Diagonal unitary and orthogonal symmetries in quantum theory

Satvik Singh1 and Ion Nechita2

1Department of Physical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Punjab, India.
2Laboratoire de Physique Théorique, Université de Toulouse, CNRS, UPS, France.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We analyze bipartite matrices and linear maps between matrix algebras, which are respectively, invariant and covariant, under the diagonal unitary and orthogonal groups' actions. By presenting an expansive list of examples from the literature, which includes notable entries like the Diagonal Symmetric states and the Choi-type maps, we show that this class of matrices (and maps) encompasses a wide variety of scenarios, thereby unifying their study. We examine their linear algebraic structure and investigate different notions of positivity through their convex conic manifestations. In particular, we generalize the well-known cone of completely positive matrices to that of triplewise completely positive matrices and connect it to the separability of the relevant invariant states (or the entanglement breaking property of the corresponding quantum channels). For linear maps, we provide explicit characterizations of the stated covariance in terms of their Kraus, Stinespring, and Choi representations, and systematically analyze the usual properties of positivity, decomposability, complete positivity, and the like. We also describe the invariant subspaces of these maps and use their structure to provide necessary and sufficient conditions for separability of the associated invariant bipartite states.

► BibTeX data

► References

[1] Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices. World Scientific, 2003. doi:10.1142/​5273.
https:/​/​doi.org/​10.1142/​5273

[2] R. Bhatia. Positive Definite Matrices. Princeton Series in Applied Mathematics. Princeton University Press, 2015. URL: https:/​/​press.princeton.edu/​books/​paperback/​9780691168258/​positive-definite-matrices.
https:/​/​press.princeton.edu/​books/​paperback/​9780691168258/​positive-definite-matrices

[3] Andreas Bluhm and Ion Nechita. Compatibility of quantum measurements and inclusion constants for the matrix jewel. SIAM Journal on Applied Algebra and Geometry, 4(2):255–296, January 2020. doi:10.1137/​19m123837x.
https:/​/​doi.org/​10.1137/​19m123837x

[4] David D. Bremner. On the complexity of vertex and facet enumeration for complex polytopes. Ph.D. thesis, School of Computer Science, McGill University, Monréal, Canada, 1997. URL: https:/​/​dl.acm.org/​doi/​book/​10.5555/​930378.
https:/​/​dl.acm.org/​doi/​book/​10.5555/​930378

[5] K. Chen and L.-A. Wu. A matrix realignment method for recognizing entanglement. Quantum Information and Computation, 3(3):193–202, May 2003. doi:10.26421/​qic3.3-1.
https:/​/​doi.org/​10.26421/​qic3.3-1

[6] Sung Je Cho, Seung-Hyeok Kye, and Sa Ge Lee. Generalized choi maps in three-dimensional matrix algebra. Linear Algebra and its Applications, 171:213–224, July 1992. doi:10.1016/​0024-3795(92)90260-h.
https:/​/​doi.org/​10.1016/​0024-3795(92)90260-h

[7] Man-Duen Choi. Positive linear maps on $C^*$-algebras. Canadian Journal of Mathematics, 24(3):520–529, June 1972. doi:10.4153/​cjm-1972-044-5.
https:/​/​doi.org/​10.4153/​cjm-1972-044-5

[8] Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and its Applications, 10(3):285–290, June 1975. doi:10.1016/​0024-3795(75)90075-0.
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[9] Man-Duen Choi. Positive semidefinite biquadratic forms. Linear Algebra and its Applications, 12(2):95–100, 1975. doi:10.1016/​0024-3795(75)90058-0.
https:/​/​doi.org/​10.1016/​0024-3795(75)90058-0

[10] Man-Duen Choi. Some assorted inequalities for positive linear maps on $C^*$-algebras. Journal of Operator Theory, 4, 01 1980. URL: https:/​/​www.theta.ro/​jot/​archive/​1980-004-002/​1980-004-002-006.html.
https:/​/​www.theta.ro/​jot/​archive/​1980-004-002/​1980-004-002-006.html

[11] Man Duen Choi. Positive linear maps. In Operator Algebras and Applications, Volume 38 - Part 2, Proceedings of Symposia in Pure Mathematics, pages 583–590. American Mathematical Society, 1982. doi:10.1090/​pspum/​038.2.
https:/​/​doi.org/​10.1090/​pspum/​038.2

[12] M. Christandl. PPT square conjecture. Banff International Research Station Workshop: Operator Structures in Quantum Information Theory, 2012. URL: https:/​/​www.birs.ca/​events/​2012/​5-day-workshops/​12w5084.
https:/​/​www.birs.ca/​events/​2012/​5-day-workshops/​12w5084

[13] J. P. R. Christensen and J. Vesterstrom. A note on extreme positive definite matrices. Mathematische Annalen, 244(1):65–68, February 1979. doi:10.1007/​bf01420337.
https:/​/​doi.org/​10.1007/​bf01420337

[14] Dariusz Chruściński and Andrzej Kossakowski. Class of positive partial transposition states. Physical Review A, 74(2), August 2006. doi:10.1103/​PhysRevA.74.022308.
https:/​/​doi.org/​10.1103/​PhysRevA.74.022308

[15] Dariusz Chruściński, Marcin Marciniak, and Adam Rutkowski. Generalizing choi-like maps. Acta Mathematica Vietnamica, 43(4):661–674, June 2018. doi:10.1007/​s40306-018-0272-1.
https:/​/​doi.org/​10.1007/​s40306-018-0272-1

[16] Dariusz Chruściński and Gniewomir Sarbicki. Entanglement witnesses: construction, analysis and classification. Journal of Physics A: Mathematical and Theoretical, 47(48):483001, November 2014. doi:10.1088/​1751-8113/​47/​48/​483001.
https:/​/​doi.org/​10.1088/​1751-8113/​47/​48/​483001

[17] Dariusz Chruściński and Andrzej Kossakowski. On the structure of entanglement witnesses and new class of positive indecomposable maps. Open Systems & Information Dynamics, 14(03):275–294, 2007. doi:10.1007/​s11080-007-9052-4.
https:/​/​doi.org/​10.1007/​s11080-007-9052-4

[18] Nilanjana Datta, Alexander S. Holevo, and Yuri Suhov. Additivity for transpose depolarizing channels. International Journal of Quantum Information, 04(01):85–98, February 2006. doi:10.1142/​s0219749906001633.
https:/​/​doi.org/​10.1142/​s0219749906001633

[19] John de Pillis. Linear transformations which preserve hermitian and positive semidefinite operators. Pacific Journal of Mathematics, 23(1):129–137, October 1967. doi:10.2140/​pjm.1967.23.129.
https:/​/​doi.org/​10.2140/​pjm.1967.23.129

[20] David P. DiVincenzo, Peter W. Shor, John A. Smolin, Barbara M. Terhal, and Ashish V. Thapliyal. Evidence for bound entangled states with negative partial transpose. Physical Review A, 61(6), May 2000. doi:10.1103/​PhysRevA.61.062312.
https:/​/​doi.org/​10.1103/​PhysRevA.61.062312

[21] Mark Girard, Seung-Hyeok Kye, and Erling Størmer. Convex cones in mapping spaces between matrix algebras. Linear Algebra and its Applications, 608:248–269, January 2021. doi:10.1016/​j.laa.2020.09.008.
https:/​/​doi.org/​10.1016/​j.laa.2020.09.008

[22] Robert Grone, Stephen Pierce, and William Watkins. Extremal correlation matrices. Linear Algebra and its Applications, 134:63–70, June 1990. doi:10.1016/​0024-3795(90)90006-x.
https:/​/​doi.org/​10.1016/​0024-3795(90)90006-x

[23] Leonid Gurvits. Classical deterministic complexity of edmonds' problem and quantum entanglement. In Proceedings of the thirty-fifth ACM symposium on Theory of computing - STOC '03. ACM Press, 2003. doi:10.1145/​780542.780545.
https:/​/​doi.org/​10.1145/​780542.780545

[24] Leonid Gurvits and Howard Barnum. Largest separable balls around the maximally mixed bipartite quantum state. Physical Review A, 66(6), December 2002. doi:10.1103/​PhysRevA.66.062311.
https:/​/​doi.org/​10.1103/​PhysRevA.66.062311

[25] Kil-Chan Ha. Atomic positive linear maps in matrix algebras. Publications of the Research Institute for Mathematical Sciences, 134, 12 1998. doi:10.2977/​prims/​1195144425.
https:/​/​doi.org/​10.2977/​prims/​1195144425

[26] Kil-Chan Ha. A class of atomic positive linear maps in matrix algebras. Linear Algebra and its Applications, 359(1-3):277–290, January 2003. doi:10.1016/​s0024-3795(02)00415-9.
https:/​/​doi.org/​10.1016/​s0024-3795(02)00415-9

[27] Samuel J. Harris, Rupert H. Levene, Vern I. Paulsen, Sarah Plosker, and Mizanur Rahaman. Schur multipliers and mixed unitary maps. Journal of Mathematical Physics, 59(11):112201, November 2018. doi:10.1063/​1.5066242.
https:/​/​doi.org/​10.1063/​1.5066242

[28] A S Holevo and V Giovannetti. Quantum channels and their entropic characteristics. Reports on Progress in Physics, 75(4):046001, March 2012. doi:10.1088/​0034-4885/​75/​4/​046001.
https:/​/​doi.org/​10.1088/​0034-4885/​75/​4/​046001

[29] Alexander S. Holevo. Quantum Systems, Channels, Information. De Gruyter, July 2019. doi:10.1515/​9783110642490.
https:/​/​doi.org/​10.1515/​9783110642490

[30] Michael Horodecki, Peter W. Shor, and Mary Beth Ruskai. Entanglement breaking channels. Reviews in Mathematical Physics, 15(06):629–641, August 2003. doi:10.1142/​s0129055x03001709.
https:/​/​doi.org/​10.1142/​s0129055x03001709

[31] Michał Horodecki and Paweł Horodecki. Reduction criterion of separability and limits for a class of distillation protocols. Physical Review A, 59(6):4206–4216, June 1999. doi:10.1103/​PhysRevA.59.4206.
https:/​/​doi.org/​10.1103/​PhysRevA.59.4206

[32] Michał Horodecki, Paweł Horodecki, and Ryszard Horodecki. Separability of mixed states: necessary and sufficient conditions. Physics Letters A, 223(1):1–8, 1996. doi:10.1016/​S0375-9601(96)00706-2.
https:/​/​doi.org/​10.1016/​S0375-9601(96)00706-2

[33] Pawel Horodecki and Ryszard Horodecki. Distillation and bound entanglement. Quantum Information and Computation, 1(1):45–75, July 2001. doi:10.26421/​qic1.1-4.
https:/​/​doi.org/​10.26421/​qic1.1-4

[34] Ryszard Horodecki, Paweł Horodecki, Michał Horodecki, and Karol Horodecki. Quantum entanglement. Reviews of Modern Physics, 81(2):865, 2009. doi:10.1103/​RevModPhys.81.865.
https:/​/​doi.org/​10.1103/​RevModPhys.81.865

[35] A. Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics, 3(4):275–278, December 1972. doi:10.1016/​0034-4877(72)90011-0.
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[36] Nathaniel Johnston and Olivia MacLean. Pairwise completely positive matrices and conjugate local diagonal unitary invariant quantum states. The Electronic Journal of Linear Algebra, 35:156–180, February 2019. doi:10.13001/​1081-3810.3842.
https:/​/​doi.org/​10.13001/​1081-3810.3842

[37] Young-Hoon Kiem, Seung-Hyeok Kye, and Jungseob Lee. Existence of product vectors and their partial conjugates in a pair of spaces. Journal of Mathematical Physics, 52(12):122201, December 2011. doi:10.1063/​1.3663835.
https:/​/​doi.org/​10.1063/​1.3663835

[38] C. King. The capacity of the quantum depolarizing channel. IEEE Transactions on Information Theory, 49(1):221–229, 2003. doi:10.1109/​TIT.2002.806153.
https:/​/​doi.org/​10.1109/​TIT.2002.806153

[39] Seung-Hyeok Kye. A class of atomic positive linear maps in 3-dimensional matrix algebras. In Elementary operators and applications, pages 205–209. World Scientific, 1992. doi:10.1142/​9789814537834.
https:/​/​doi.org/​10.1142/​9789814537834

[40] Seung-Hyeok Kye. Positive linear maps between matrix algebras which fix diagonals. Linear Algebra and its Applications, 216:239 – 256, 1995. doi:10.1016/​0024-3795(93)00140-u.
https:/​/​doi.org/​10.1016/​0024-3795(93)00140-u

[41] Seung-Hyeok Kye and Hiroyuki Osaka. Classification of bi-qutrit positive partial transpose entangled edge states by their ranks. Journal of Mathematical Physics, 53(5):052201, 2012. doi:10.1063/​1.4712302.
https:/​/​doi.org/​10.1063/​1.4712302

[42] M. Lewenstein, D. Bruß, J. I. Cirac, B. Kraus, M. Kuś, J. Samsonowicz, A. Sanpera, and R. Tarrach. Separability and distillability in composite quantum systems-a primer. Journal of Modern Optics, 47(14-15):2481–2499, 2000. doi:10.1080/​09500340008232176.
https:/​/​doi.org/​10.1080/​09500340008232176

[43] M. Lewenstein, B. Kraus, J. I. Cirac, and P. Horodecki. Optimization of entanglement witnesses. Phys. Rev. A, 62:052310, Oct 2000. doi:10.1103/​PhysRevA.62.052310.
https:/​/​doi.org/​10.1103/​PhysRevA.62.052310

[44] M. Lewenstein, B. Kraus, P. Horodecki, and J. I. Cirac. Characterization of separable states and entanglement witnesses. Phys. Rev. A, 63:044304, Mar 2001. doi:10.1103/​PhysRevA.63.044304.
https:/​/​doi.org/​10.1103/​PhysRevA.63.044304

[45] Chi-Kwong Li and Bit-Shun Tam. A note on extreme correlation matrices. SIAM Journal on Matrix Analysis and Applications, 15(3):903–908, July 1994. doi:10.1137/​s0895479892240683.
https:/​/​doi.org/​10.1137/​s0895479892240683

[46] Chi-Kwong Li and Hugo J. Woerdeman. Special classes of positive and completely positive maps. Linear Algebra and its Applications, 255(1):247 – 258, 1997. doi:10.1016/​S0024-3795(96)00776-8.
https:/​/​doi.org/​10.1016/​S0024-3795(96)00776-8

[47] Chaobin Liu. Unitary conjugation channels with continuous random phases. Quantum Studies: Mathematics and Foundations, 2(2):177–181, November 2014. doi:10.1007/​s40509-014-0025-3.
https:/​/​doi.org/​10.1007/​s40509-014-0025-3

[48] R. Loewy. Extreme points of a convex subset of the cone of positive semidefinite matrices. Mathematische Annalen, 253(3):227–232, November 1980. doi:10.1007/​bf03220000.
https:/​/​doi.org/​10.1007/​bf03220000

[49] Artur O. Lopes and Marcos Sebastiani. Generic properties for random repeated quantum iterations. Quantum Studies: Mathematics and Foundations, 2(4):389–402, July 2015. doi:10.1007/​s40509-015-0050-x.
https:/​/​doi.org/​10.1007/​s40509-015-0050-x

[50] Marek Miller and Robert Olkiewicz. Stable subspaces of positive maps of matrix algebras. Open Systems & Information Dynamics, 22(02):1550011, 2015. doi:10.1142/​S1230161215500110.
https:/​/​doi.org/​10.1142/​S1230161215500110

[51] Ion Nechita. On the separability of unitarily invariant random quantum states: The unbalanced regime. Advances in Mathematical Physics, 2018:1–13, 2018. doi:10.1155/​2018/​7105074.
https:/​/​doi.org/​10.1155/​2018/​7105074

[52] Ion Nechita and Satvik Singh. A graphical calculus for integration over random diagonal unitary matrices. Linear Algebra and its Applications, 613:46 – 86, 2021. doi:https:/​/​doi.org/​10.1016/​j.laa.2020.12.014.
https:/​/​doi.org/​10.1016/​j.laa.2020.12.014

[53] H. Osaka. Indecomposable positive maps in low dimensional matrix algebras. Linear Algebra and its Applications, 153:73 – 83, 1991. doi:10.1016/​0024-3795(91)90211-E.
https:/​/​doi.org/​10.1016/​0024-3795(91)90211-E

[54] Vern Paulsen. Completely Bounded Maps and Operator Algebras. Cambridge University Press, February 2003. doi:10.1017/​cbo9780511546631.
https:/​/​doi.org/​10.1017/​cbo9780511546631

[55] Asher Peres. Separability criterion for density matrices. Physical Review Letters, 77(8):1413, 1996. doi:10.1103/​physrevlett.77.1413.
https:/​/​doi.org/​10.1103/​physrevlett.77.1413

[56] R. Piziak and P. L. Odell. Full rank factorization of matrices. Mathematics Magazine, 72(3):193–201, June 1999. doi:10.1080/​0025570x.1999.11996730.
https:/​/​doi.org/​10.1080/​0025570x.1999.11996730

[57] Oliver Rudolph. A separability criterion for density operators. Journal of Physics A: Mathematical and General, 33(21):3951–3955, may 2000. doi:10.1088/​0305-4470/​33/​21/​308.
https:/​/​doi.org/​10.1088/​0305-4470/​33/​21/​308

[58] Adam Rutkowski, Gniewomir Sarbicki, and Dariusz Chruściński. A class of bistochastic positive optimal maps in $M_d(\mathbb C)$. Open Systems & Information Dynamics, 22(03):1550016, 2015. doi:10.1142/​S123016121550016X.
https:/​/​doi.org/​10.1142/​S123016121550016X

[59] Satvik Singh. Entanglement detection in triangle-free quantum states. Phys. Rev. A, 103:032436, Mar 2021. doi:10.1103/​PhysRevA.103.032436.
https:/​/​doi.org/​10.1103/​PhysRevA.103.032436

[60] Satvik Singh and Ion Nechita. The PPT$^2$ conjecture holds for all Choi-type maps. 2020. arXiv:2011.03809.
arXiv:2011.03809

[61] Erling Størmer. Decomposable positive maps on $C\sp{\ast} $-algebras. Proceedings of the American Mathematical Society, 86(3):402–402, March 1982. doi:10.1090/​s0002-9939-1982-0671203-5.
https:/​/​doi.org/​10.1090/​s0002-9939-1982-0671203-5

[62] Kôtarô Tanahashi and Jun Tomiyama. Indecomposable positive maps in matrix algebras. Canadian Mathematical Bulletin, 31(3):308–317, 1988. doi:10.4153/​CMB-1988-044-4.
https:/​/​doi.org/​10.4153/​CMB-1988-044-4

[63] Jordi Tura, Albert Aloy, Ruben Quesada, Maciej Lewenstein, and Anna Sanpera. Separability of diagonal symmetric states: a quadratic conic optimization problem. Quantum, 2:45, January 2018. doi:10.22331/​q-2018-01-12-45.
https:/​/​doi.org/​10.22331/​q-2018-01-12-45

[64] John Watrous. The Theory of Quantum Information. Cambridge University Press, April 2018. doi:10.1017/​9781316848142.
https:/​/​doi.org/​10.1017/​9781316848142

[65] Reinhard F. Werner. Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A, 40:4277–4281, Oct 1989. doi:10.1103/​PhysRevA.40.4277.
https:/​/​doi.org/​10.1103/​PhysRevA.40.4277

[66] Shigeru Yamagami. Cyclic inequalities. Proceedings of the American Mathematical Society, 118(2):521–521, February 1993. doi:10.1090/​s0002-9939-1993-1128732-7.
https:/​/​doi.org/​10.1090/​s0002-9939-1993-1128732-7

[67] Nengkun Yu. Separability of a mixture of dicke states. Physical Review A, 94(6), December 2016. doi:10.1103/​PhysRevA.94.060101.
https:/​/​doi.org/​10.1103/​PhysRevA.94.060101

Cited by

[1] Satvik Singh and Nilanjana Datta, "Detecting positive quantum capacities of quantum channels", arXiv:2105.06327.

[2] Satvik Singh, "Entanglement detection in triangle-free quantum states", Physical Review A 103 3, 032436 (2021).

[3] Satvik Singh, "Can entanglement hide behind triangle-free graphs?", arXiv:2010.11891.

[4] Ion Nechita and Satvik Singh, "A graphical calculus for integration over random diagonal unitary matrices", arXiv:2007.11219.

The above citations are from SAO/NASA ADS (last updated successfully 2021-09-23 14:17:02). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-09-23 14:17:00).