In the Poisson limit, LM becomes Poisson, viz.,

PLM
(l)→ PL(l) = exp(−N)N

l

l! , (B.7)

and the state on F(H1) becomes

Π(ρM )→ Π(ρ) =
∞⊕
l=0

PL(l)τ⊗l1 = exp(−N)
∞⊕
l=0

Γ⊗l

l! . (B.8)
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Π(ρ) has the spirit of a Kac process and may serve as a rigorous definition of a Poisson state
without resorting to nonstandard analysis. For example, a Poisson process can arise directly from
a measurement on Π(ρ) as follows. Let L be the object number determined by a measurement
in terms of the Kraus operators {I0, I1, . . . }, where Il is the projection operator into H⊗l1 . The
conditional state becomes τ⊗L1 . If each object is then measured by the POVM E, the outcomes

are the i.i.d. random elements {Z1, . . . , ZL}. The Kac processM(B) =
∑L
j=0[Zj ∈ B] is therefore

a Poisson process by Theorem 1.
Many other results in this paper can also be rederived from Eq. (B.8). Equations (2.1) are

more intuitive from the physics point of view, however, and are therefore used in the main text.

C Proofs of Propositions 2, 3, and 12
Proof of Proposition 2. To derive Eq. (3.6), take similar steps to those in the proof of Proposition 1
to obtain

Cs(ρM , ρ′M ) = [Cs(τ, τ ′)]
M =

[∑
l

Cs(πlτl, π′lτ ′l )
]M

(C.1)

=
[
1− sε− (1− s)ε′ + εsε′1−sCs(τ1, τ

′
1) +O(ε2)

]M
, (C.2)

and then take the Poisson limit.
Note that Eq. (3.7) takes the infimum of the Poisson limit, but to prove that it is the same as

the Poisson limit of the infimum, one may need to prove the uniform convergence of Cs(ρM , ρ′M ) to
Cs(ρ, ρ′) over 0 ≤ s ≤ 1, beyond the pointwise convergence just proved. This complication suggests
that the Poisson limit is an intricate mathematical issue, and the Fock-space representation given
by Eq. (B.8), the Poisson limit of which has already been taken, may be a better starting point
for rigorous proofs. In particular, Eq. (B.8) leads directly to Eqs. (3.6) and (3.7) without any
ambiguity.

Proof of Proposition 3. Consider

D(ρM‖ρ′M ) = MD(τ‖τ ′) (C.3)

= M
∑
l

trπlτl [ln(πlτl)− ln(π′lτ ′l )] (C.4)

= M tr(1− ε)τ0 {ln [(1− ε)τ0]− ln [(1− ε′)τ0]}+M tr ετ1 [ln (ετ1)− ln (ε′τ ′1)] (C.5)

= M(1− ε) ln 1− ε
1− ε′ + tr Γ (ln Γ− ln Γ′) , (C.6)

where Eq. (C.3) has used Ref. [22, Eq. (5.97)] and Eq. (C.6) has used Ref. [22, Eq. (5.99)]. The
Poisson limit of the first term in Eq. (C.6) is

M(1− ε) ln 1− ε
1− ε′ = (1− ε) ln

[
1 + ε′ − ε+O(ε2)

]M → N ′ −N, (C.7)

which leads to Eq. (3.9).

Proof of Proposition 12. To prove that Π is TPCP, I construct a physical procedure that takes ρM
as input and produces Π(ρM ) as output.

1. Designate the input system as system A and an auxiliary system with Hilbert space (H0 ⊕
H1)⊗M and initial state τ⊗M0 as system B.

2. For each k = 1, . . . ,M :

(a) Measure the number of objects in the kth temporal mode of system A with the Kraus
operators {I0, I1}. Let Xk ∈ {0, 1} be the random variable from the measurement.

(b) If Xk = 0, do nothing.
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(c) If Xk = 1, put the object detected in the kth temporal mode of system A (in conditional
state I1τI1/(tr I1τI1)) into an empty temporal mode of system B (any mode in state
τ0).

3. Discard all the empty temporal modes in system B so that its Hilbert space becomes H⊗LM
1 ,

where LM ≡
∑M
k=1 Xk is the number of detected objects.

4. Give system B as the output.

With ρM as the input state, X is Bernoulli, LM is binomial, the output state conditioned on LM
is τ⊗LM

1 , and the unconditional output state becomes Eq. (B.5).
To prove that a TPCP map giving Π′[Π(ρM )] = ρM exists, I construct a physical procedure

that takes Π(ρM ) as input and gives ρM as output.

1. Assume a system A with Hilbert space (H0 ⊕ H1)⊗M and initial state τ⊗M0 . Assume a
system B with Hilbert space ⊕Ml=0H

⊗l
1 . For the Π′ map, assume that system A is auxiliary

and system B is the input.

2. Measure the number of objects LM in system B with the Kraus operators {I0, I1, . . . }.

3. Generate a random classical bit sequence X = {X1, . . . , XM} ∈ {0, 1}M with LM bits equal
to 1 and M − LM bits equal to 0. The probability of each sequence is assumed to be

PX|LM
(x|l) =

(
M
l

)−1
[∑

k

xk = l

]
. (C.8)

4. For each k = 1, . . . ,M :

(a) If Xk = 0, do nothing.
(b) If Xk = 1, put an object in system B into the kth temporal mode of system A.

5. Give system A as the output.

With Π(ρM ) as the input state, LM is binomial, and the unconditional probability of each bit
sequence becomes

PX(x) =
M∑
l=0

PLM
(l)PX|LM

(x|l) =
M∑
l=0

πl1π
M−l
0

[∑
k

xk = l

]
=

M∏
k=0

([xk = 0]π0 + [xk = 1]π1) ,

(C.9)

meaning that X is Bernoulli. Conditioned on X, the output state is

ρM (X) =
M⊗
k=1

([Xk = 0]τ0 ⊕ [Xk = 1]τ1) . (C.10)

The unconditional output state is hence

E [ρM (X)] =
M⊗
k=1

(π0τ0 ⊕ π1τ1) = ρM . (C.11)

D Computation of the Helstrom information for Example 1
To compute Eqs. (3.27) and (3.28) numerically, I follow the method in Refs. [47, 48]. Express each
operator in the problem as

A =
∑
j,k

Ãjk |ψj〉 〈ψk| , (D.1)
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where the set {|ψj〉} spans H1. The set need not be orthogonal or normalized. Let ∆ ≡ ∂Γ/∂θ for
a scalar parameter θ. Then Eq. (3.28) can be expressed as

2∆̃ = S̃GΓ̃ + Γ̃GS̃, (D.2)

where Gjk = 〈ψj |ψk〉, while Eq. (3.27) can be expressed as

K = trGS̃G∆̃. (D.3)

For Example 1, |ψ1〉 and |ψ2〉 are defined in Eqs. (4.8). Define also

|ψ3〉 ≡
∂ |ψ1〉
∂θ

, |ψ4〉 ≡
∂ |ψ2〉
∂θ

. (D.4)

Then

Γ̃ = N0


1 γ 0 0
γ∗ 1 0 0
0 0 0 0
0 0 0 0

 , ∆̃ = N0


0 0 1 γ
0 0 γ∗ 1
1 γ 0 0
γ∗ 1 0 0

 . (D.5)

With the Gaussian ψ(x) given by Eq. (4.10), G can also be computed analytically (with the help
of the Symbolic Math Toolbox on Matlab (ver. 2020b, Mathworks)):

G =


1 exp(− θ

2

8 ) 0 − θ8 exp(− θ
2

8 )
exp(− θ

2

8 ) 1 − θ8 exp(− θ
2

8 ) 0
0 − θ8 exp(− θ

2

8 ) 1
16

θ2−4
64 exp(− θ

2

8 )
− θ8 exp(− θ

2

8 ) 0 θ2−4
64 exp(− θ

2

8 ) 1
16

 . (D.6)

For each γ from −1 to 1 with step size 0.2 and each θ from 0.05 to 8 with step size 0.05, Eq. (D.2)
is solved for S̃ using the lyap function on Matlab and K is computed using Eq. (D.3). The results
are plotted in Fig. 1.

To prevent the error “The solution of this Lyapunov equation does not exist or is
not unique” in using the lyap function on Matlab, a tiny positive number δ is artificially in-
troduced to Γ̃33 and Γ̃44. To check that δ does not affect the results significantly, the numerical
analysis is repeated with various δ, and it is found that the plots do not show any perceptible
change with δ ranging from 10−13 to 10−5. Figure 1 uses δ = 10−13.

The Matlab code is reproduced below. The lbmap routine to generate a color map for colorblind
viewers can be downloaded from Ref. [49].

function helstrom
theta = .05:.05:8;
gamma = -1:.2:1;
delta = 1e-13;
hold off;
for m = 1:length(gamma)

Gamma = [1 gamma(m) 0 0; conj(gamma(m)) 1 0 0; 0 0 delta 0; 0 0 0 delta];
dGamma = [0 0 1 gamma(m); 0 0 conj(gamma(m)) 1; ...

1 gamma(m) 0 0; conj(gamma(m)) 1 0 0];
for n = 1:length(theta)

G11 = 1;
G12 = exp(-theta(n)ˆ2/8);
G13 = 0;
G14 = -theta(n)/8*exp(-theta(n)ˆ2/8);
G22 = 1;
G23 = G14;
G24 = 0;
G33 = 1/16;
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G34 = (theta(n)ˆ2-4)/64*exp(-theta(n)ˆ2/8);
G44 = 1/16;
G = [G11 G12 G13 G14; conj(G12) G22 G23 G24; ...

conj(G13) conj(G23) G33 G34; conj(G14) conj(G24) conj(G34) G44];
S = lyap(Gamma*G,-2*dGamma);
K(n) = 2*trace(G*S*G*dGamma);

end
if gamma(m) < 0

plot(theta,K,’:’);
else

plot(theta,K);
end
hold on;

end
axis([min(theta) max(theta) 0 2]);
legend(num2str(gamma.’));
xlabel(’$\theta$ (separation in Airy units)’);
ylabel(’$K(\Gamma)/(N_0/2)$’) ;
title(’Helstrom information for various $\gamma$’);
newcolor = lbmap(length(gamma),’RedBlue’);
colororder(newcolor);
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1992).

[26] M. Leitz-Martini, Quantum Stochastic Calculus using Infinitesimals, Ph.D. thesis, University
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