Borromean states in discrete-time quantum walks
1International Centre for Theory of Quantum Technologies (ICTQT), University of Gdansk, 80-308 Gdansk, Poland
2Institute of Spintronics and Quantum Information, Faculty of Physics, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
Published: | 2021-08-16, volume 5, page 523 |
Eprint: | arXiv:2005.13588v3 |
Doi: | https://doi.org/10.22331/q-2021-08-16-523 |
Citation: | Quantum 5, 523 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
In the right conditions, removing one particle from a multipartite bound state can make it fall apart. This feature, known as the "Borromean property", has been recently demonstrated experimentally in Efimov states. One could expect that such peculiar behavior should be linked with the presence of strong inter-particle correlations. However, any exploration of this connection is hindered by the complexity of the physical systems exhibiting the Borromean property. To overcome this problem, we introduce a simple dynamical toy model based on a discrete-time quantum walk of many interacting particles. We show that the particles described by it need to exhibit the Greenberger-Horne-Zeillinger (GHZ) entanglement to form Borromean bound states. As this type of entanglement is very prone to particle losses, our work demonstrates an intuitive link between correlations and Borromean properties of the system. Moreover, we discuss our findings in the context of the formation of composite particles.
Popular summary
► BibTeX data
► References
[1] N. A. Baas, Int. J. Gen. Syst. 42, 137-169 (2013). DOI: 10.1080/03081079.2012.728403.
https://doi.org/10.1080/03081079.2012.728403
[2] N. A. Baas, D. V. Fedorov, A. S. Jensen, K. Riisager, A. G. Volosniev, N. T. Zinner, Physics of Atomic Nuclei 77, 361 (2014). DOI: 10.1134/S1063778814030028.
https://doi.org/10.1134/S1063778814030028
[3] V. Efimov, Phys. Lett. B 33, 563 (1970). DOI: 10.1016/0370-2693(70)90349-7.
https://doi.org/10.1016/0370-2693(70)90349-7
[4] T. Kraemer et. al., Nature 440, 315 (2006). DOI: 10.1038/nature04626.
https://doi.org/10.1038/nature04626
[5] P. Naidon, S. Endo, Rep. Prog. Phys. 80, 056001 (2017). DOI: 10.1088/1361-6633/aa50e8.
https://doi.org/10.1088/1361-6633/aa50e8
[6] T. H. Johnson, S. R. Clark, D. Jaksch, EPJ Quantum Technol. 1, 10 (2014). DOI: 10.1140/epjqt10.
https://doi.org/10.1140/epjqt10
[7] Y. Aharonov, L. Davidovich, N. Zagury, Phys. Rev. A 48, 1687 (1993). DOI: 10.1103/PhysRevA.48.1687.
https://doi.org/10.1103/PhysRevA.48.1687
[8] D. A. Meyer, J. Stat. Phys. 85, 551 (1996). DOI: 10.1007/BF02199356.
https://doi.org/10.1007/BF02199356
[9] J. Kempe, Cont. Phys. 44, p.307-327 (2003). DOI: 10.1080/00107151031000110776.
https://doi.org/10.1080/00107151031000110776
[10] V. Kendon, Math. Struct. in Comp. Sci 17, 1169-1220 (2006). DOI: 10.1017/S0960129507006354.
https://doi.org/10.1017/S0960129507006354
[11] D. Reitzner, D. Nagaj, V. Buzek, Acta Phys. Slov. 61, 603-725 (2011). DOI: 10.2478/v10155-011-0006-6.
https://doi.org/10.2478/v10155-011-0006-6
[12] S. E. Venegas-Andraca, Quant. Inf. Proc. 11, 1015-1106 (2012). DOI: 10.1007/s11128-012-0432-5.
https://doi.org/10.1007/s11128-012-0432-5
[13] D. Li et. al., Quantum Inf. Process. 12, 1501–1513 (2013). DOI: 10.1007/s11128-012-0421-8.
https://doi.org/10.1007/s11128-012-0421-8
[14] A. Ahlbrecht et al. New J. Phys. 14 073050 (2012). DOI: 10.1088/1367-2630/14/7/073050.
https://doi.org/10.1088/1367-2630/14/7/073050
[15] S. D. Berry, J. B. Wang, Phys. Rev. A 83, 042317 (2011). DOI: 10.1103/PhysRevA.83.042317.
https://doi.org/10.1103/PhysRevA.83.042317
[16] D. Greenberger, M. Horne, and A. Zeilinger in Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, edited by M. Kaftos (Kluwer Academic, Dordrecht, 1989). DOI: 10.1007/978-94-017-0849-4_10.
https://doi.org/10.1007/978-94-017-0849-4_10
[17] P. K. Aravind in Potentiality, Entanglement and Passion-at-a-Distance, Boston Studies in the Philosophy of Science, vol 194. Springer, Dordrecht (1997). DOI: 10.1007/978-94-017-2732-7_4.
https://doi.org/10.1007/978-94-017-2732-7_4
[18] G. M. Quinta et al. Phys. Rev. A 100, 062329 (2019). DOI: 10.1103/PhysRevA.100.062329.
https://doi.org/10.1103/PhysRevA.100.062329
[19] C. K. Law, Phys. Rev. A 71, 034306 (2005). DOI: 10.1103/PhysRevA.71.034306.
https://doi.org/10.1103/PhysRevA.71.034306
[20] Z. Lasmar, P. A. Bouvrie, A. S. Sajna, M. C. Tichy, and P. Kurzynski, Phys. Rev. A 100, 032105 (2019). DOI: 10.1103/PhysRevA.100.032105.
https://doi.org/10.1103/PhysRevA.100.032105
[21] T. Toffoli and N. Margolus, Cellular Automata Machines: A New Environment for Modelling, The MIT Press (1987). ISBN-10: 026252631X.
[22] L. K. Grover, Proc. 28th Annual ACM STOC, 212-219 (1996). DOI: 10.1145/237814.237866.
https://doi.org/10.1145/237814.237866
Cited by
[1] Adam S. Sajna and Paweł Kurzyński, "Collective dynamics of N -partite quantum systems: The role of entanglement, classical correlations, and interaction", Physical Review A 105 1, 012206 (2022).
[2] Xin Yan Fu, Zishi Jiang, and Sabyasachi Kar, "The <SUP>3</SUP>P<SUP>o</SUP> States of Exotic Molecular Ions with Exponential-Cosine-Screened Coulomb Potentials", Few-Body Systems 64 2, 15 (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-01-19 09:52:33) and SAO/NASA ADS (last updated successfully 2023-06-05 14:45:02). The list may be incomplete as not all publishers provide suitable and complete citation data.
Could not fetch Crossref cited-by data during last attempt 2023-06-05 14:45:00: Encountered the unhandled forward link type postedcontent_cite while looking for citations to DOI 10.22331/q-2021-08-16-523.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.