Quadrature protection of squeezed states in a one-dimensional photonic topological insulator

Joaquin Medina Dueñas1, Gabriel O'Ryan Pérez1, Carla Hermann-Avigliano1,2, and Luis E. F. Foa Torres1

1Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile
2ANID - Millenium Science Iniciative Program - Millenium Institute for Research in Optics

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


What is the role of topology in the propagation of quantum light in photonic lattices? We address this question by studying the propagation of squeezed states in a topological one-dimensional waveguide array, benchmarking our results with those for a topologically trivial localized state, and studying their robustness against disorder. Specifically, we study photon statistics, one-mode and two-mode squeezing, and entanglement generation when the localized state is excited with squeezed light. These quantum properties inherit the shape of the localized state but, more interestingly, and unlike in the topologically trivial case, we find that propagation of squeezed light in a topologically protected state robustly preserves the phase of the squeezed quadrature as the system evolves. We show how this latter topological advantage can be harnessed for quantum information protocols.

What is the role of topology in the propagation of quantum light in photonic lattices? We address this question by studying the propagation of squeezed states of light, which may serve as a fundamental building block for quantum computation, in a topological one-dimensional waveguide array. We find that quantum features of light couple to the topologically protected state of the lattice inheriting its spatial distribution, but more interestingly, we find that the lattices topology robustly preserves the phase of the squeezed quadrature as the system evolves, granting a topological advantage for the propagation of quantum light in photonic lattices. We show how this topological advantage can be harnessed for quantum information protocols.

► BibTeX data

► References

[1] K. von Klitzing, G. Dorda, and M. Pepper, ``New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance,'' Phys. Rev. Lett. 45, 494 (1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den Nijs, ``Quantized Hall Conductance in a Two-Dimensional Periodic Potential,'' Phys. Rev. Lett. 49, 405 (1982).

[3] F. D. M. Haldane, ``Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the "Parity Anomaly",'' Phys. Rev. Lett. 61, 2015 (1988).

[4] C. L. Kane and E. J. Mele, ``Quantum Spin Hall Effect in Graphene,'' Phys. Rev. Lett. 95, 226801 (2005).

[5] C. L. Kane and M. Z. Hasan, ``Colloquium: Topological insulators,'' Rev. Mod. Phys 82, 3045 (2010).

[6] T. Ozawa, H. M. Price, A. Amo, N. Goldman, M. Hafezi, L. Lu, M. C. Rechtsman, D. Schuster, J. Simon, O. Zilberberg, and I. Carusotto, ``Topological photonics,'' Reviews of Modern Physics 91, 015006 (2019).

[7] B.-Y. Xie, H.-F. Wang, X.-Y. Zhu, M.-H. Lu, Z. D. Wang, and Y.-F. Chen, ``Photonics meets topology,'' Optics Express 26, 24531 (2018).

[8] L. Lu, J. D. Joannopoulos, and M. Soljačić, ``Topological photonics,'' Nature Photonics 8, 821 (2014).

[9] S. D. Huber, ``Topological mechanics,'' Nature Physics 12, 621 (2016).

[10] C. H. Lee, S. Imhof, C. Berger, F. Bayer, J. Brehm, L. W. Molenkamp, T. Kiessling, and R. Thomale, ``Topolectrical Circuits,'' Communications Physics 1, 39 (2018).

[11] V. Peano, C. Brendel, M. Schmidt, and F. Marquardt, ``Topological Phases of Sound and Light,'' Physical Review X 5, 031011 (2015).

[12] A. B. Khanikaev, R. Fleury, S. H. Mousavi, and A. Alù, ``Topologically robust sound propagation in an angular-momentum-biased graphene-like resonator lattice,'' Nature Communications 6, 8260 (2015).

[13] X. Wang, H. Zhang, and X. Wang, ``Topological Magnonics: A Paradigm for Spin-Wave Manipulation and Device Design,'' Phys. Rev. Applied 9, 024029 (2018),.

[14] M. Atala, M. Aidelsburger, J. T. Barreiro, D. Abanin, T. Kitagawa, E. Demler, and I. Bloch, ``Direct measurement of the Zak phase in topological Bloch bands,'' Nature Physics 9, 795 (2013).

[15] N. Malkova, I. Hromada, X. Wang, G. Bryant, and Z. Chen, ``Observation of optical Shockley-like surface states in photonic superlattices,'' Optics Letters 34, 1633 (2009).

[16] M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann, L. W. Molenkamp, X.-L. Qi, and S.-C. Zhang, ``Quantum Spin Hall Insulator State in HgTe Quantum Wells,'' Science 318, 766 (2007).

[17] M. Hafezi, E. A. Demler, M. D. Lukin, and J. M. Taylor, ``Robust optical delay lines with topological protection,'' Nature Physics 7, 907 (2011).

[18] D. Hsieh, D. Qian, L. Wray, Y. Xia, Y. S. Hor, R. J. Cava, and M. Z. Hasan, ``A topological Dirac insulator in a quantum spin Hall phase,'' Nature 452, 970 (2008).

[19] L. Lu, C. Fang, L. Fu, S. G. Johnson, J. D. Joannopoulos, and M. Soljačić, ``Symmetry-protected topological photonic crystal in three dimensions,'' Nature Physics 12, 337 (2016).

[20] M. Z. Hasan, S.-Y. Xu, I. Belopolski, and S.-M. Huang, ``Discovery of Weyl Fermion Semimetals and Topological Fermi Arc States,'' Annual Review of Condensed Matter Physics 8, 289 (2017).

[21] Y. Yang, Z. Gao, H. Xue, L. Zhang, M. He, Z. Yang, R. Singh, Y. Chong, B. Zhang, and H. Chen, ``Realization of a three-dimensional photonic topological insulator,'' Nature 565, 622 (2019).

[22] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger, D. Greif, and T. Esslinger, ``Experimental realization of the topological Haldane model with ultracold fermions,'' Nature 515, 237 (2014).

[23] F. D. M. Haldane and S. Raghu, ``Possible Realization of Directional Optical Waveguides in Photonic Crystals with Broken Time-Reversal Symmetry,'' Physical Review Letters 100, 013904 (2008).

[24] S. Raghu and F. D. M. Haldane, ``Analogs of quantum-Hall-effect edge states in photonic crystals,'' Physical Review A 78, 033834 (2008).

[25] Z. Wang, Y. Chong, J. D. Joannopoulos, and M. Soljačić, ``Observation of unidirectional backscattering-immune topological electromagnetic states,'' Nature 461, 772 (2009).

[26] L. Fu and C. L. Kane, ``Topological insulators with inversion symmetry,'' Physical Review B 76, 045302 (2007).

[27] M. S. Rudner and N. H. Lindner, ``Band structure engineering and non-equilibrium dynamics in Floquet topological insulators,'' Nature Reviews Physics 2, 229 (2020).

[28] F. Giustino, M. Bibes, J. H. Lee, F. Trier, R. Valentí, S. M. Winter, Y.-W. Son, L. Taillefer, C. Heil, A. I. Figueroa, B. Plaçais, Q. Wu, O. V. Yazyev, E. P. A. M. Bakkers, J. Nygård, P. Forn-Díaz, S. de Franceschi, L. E. F. Foa Torres, J. McIver, A. Kumar, T. Low, R. Galceran, S. O. Valenzuela, M. V. Costache, A. Manchon, E.-A. Kim, G. R. Schleder, A. Fazzio, and S. Roche, ``The 2020 Quantum Materials Roadmap,'' Journal of Physics: Materials 3, 014002 (2020).

[29] M. C. Rechtsman, J. M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow, S. Nolte, M. Segev, and A. Szameit, ``Photonic Floquet topological insulators,'' Nature 496, 196 (2013).

[30] L. E. F. Foa Torres, ``Perspective on topological states of non-Hermitian lattices,'' Journal of Physics: Materials 3, 014002 (2019).

[31] S. Weimann, M. Kremer, Y. Plotnik, Y. Lumer, S. Nolte, K. G. Makris, M. Segev, M. Rechtsman, and A. Szameit, ``Topologically protected bound states in photonic parity–time-symmetric crystals,'' Nature Materials 16, 433 (2017).

[32] H. Zhao, P. Miao, M. Teimourpour, S. Malzard, R. El-Ganainy, H. Schomerus, and L. Feng, ``Topological hybrid silicon microlasers,'' Nat. Commun. 9, 981 (2018).

[33] P. St-Jean, V. Goblot, E. Galopin, A. Lemaı̂tre, T. Ozawa, L. Le Gratiet, I. Sagnes, J. Bloch, and A. Amo, ``Lasing in topological edge states of a one-dimensional lattice,'' Nature Photon. 11, 651 (2017).

[34] V. Peano, M. Houde, F. Marquardt, and A. A. Clerk, ``Topological Quantum Fluctuations and Travelling Wave Amplifiers,'' Phys. Rev. X 6, 041026 (2016).

[35] C. Wanjura, M. Brunelli, and A. Nunnenkamp, ``Topological framework for directional amplification in driven-dissipative cavity arrays,'' Nat. Commun. 11, 3149 (2020).

[36] A. Blanco-Redondo, ``Topological Nanophotonics: Toward Robust Quantum Circuits,'' Proceedings of the IEEE 108, 837 (2020).

[37] T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler, and A. G. White, ``Observation of topologically protected bound states in photonic quantum walks,'' Nature Communications 3, 882 (2012).

[38] C. Chen, X. Ding, J. Qin, Y. He, Y.-H. Luo, M.-C. Chen, C. Liu, X.-L. Wang, W.-J. Zhang, H. Li, L.-X. You, Z. Wang, D.-W. Wang, B. C. Sanders, C.-Y. Lu, and J.-W. Pan, ``Observation of Topologically Protected Edge States in a Photonic Two-Dimensional Quantum Walk,'' Phys. Rev. Lett. 121, 100502 (2018).

[39] S. Barik, A. Karasahin, C. Flower, T. Cai, H. Miyake, W. DeGottardi, M. Hafezi, and E. Waks, ``A topological quantum optics interface,'' Science 359, 666 (2018).

[40] J.-L. Tambasco, G. Corrielli, R. J. Chapman, A. Crespi, O. Zilberberg, R. Osellame, and A. Peruzzo, ``Quantum interference of topological states of light,'' Science Advances 4, eaat3187 (2018).

[41] S. Mittal, E. A. Goldschmidt, and M. Hafezi, ``A topological source of quantum light,'' Nature 561, 502 (2018).

[42] A. Blanco-Redondo, B. Bell, D. Oren, B. J. Eggleton, and M. Segev, ``Topological protection of biphoton states,'' Science 362, 568 (2018).

[43] M. C. Rechtsman, Y. Lumer, Y. Plotnik, A. Perez-Leija, A. Szameit, and M. Segev, ``Topological protection of photonic path entanglement,'' Optica 3, 925 (2016).

[44] S. Mittal, V. V. Orre, and M. Hafezi, ``Topologically robust transport of entangled photons in a 2D photonic system,'' Optics Express 24, 15631 (2016).

[45] M. Wang, C. Doyle, B. Bell, M. J. Collins, E. Magi, B. J. Eggleton, M. Segev, and A. Blanco-Redondo, ``Topologically protected entangled photonic states,'' Nanophotonics 8, 1327 (2019).

[46] V. Peano, M. Houde, C. Brendel, F. Marquardt, and A. A. Clerk, ``Topological phase transitions and chiral inelastic transport induced by the squeezing of light,'' Nature Communications 7, 10779 (2016).

[47] S. L. Braunstein and P. van Loock, ``Quantum information with continuous variables,'' Reviews of Modern Physics 77, 513 (2005).

[48] D. Gottesman, A. Kitaev, and J. Preskill, ``Encoding a qubit in an oscillator,'' Physical Review A 64, 012310 (2001).

[49] N. C. Menicucci, P. van Loock, M. Gu, C. Weedbrook, T. C. Ralph, and M. A. Nielsen, ``Universal Quantum Computation with Continuous-Variable Cluster States,'' Phys. Rev. Lett. 97, 110501 (2006).

[50] C. M. Caves, ``Quantum-mechanical noise in an interferometer,'' Phys. Rev. D 23, 1693 (1981).

[51] J. Aasi and the LIGO Scientific Collaboration, ``Enhanced sensitivity of the LIGO gravitational wave detector by using squeezed states of light,'' Nature Photonics 7, 613 (2013).

[52] M. V. Larsen, X. Guo, C. R. Breum, J. S. Neergaard-Nielsen, and U. L. Andersen, ``Deterministic generation of a two-dimensional cluster state,'' Science 366, 369 (2019).

[53] S. L. Braunstein and H. J. Kimble, ``Teleportation of Continuous Quantum Variables,'' Phys. Rev. Lett. 80, 869 (1998).

[54] M. Yukawa, H. Benichi, and A. Furusawa, ``High-fidelity continuous-variable quantum teleportation toward multistep quantum operations,'' Phys. Rev. A 77, 022314 (2008).

[55] J. E. Bourassa, R. N. Alexander, M. Vasmer, A. Patil, I. Tzitrin, T. Matsuura, D. Su, B. Q. Baragiola, S. Guha, G. Dauphinais, and e. al, ``Blueprint for a Scalable Photonic Fault-Tolerant Quantum Computer,'' Quantum 5, 392 (2021).

[56] M. V. Larsen, C. Chamberland, K. Noh, J. S. Neergaard-Nielsen, and U. L. Andersen, A fault-tolerant continuous-variable measurement-based quantum computation architecture, (2021), arxiv:2101.03014.

[57] H. Vahlbruch, M. Mehmet, S. Chelkowski, B. Hage, A. Franzen, N. Lastzka, S. Goßler, K. Danzmann, and R. Schnabel, ``Observation of Squeezed Light with 10-dB Quantum-Noise Reduction,'' Phys. Rev. Lett. 100, 033602 (2008).

[58] F. Li, T. Li, and G. S. Agarwal, Experimental study of decoherence of the two-mode squeezed vacuum state via second harmonic generation, (2020), arxiv:2012.11839.

[59] R. Ren, Y. Lu, Z. Jiang, J. Gao, W. Zhou, Y. Wang, Z. Jiao, X. Wang, A. Solntsev and X. Jin, Topologically Protecting Squeezed Light on a Photonic Chip, (2021), arxiv:2106.07425.

[60] W. P. Su, J. R. Schrieffer, and A. J. Heeger, ``Solitons in Polyacetylene,'' Physical Review Letters 42, 1698 (1979).

[61] A. J. Heeger, S. Kivelson, J. R. Schrieffer, and W. P. Su, ``Solitons in conducting polymers,'' Reviews of Modern Physics 60, 781 (1988).

[62] H. A. Haus, and W. Huang, ``Coupled-Mode Theory,'' Proceedings of the IEEE 79, 1505 (1991).

[63] J. K. Asbóth, L. Oroszlány, and A. Pályi, ``A Short Course on Topological Insulators,'' Lecture Notes in Physics, Vol. 919 (Springer International Publishing, 1991).

[64] S. Rojas-Rojas, E. Barriga, C. Muñoz, P. Solano, and C. Hermann-Avigliano, ``Manipulation of multimode squeezing in a coupled waveguide array,'' Phys. Rev. A 100, 023841 (2019).

[65] A. Marino, ``Experimental studies of two-mode squeezed states in rubidium vapor,'' Ph.D. thesis, The Institute of Optics, The College School of Engineering and Applied Science, Univerity of Rochester, Rochester, New York (2006).

[66] R. Simon, ``Peres-Horodecki Separability Criterion for Continuous Variable Systems,'' Physical Review Letters 84, 2726 (2000).

Cited by

[1] Tongtong Wei and Yueke Wang, "Coupled topological edge states in one-dimensional all-dielectric heterostructures", Optics Express 30 20, 36900 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2022-12-08 08:57:34). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2022-12-08 08:57:34).