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The predictions of quantum theory re-
sist generalised noncontextual explana-
tions. In addition to the foundational rele-
vance of this fact, the particular extent to
which quantum theory violates noncontex-
tuality limits available quantum advantage
in communication and information pro-
cessing. In the first part of this work, we
formally define contextuality scenarios via
prepare-and-measure experiments, along
with the polytope of general contextual
behaviours containing the set of quantum
contextual behaviours. This framework al-
lows us to recover several properties of
set of quantum behaviours in these sce-
narios, including contextuality scenarios
and associated noncontextuality inequal-
ities that require for their violation the
individual quantum preparation and mea-
surement procedures to be mixed states
and unsharp measurements. With the
framework in place, we formulate novel
semidefinite programming relaxations for
bounding these sets of quantum contex-
tual behaviours. Most significantly, to cir-
cumvent the inadequacy of pure states and
projective measurements in contextuality
scenarios, we present a novel unitary op-
erator based semidefinite relaxation tech-
nique. We demonstrate the efficacy of
these relaxations by obtaining tight upper
bounds on the quantum violation of several
noncontextuality inequalities and identify-
ing novel maximally contextual quantum
strategies. To further illustrate the versa-
tility of these relaxations, we demonstrate
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monogamy of preparation contextuality in
a tripartite setting, and present a secure
semi-device independent quantum key dis-
tribution scheme powered by quantum ad-
vantage in parity oblivious random access
codes.

1 Introduction
The Leibnizian methodological principle of “on-
tological identity of empirical indiscernibles”
[CvLNA56] creates a bridge across the schism di-
viding the “empiricist”, and “realist” viewpoints
on physics [Spe19]. Generalised noncontextual-
ity [Spe05] embodies this principle, and serves
to characterise operational physical theories that
allow for simultaneously realist and Leibnizian
explanations.

Although born of metaphysical considerations,
noncontextuality has been shown to be equiv-
alent to a natural operational notion of classi-
cality, namely, simplex embeddability of convex
general stochastic operational theories [SSW+21,
SSPS20]. It is then not surprising that the quan-
tum violation of noncontextuality1 fuels quantum
advantage in broad classes of information pro-
cessing, and cryptographically significant com-
munication tasks [MPK+16, SBK+09, CKKS16,
SBK+09, GP18, ABC+19, SC19, SHP19, SS18,
KLP19, EHM20, YK20].

There is, therefore, both foundational and
technological motivation for characterising the
peculiar nature of contextual quantum be-

1Quantum theory is said to violate noncontextuality as
shorthand for admitting no simultaneously Leibnizian and
realist explanation. More explicitly, it cannot be explained
by a noncontextual ontological (hidden variable) model
[Spe05, Spe19, SSS20]
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haviour, and quantifying the extent of contex-
tuality in terms of quantum violation of non-
contextuality inequalities. In analogy with quan-
tum non-locality [BCP+14], quantum theory sur-
passes these noncontextual limitations, but not
necessarily to the maximum mathematically pos-
sible extent [BBM+15]. Bounding this violation
provides foundational insights, such as establish-
ing how distinct operationally indistinguishable
entities must be in order to explain quantum
predictions [CS20, Mar20], and finds technologi-
cal applications in capping quantum advantage.
Despite this motivation, the nature and the ex-
tent of available quantum contextuality remains
largely uncharacterised.

Figure 1: The landscape of contextual behaviours: The
diagram illustrates the relationship between sets of be-
haviours achievable in different theories in a generic con-
textuality scenario. In direct analogy with the polytopes
of no-signalling and local-causal correlations in Bell ex-
periments, the set of all valid contextual behaviours, C,
and the set of noncontextual behaviours, NC, form poly-
topes. Continuing the analogy, the set of quantum be-
haviours, Q, although convex, does not form a polytope,
and satisfies NC ( Q ( C in general. We find contex-
tuality scenarios in which the subsets of behaviours ob-
tained from pure quantum states QΨ (possibly convex),
and projective measurements QΠ (convex) form strict
subsets of the set of quantum contextual behaviours (see
Observations 7 and 6), thereby demonstrating that in
such scenarios mixed quantum states and unsharp mea-
surements can access greater contextuality.

In an effort to address this shortcoming, in
the first part of this work, we explore and eluci-

date the rich landscape of contextual behaviours
by formally defining contextuality scenarios via
prepare-and-measure experiments. This formal-
ism allows us to define the sets of noncontex-
tual, quantum and contextual behaviours. We
can then prove some basic facts about the quan-
tum set, summarised in a series of seven obser-
vations which incorporate the relevant known re-
sults from the literature (see Fig. 1 for a brief
overview of these findings).

In the second part of this work, we formulate
hierarchies of semidefinite relaxations for bound-
ing the set of quantum contextual behaviours
and some natural subsets thereof. Due to the
fact that one cannot a priori restrict to pure
quantum states and projective measurements,
in general contextuality scenarios standard tech-
niques such as the Navascués–Pironio–Aćın hi-
erarchy for nonlocal correlations [NPA08] (or
straightforward modification thereof) cannot be
employed. Instead, we formulate novel semidefi-
nite programming techniques tailored to the re-
quirements of contextuality scenarios, with par-
ticular emphasis on efficiency and ease of im-
plementation. Of these, our most significant
contribution constitutes a semidefinite relaxation
technique which employs moment matrices in-
dexed exclusively by monomials of unitary op-
erators, which may be of independent interest.
We benchmark these relaxations by recovering
maximal quantum violations of several noncon-
textuality inequalities, and identifying optimal
quantum protocols with respect to several non-
contextuality inequalities in a diverse selection
of contextuality scenarios. Moreover, equipped
with these relaxations, we demonstrate the exis-
tence of monogamy of contextuality in a tripartite
setting. Finally, to exhibit the relevance of these
relaxations to real-world applications, we present
a secure, semi-device-independent one-way quan-
tum key distribution scheme powered by prepa-
ration contextuality.

2 Contextuality scenarios
2.1 Prepare-and-measure experiments
In this work, we consider prepare-and-measure
experiments consisting of a set of X prepara-
tion procedures, {Px}X−1

x=0 , and a set of Y mea-
surement procedures, {My}Y−1

y=0 . Each measure-
ment is described by K measurement effects,
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{[k|My]}K−1
k=0 , corresponding to K possible out-

comes. The experiment yields the observed
statistics (or behaviour), p(k|x, y) ≡ p(k|Px,My),
i.e., the probability of observing the outcome k,
given that the measurement My was performed
on the preparation Px. We may write the statis-
tics as a vector p ∈ RXYK .

One may view prepare-and-measure experi-
ments as one-way communication tasks, wherein
the sender (Alice) encodes her input x ∈ [X]
(where [X] denotes the set {0, . . . , X − 1}) into
the preparations {Px}x, and transmits them to
a (spatially separated) receiver (Bob). Bob de-
codes the message by performing a measure-
ment My, and obtains an outcome k ∈ [K].
The performance of a behaviour in such tasks
is gauged by a linear functional, called a success
metric. These are of the form S(p) = c · p =∑
x,y,k cx,y,kp(k|x, y), where c ∈ RXYK is a vector

of real coefficients cx,y,k. Accordingly, the perfor-
mance of an operational theory in such a one-way
communication task is measured by maximising
the metric S over the behaviours achievable in
the theory.

2.2 Operational equivalences and contextual-
ity scenarios

First, note that we assume that the preparation
and measurement procedures in our experiment
are modelled by some operational theory in which
probabilistic mixtures of procedures are possible.
Hence the preparations, measurements and ef-
fects are elements of convex sets, denoted by P,
M and E , respectively

Experimental tests of generalised contextu-
ality require the presence of equivalences be-
tween the preparations and/or measurement ef-
fects. In an operational theory, two prepara-
tions, P1, P2 ∈ P, are said to be operationally
equivalent, P1 ' P2, if they yield identical
statistics for all measurements and outcomes,
i.e., p(k|P1,M) = p(k|P2,M) for all effects
[k|M ] ∈ E . Similarly, two measurement effects,
[k1|M1], [k2|M2] ∈ E , are operationally equiva-
lent, [k1|M1] ' [k2|M2], if all preparations assign
identical probability of occurrence to them, i.e.,
p(k1|P,M1) = p(k2|P,M2) for all P ∈ P.

We define a contextuality scenario as a
prepare-and-measure experiment with certain
operational equivalences imposed on the involved
preparations and measurements. A scenario

is therefore identified by a five-tuple, T ≡
(X,Y,K,OEP ,OEM ) where the first three ele-
ments specify the number of preparations, mea-
surements, and effects, while OEP and OEM de-
scribe operational equivalences of preparations,
and measurement effects, respectively.

A single preparation equivalence in a contex-
tuality scenario consists of two distinct decom-
positions of an identical hypothetical2 prepara-
tion Q ∈ P in terms of the experimental prepa-
rations Px,

Q '
∑
x∈[X]

α1(x)Px '
∑
x∈[X]

α2(x)Px, (1)

where α1 and α2 are distinct probability distri-
butions on [X] corresponding to the two distinct
convex decompositions of Q.

In general, a contextuality scenario comprises
V distinct hypothetical preparations {Qv}v∈[V ],
such that each hypothetical preparation Qv is de-
composed into Vv ≥ 2 distinct mixtures of the
experimental preparations {Px} for each v ∈ [V ].
Thus, for any given contextuality scenario, all op-
erational equivalences of preparations are sum-
marised as,

∀v ∈ [V ],∀j ∈ [Vv] : Qv '
∑
x∈[X]

αvj (x)Px, (2)

where the index j iterates over the Vv ≥ 2 dis-
tinct convex decompositions of a given hypothet-
ical preparation Qv, and αvj is a probability dis-
tribution on [X] specifying the convex decompo-
sition for each v ∈ [V ] and j ∈ [Vv]. Then OEP
is defined to be the set

{
{αvj}j∈[Vv ]

}
v∈[V ], which

uniquely specifies the equivalences (2).

Likewise, the set OEM =
{
{βwj }j∈[Ww]

}
w∈[W ]

determines the operational equivalences of mea-

2The mixtures of preparations and/or measurement ef-
fects that serve to ensure the operational equivalences are
referred to as ‘hypothetical’, as they generally do not ex-
plicitly feature in the experiment.
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surement effects3, which are summarised as

∀w ∈ [W ],∀j ∈ [Ww] :
[kw|Nw] '

∑
k∈[K],y∈[Y ]

βwj (k, y)[k|My], (3)

where {[kw|Nw]}w∈[W ] is a set of W hypothetical
effects in E , the index j iterates over the Ww ≥ 2
distinct convex decompositions of a given hypo-
thetical effect [kw|Nw], and βjw is a probability
distribution on [K] × [Y ], specifying the convex
decomposition for each w ∈W and j ∈Ww

4.

2.3 Contextual polytope

The operational equivalences (2) and (3) yield
the following constraints on any behaviour p ap-
pearing in a given contextuality scenario:

∀y ∈ [Y ], k ∈ [K], v ∈ [V ],∀j ∈ [Vv] :
qv =

∑
x

αvj (x)p(k|x, y) ,

∀x ∈ [X], w ∈ [W ],∀j ∈ [Ww] :
ew =

∑
k,y

βwj (k, y)p(k|x, y)

(4)

where qv, ew ∈ [0, 1]. As these constraints are
linear on the observed behaviour, the set of be-
haviours p that satisfy these constraints forms a
convex polytope C ⊂ RXYK , referred to as the
contextual polytope (note that this set depends
on the tuple T specifying the contextuality sce-
nario, but we will not reflect this in the notation
for simplicity). Moreover, for any given contex-
tuality scenario, evaluating the maximal value,
SC = maxp∈C{S(p)}, of any success metric S on
this set constitutes a linear program [BV04].

3Note that the effects of multiple measurements always
satisfy a trivial operational equivalence deriving from the
completeness of the measurements, i.e., that the probabil-
ities of all the outcomes of a measurement sum to unity.
We consider this equivalence part of the definition of a
measurement and thus do not include it in the set OEM .
The notation OEM = ∅ therefore signifies the presence of
only these trivial measurement equivalences.

4We have formulated the equivalences as in Eqs. (2)
and (3)—as opposed to pairwise—to enable easy distinc-
tion between scenarios which can be mapped to Bell sce-
narios, and those which cannot. Specifically, only contex-
tuality scenarios with a single hypothetical preparation,
V = 1, and only trivial equivalences of measurements,
W = 0 can be mapped to Bell scenarios [SS18].

2.4 Noncontextual polytope and inequalities

A noncontextual ontological model for an opera-
tional theory consists of the following three ele-
ments: (i) a measurable space, Λ, known as the
ontic state space, (ii) a probability measure µP
on Λ describing the epistemic state of the system
for each preparation P∈ P, satisfying µP = µP ′

if P ' P ′, and (iii) for every ontic state λ ∈ Λ
and measurement M ∈ M, a probability dis-
tribution ξM (·|λ) over the possible outcomes of
M , referred to as a response scheme, satisfying
ξM (k|·) = ξM ′(k′|·) if [k|M ] ' [k′|M ′].

Consequently, in a given contextuality sce-
nario with operational equivalences of the form
(2), noncontextuality imposes the following con-
straints on the epistemic states and response
schemes,

∀v ∈ [V ],∀j ∈ [Vv] :
µQv=

∑
x∈[X]

αvj (x)µPx ,

∀w ∈ [W ], ∀j ∈ [Ww] :
ξNw(kw|·) =

∑
k,y

βwj (k, y)ξMy(k|·) .

(5)

For any given contextuality scenario, the
set of behaviours p that admit a noncontex-
tual explanation, i.e., for which p(k|x, y) =∫

Λ ξMy(k|λ)µPx(λ)dλ for some epistemic states
and response schemes satisfying the constraints
(5), forms a convex polytope, NC ⊂ RXYK , re-
ferred to as the noncontextual polytope [SSW18].
Consequently, finding the maximal value, SNC =
maxp∈NC{S(p)}, of any success metric S on the
noncontextual ontological behaviours, also con-
stitutes a linear program [SSW18]. In general,
NC ( C, which can be witnessed by some suc-
cess metric. Inequalities of the form S(p) ≤ SNC
are typically referred to as noncontextuality in-
equalities, and their violation S(p) > SNC im-
plies that the observed behaviour is contextual,
i.e., p ∈ C \ NC.

2.5 Quantum contextual set and subsets

In quantum theory, both preparations and mea-
surement effects are elements of the set of
bounded positive semidefinite operators B+(H)
on some separable Hilbert space H that we as-
sume to be finite dimensional. Preparations are
described by density operators, i.e., elements of
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B+(H) with unit trace. Measurements are de-
fined by sets {Mk ∈ B+(H)}k of measurement op-
erators such that

∑
kMk = I, where I is the iden-

tity operator on H. Such a set is often referred to
as a positive-operator-valued measure (POVM).
The operational equivalences (2) and (3) im-
ply the following constraints on quantum states
{ρx}X−1

x=0 and measurements {{My
k }

K−1
k=0 }

Y−1
y=0 in a

contextuality scenario:

∀v ∈ [V ], ∀j ∈ [Vv] :
σv =

∑
x

αvj (x)ρx,

∀w ∈ [W ],∀j ∈ [Ww] :
Fw =

∑
k,y

βwj (k, y)My
k ,

(6)

where σv are hypothetical quantum states and
Fw are hypothetical measurement operators. The
set of behaviours with a quantum realisation,
i.e., those in which p(k|x, y) = tr

(
ρxM

y
k

)
for

some quantum states {ρx}X−1
x=0 and measure-

ments {{My
k }

K−1
k=0 }

Y−1
y=0 satisfying the constraints

(6), form the quantum contextual set Q.
It is known that there exist contextuality sce-

narios in which Q ( C, specifically those which
can be mapped to Bell scenarios [SS18] (where
this statement is equivalent to quantum theory
not being maximally non-local). We demonstrate
that this strict inclusion continues to hold in
more general scenarios, for example, see Table 1.

Apart from Q itself, we study two natural sub-
sets of it: (i) the set of behaviours realised by
pure quantum states ρ2

x = ρx, denoted by QΨ,
and (ii) the set of behaviours realised by projec-
tive (sharp) measurements, i.e., those in which
(My

k )2 = My
k denoted by QΠ.

We now collect some observations regarding
the set of quantum behaviours in contextual-
ity scenarios expressed in the notation we have
laid out. Some of these observations are already
known or partially known, as indicated subse-
quently.

Observation 1. For all contextuality scenarios
the set of quantum behaviours Q is convex.

Observation 2. For all contextuality scenarios
the subset of quantum behaviours QΠ is convex.

Observation 3. For all contextuality scenar-
ios with only trivial equivalences of preparations,
T = (X,Y,K, ∅,OEM ), all behaviours are non-
contextual, i.e., NC = Q = C.

Observation 4. For all contextuality scenar-
ios with three or fewer preparation procedures,
T = (X ≤ 3, Y,K,OEP ,OEM ), all behaviours
are noncontextual, i.e., NC = Q = C.

Observation 5. For all contextuality scenarios
with only trivial equivalences of measurement ef-
fects T ≡ (X,Y,K,OEP , ∅), projective measure-
ments are sufficient to recover the quantum set,
i.e., Q = QΠ.

Observation 6. In general, for contextuality
scenarios with non-trivial equivalences of prepa-
rations, pure states cannot produce all quantum
contextual behaviours, i.e., QΨ ( Q.

Observation 7. In general, for contextuality
scenarios with non-trivial equivalences of mea-
surement effects, projective measurements cannot
produce all quantum contextual behaviours, i.e.,
QΠ ( Q.

The proofs have been deferred to Appendix A
for brevity. In Observation 3, the fact that
NC = Q follows from Spekkens’ original work
[Spe05]. The second part of the result, Q = C,
can be seen as a generalisation (from one prepa-
ration to multiple preparations) of the fact that
in a hypergraph contextuality scenario all prob-
abilistic models trivially have a quantum real-
isation when one allows for POVMs, as dis-
cussed in Ref. [Kun19]. In Observation 4, the
fact that NC = Q was shown for two binary
measurements in Ref. [Pus18] and generally in
Ref. [CS20]. Finally, Observation 7 is implied
by the connection between compatibility scenar-
ios and Kochen–Specker contextuality scenarios
[ATC18] (which can further be translated to gen-
eralised contextuality scenarios [KS18]), together
with the fact that certain compatibility scenar-
ios necessitate unsharp measurements [KHF14].
These observations yield a rich landscape of con-
textual behaviours (see Fig. 1). Due to the fact
that the Hilbert space dimension of the quan-
tum systems remains unbounded in contextual-
ity scenarios5, evaluating the maximum value of

5In general, one cannot expect to be able to bound
the dimension of the quantum systems necessary for the
maximal violation of a given noncontextuality inequality.
This is due to known connections between contextuality
scenarios and nonlocal scenarios [LSW11, SS18, SSW18],
and the fact that there exist nonlocal correlations that
require infinite dimensional quantum systems [CS18].
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a generic success metric over all quantum re-
alisations, SQ = maxp∈Q{S(p)}, is a remark-
ably hard problem. However, internal maximisa-
tion techniques, such as the see-saw semidefinite
programming method, yield efficient dimension-
dependent lower bounds, SQ ≥ SQL , for any suc-
cess metric S.

3 Semidefinite programming relax-
ations of quantum contextual sets

In order to outer approximate the set Q and pro-
vide upper bounds on success metrics, we formu-
late semidefinite relaxation techniques. A cru-
cial concept underpinning these relaxation tech-
niques is that of moment matrices. For a given
density operator, ρ, and a sequence of linear op-
erators, O = (O1, O2, . . .), on H, the moment
matrix hinged on ρ, ΓOρ , is a matrix with el-

ements6 (ΓOρ )Oj ,Ok≡ (ΓOρ )j,k = tr
(
ρOj

†Ok
)

for

Oj , Ok ∈ O. Due to the positivity of ρ, any such
moment matrix is positive semidefinite7, ΓOρ ≥ 0.

We may use the existence of such moment
matrices, satisfying additional constraints, as a
necessary condition for a behaviour to be con-
tained in the quantum set in a given contextu-
ality scenario, as follows. Given a contextuality
scenario, (X,Y,K,OEP ,OEM ), and a behaviour,
p ∈ Q, let {ρx}x∈[X] be density operators and
{{My

k }k∈[K]}y∈[Y ] be POVMs, on some finite di-
mensional Hilbert spaceH, satisfying (6), respec-
tively, such that p(k|x, y) = tr

(
ρxM

y
k

)
. It follows

that for any finite sequence of linear operators O
on H, the moment matrices ΓOx ≡ ΓOρx satisfy

∀v ∈ [V ],∀j ∈ [Vv] : Θv =
∑
x

αvj (x)ΓOx , (7)

where {Θv} are hypothetical moment matrices
hinged on the hypothetical quantum states {σv}
from Eq. (6), which generally do not appear in

6Note that in the index of (ΓOρ )Oj ,Ok , Oj and Ok rep-
resent unique labels of the operators from the sequence O,
not the operators themselves.

7Any positive operator ρ can be written as its spectral
decomposition ρ =

∑
k
λk |ψk〉〈ψk|, where |ψk〉〈ψk| is the

rank-1 projection onto the span of |ψk〉 ∈ H, and λk ≥ 0
for all k. The moment matrix hinged on |ψk〉〈ψk|, ΓOk , is
the Gram matrix of the vectors {O |ψk〉}O∈O, and is there-
fore positive semidefinite. It follows that ΓOρ =

∑
k
λkΓOk

is also positive semidefinite.

the program8.

If we take O to be a sequence of monomi-
als of the operators My

k (that includes all the
length-zero (I) and length-one (My

k ) monomi-
als), then we also find that the moment matri-
ces Γx satisfy the constraints (ΓOx )I,I = 1 and
(ΓOx )I,My

k
= p(k|x, y) for all x ∈ [X], y ∈ [Y ] and

k ∈ [K]. Thus, the existence of positive semidef-
inite matrices ΓOx for all x ∈ [X] satisfying these
constraints and (7) is a necessary condition for
p to be in the quantum set, and constitutes a
semidefinite feasibility problem. These problems
can be solved using semidefinite programs (SDP),
for which efficient algorithms exist [BV04]. How-
ever, using only the constraints above, the diago-
nal terms of the matrices ΓOx remain unbounded.
This unboundedness renders the above necessary
condition for p to be in Q trivial. When bound-
ing the set of quantum correlations in Bell sce-
narios, this issue can be resolved by restricting to
projective measurement operators [NPA08], re-
sulting in extra constraints on the diagonal ele-
ments.

However, in contextuality scenarios we cannot
assume that our measurement operators are pro-
jections, since there are quantum behaviours that
cannot be realised with projective measurements
(see Observation 7). This fact poses one of the
main challenges in formulating semidefinite re-
laxations for contextuality scenarios. To tackle
this issue, we make use of the following lemma9.

Lemma 1. Any operator 0 ≤ M ≤ I on a finite
dimensional Hilbert space H can be written as
M = I

2 + U+U†
4 , where U is a unitary operator on

H.

The proof is straightforward, and has been de-
ferred to Appendix A. This lemma allows us to
introduce the following modification of standard
semidefinite relaxation techniques. Instead of

8Notice that the constraints (7) on the moment ma-
trices form a direct semantic extension of the operational
equivalences of preparations in (2) and (6). These con-
straints are therefore independent of the list of operators
indexing the moment matrices.

9Note that there exist methods to tackle such scenarios
in the literature on non-commuting polynomial optimisa-
tion, entailing introduction of additional moment matrices
hinged on the positive semidefinite measurement operators
My
k (localisation) [BV04, Wit15, Mir15], however, the re-

sultant SDPs are rather tedious to implement, and are
relatively inefficient.

Accepted in Quantum 2021-06-22, click title to verify. Published under CC-BY 4.0. 6



taking O to be monomials of measurement oper-
ators My

k , we take O to be monomials of unitary

operators Uyk (and Uyk
†
) (along with I) such that

My
k = I

2 + 1
4(Uyk + Uyk

†). The resulting moment
matrices, ΓOx , still satisfy (7), and additionally
we now have

(ΓOx )I,Uy
k

+ (ΓOx )I,Uy
k
† = 4

(
p(k|x, y)− 1

2

)
(8)

and
(ΓOx )O,O = 1 , (9)

for all x ∈ [X] and O ∈ O. Imposing this final
condition alleviates the problem of having un-
bounded diagonal terms.

Firstly, we consider the sequence of mono-
mials of length at most one, i.e., the sequence
U1 = (I) ‖ (Uyk , U

y
k
†)Y−1,K−2
y=0,k=0 where ‖ denotes the

concatenation of sequences (due to the relations∑
kM

y
k = I, we do not need to include the last

unitary operators UyK−1, (U
y
K−1)† in U1). In ad-

dition to Eqs. (7), (8), and (9) with O = U1, the
measurement equivalences OEM imply the fol-
lowing additional constraints:

∀x ∈ [X], O ∈ U1, w ∈ [W ], ∀j ∈ [Ww] :
qw =

∑
k,y

βwj (k, y)((ΓU1
x )O,Uy

k
+ (ΓU1

x )
O,Uy

k
†),

nw =
∑
k,y

βwj (k, y)((ΓU1
x )Uy

k
,O + (ΓU1

x )
Uy
k
†
,O

) ,

(10)

where qv, nw ∈ C, and we define

(ΓU1
x )O,UyK−1

+ (ΓU1
x )

O,UyK−1
†

= 2(2−K)(ΓU1
x )O,I

−
K−2∑
k=0

(
(ΓU1
x )O,Uy

k
+ (ΓU1

x )
O,Uy

k
†

) (11)

and

(ΓU1
x )UyK−1,O

+ (ΓU1
x )

UyK−1
†
,O

= 2(2−K)(ΓU1
x )I,O

−
K−2∑
k=0

(
(ΓU1
x )Uy

k
,O + (ΓU1

x )
Uy
k
†
,O

) (12)

for all O ∈ U1 and x ∈ [X].
We denote by Q1 the set of behaviours p such

that there exist positive semidefinite matrices
ΓU1
x satisfying Eqs. (7), (8), (9) and (10). This

problem is again a semidefinite feasibility prob-
lem. It is further important to note that max-
imising a success metric, S, over the set Q1 ⊃ Q
also constitutes an SDP. We will denote this max-
imum by SQ1 , and evidently, it is an upper bound
on the maximum quantum value, SQ.

Note that for the feasibility SDP the con-
straints deriving from normalisation of the prob-
abilities are implicitly included in Eq. (8), as-
suming the behaviour is properly normalised. On
the other hand, in the optimisation SDP we can
impose such constraints by excluding the op-
erators corresponding to the final outcome of
each measurement—as in the feasibility SDP—
and imposing the non-negativity of the probabil-
ities, i.e.,

1
2 + 1

4

((
ΓU1
x

)
I,Uy

k

+
(
ΓU1
x

)
I,Uy

k
†

)
≥ 0, (13)

for all k ∈ [K − 2] and x ∈ [X], along with their
subnormalisation,

K−2∑
k=0

[1
2 + 1

4

((
ΓU1
x

)
I,Uy

k

+
(
ΓU1
x

)
I,Uy

k
†

)]
≤ 1,

(14)
for all x ∈ [X]. The success metric should
also be re-expressed using p(K − 1|x, y) = 1 −∑K−2
k=0 p(k|x, y).
The upper bounds SQ1 ≥ SQ are in general

non-trivial, as we will demonstrate in Sec. 4.
Moreover, in many of the cases we consider, these
bounds coincide with the lower bounds obtained
from see-saw methods, i.e., SQ1 = SQL , and are
therefore tight (up to machine precision). To
demonstrate the ease of implementation and high
efficiency of this unitary-based SDP relaxation,
we provide a code tutorial in Appendix B.

The set Q1 can be considered as the first level
of a hierarchy of sets characterised by an SDP hi-
erarchy. Level one of an SDP hierarchy employs
moment matrices with some operator sequence
O1, e.g., O1 = (I, A,B). Then level l ∈ N em-
ploys moment matrices with operator sequence
Ol consisting of monomials of elements ofO1 with
length at most l , e.g., O2 = (I, A,B,AB,BA).
Accordingly, we may define a hierarchy of outer
approximations of the quantum set, Q1 ⊇ Q2 ⊇
. . . ⊇ Q, characterised by the unitary-based SDP
hierarchy in which level l is characterised by the
operator sequence Ul.

Next, in order to bound the set QΠ, we re-
vert to the standard projection-based SDP relax-
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ations involving operator lists composed of pro-
jections. Specifically, we consider moment ma-

trices
{

ΓP1
x

}
x

with operator sequence P1 = (I) ‖
(Πk

y)
Y−1,K−2
y=0,k=0 , where Πy

k are projections. Apart

from (7), and the trivial constraints (ΓP1
x )I,I = 1

for all x ∈ [X], we have additional constraints
that follow from the projectivity of measurement
operators, (ΓP1

x )Πy
k
,Πy
k′

= δk,k′(ΓP1
x )I,Πy

k
for all

x ∈ [X], y ∈ [Y ] and k, k′ ∈ [K]. Further con-
straints emerge from operational equivalences of
measurement effects (similar to (10)). Hence, for
all contextuality scenarios, one can define the hi-
erarchy of sets QΠ

l+1 ⊆ QΠ
l for all l ∈ N, contain-

ing QΠ.

Finally, in order to bound the set QΨ, we need
not even invoke multiple moment matrices, in-
stead we employ an unhinged moment matrix

(ΓPS1)O,O′ = tr
(
O†O′

)
with operator sequence

PS1 = (I) ‖ (|ψx〉〈ψx|)X−1
x=0 ‖ (Πk

y)
Y−1,K−2
y=0,k=0 . It is

straightforward to see that such a moment ma-
trix is necessarily positive semidefinite. In ad-
dition to the constraints similar to the ones de-
scribed above, we have constraints of the form
(Γ)I,|ψx〉〈ψx| = (Γ)|ψx〉〈ψx|,|ψx〉〈ψx| = 1 that follow
from the purity of the quantum preparations,
along with constraints that ensue from opera-
tional equivalences of preparations (similar to
(10)). We refer to this formulation as the pure-
state based SDP relaxation. For all contextual-
ity scenarios, we may define the hierarchy of sets
QΨ
l+1 ⊆ QΨ

l for all l ∈ N, containing QΨ.

4 Tight bounds on the quantum set

The primary application of the relaxations in-
troduced in the previous section is finding nu-
merical proofs for the maximal quantum value
SQ of any success metric S. Such a proof is
possible when the lower bound SQL obtained
from internal maximisation techniques, such as
the see-saw semidefinite programming method
[ABC+19, Mir15], matches the upper bound ob-
tained from some finite level l of the suitable
semidefinite relaxation hierarchy, i.e., SQL = SQl
(up to machine precision).

We begin by considering the simplest non-
trivial single parameter family of contextuality
scenarios [Pus18], (4, 2, 2,OEP (α), ∅), wherein
the preparation setting x is composed of two bits
x = (x0, x1) ∈ {0, 1}2, and we consider a family

0 0.2 0.4 0.6 0.8 1
0.75

0.8

0.85

0.9

0.95

1

Figure 2: Plot of bounds on the maximal value of
Srac(p) for behaviours p in various sets in the scenario
(4, 2, 2,OEP (α), ∅). Here the solid black curve repre-
sents the tight upper bound, Srac

C , for the polytope C of
contextual behaviours. The solid red and green curves
represent the upper bounds, QΠ

1 and QΠ
2 , on Srac

Q given
by the first and second levels of the projection-based
relaxation, respectively. The circled black curve repre-
sents the lower bounds Srac

QL
on Srac

Q obtained via the
see-saw semidefinite programming method, the solid or-
ange curve corresponds to the upper bounds Srac

QΨ
1

on the
values Srac

QΨ obtained from the first level of the pure-state
based relaxation, and the solid purple curve corresponds
to the tight upper bounds Srac

N C for the noncontextual
polytope NC. As the lower bounds on the value Srac

Q

from internal maximization coincide (up to numerical
precision) with the upper bounds from the second level
of the projection-based relaxation, we obtain proofs of
optimality, Srac

Q = Srac
QL

= Srac
QΨ

1
. Notice for a range of the

scenario parameter α, Srac
Q > Srac

QΨ
1
≥ Srac

QΨ , which consti-
tutes a proof of Observation 6, demonstrating that cer-
tain extremal quantum contextual behaviours can only
be realised through the explicit use of mixed quantum
states in the experiment.

of operational equivalence conditions of the form
1
2P00 + 1

2P11 ' αP01 + (1−α)P10, parameterised
by the coefficient α ∈ [0, 1], along with the suc-
cess metric Srac(p) = 1

8
∑
x,y p(xy|x, y). In light

of Observation 5, for preparation contextuality
scenarios, we employ the projection-based relax-
ation QΠ

l , as for such scenarios one can in gen-
eral take the measurement operators to be pro-
jections. While the first level QΠ

1 retrieves non-
trivial upper bounds Srac

QΠ
1
< Srac

C , the bounds ob-

tained from the second level of the relaxation QΠ
2

saturate the lower bounds obtained by internal
maximisation, thus we find Srac

Q = Srac
QL = Srac

QΠ
2

.

Moreover, for this case we employed the pure-
state based relaxation QΨ

1 to bound the set QΨ.
Remarkably, for a range of the scenario param-
eter α, we find that pure states are not suffi-
cient to violate the noncontextual bound, i.e.,
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Srac
QΨ ≤ Srac

QΨ
1
< Srac

NC < Srac
Q , which constitutes

a numerical proof of Observation 6 (see Fig. 2).
It is helpful to recognise that the metric Srac

gives the average success probability when the
contextuality scenario is cast as the following
communication task. A party (Alice) encodes
two random bits, x = (x0, x1), in a preparation
Px and sends it to a second party (Bob). Bob
must guess the bit xy, where y ∈ {0, 1} is chosen
at random. He does so by performing a mea-
surement My on the preparation, the outcome of
which constitutes his guess. The probability of
winning given x and y is therefore p(xy|Px,My).
This task is an example of random access cod-
ing. In general, we refer to an analogous task in
which Alice must encode n dits into her prepara-
tions, subject to some constraints, as an (n, d)-
rac. The relevant contextuality scenario for an
(n, d)-rac is (dn, n, d,OEP ,OEM ), for some oper-
ational equivalences OEP and OEM .

Next, we consider a cryptographically appeal-
ing family of preparation noncontextuality in-
equalities based on (n, 2)-racs that impose par-
ity obviliousness, known as (n, 2)-poracs, and in-
troduced in Ref. [SBK+09]. Parity oblivious-
ness is the cryptographic requirement that Bob
must gain no information about the parity of
any subset (of order greater than 1) of Alice’s
bits. Explicitly, if Alice’s bits are (x0, . . . , xn−1),
she must not send any information about ⊕i∈Jxi
for any J ⊆ [N ] such that |J | > 1, where ⊕
denotes addition modulo two. Parity oblivious-
ness necessitates nontrivial operational equiva-
lences, PO(n, 2), on the preparations, thereby
tying these communication tasks to contextual-
ity scenarios (2n, n, 2,PO(n, 2), ∅). For instance,
consider the (3, 2)-porac task and denote Alice’s
three input bits by x = (x0, x1, x2) and the corre-
sponding preparations by Px. Here parity obliv-
iousness translates to the following operational
equivalences, PO(3, 2):

1
2(P00x2 + P11x2) ' 1

2(P01x2 + P10x2), (15)

for all x2 ∈ {0, 1}, and similarly for the other
pairs of bits, and

1
4(P000 + P011 + P101 + P110)

' 1
4(P001 + P010 + P100 + P111).

(16)

The average success probability of a strat-
egy in the (n, 2)-porac is given by the suc-

cess metric Srac(p) = 1
2nn

∑
x,y p(xy|x, y) on

its behaviour p in the contextuality scenario
(2n, n, 2,PO(n, 2), ∅). The noncontextual upper
bound on the success metric is Srac

NC = 1
2(1 +

1
n). The first levels of both relaxations, the
projection-based QΠ

1 and the unitary-based Q1,
match the known optimal quantum bounds for
n ∈ {2, . . . , 7}, i.e., Srac

Q = Srac
QΠ

1
= Srac

Q1
= 1

2(1 +
1√
n

) up to numerical precision [CKKS16, GP18].

Thus far we have considered contextuality sce-
narios with only trivial equivalences of measure-
ment effects. Moving to tests of universal contex-
tuality, we consider the scenario (6, 3, 2,UP ,UM )
where we have the operational equivalences
1
2(P0 + P1) ' 1

2(P2 + P3) ' 1
2(P4 + P5), and

1
3([0|M0]+[0|M1]+[0|M2]) ' 1

3([1|M0]+[1|M1]+
[1|M2]). Here the noncontextual polytope has six
distinct non-trivial facets up to relabelling sym-
metries [SSW18], each corresponding to a dis-
tinct noncontextuality inequality. We give the
maximal quantum violation of all these facet in-
equalities in Table 1, obtained from the first level
of the unitary-based relaxation. Moreover, we re-
trieve optimal states and measurements that sat-
urate the bounds, displayed in Fig. 6.

Next, we considered universal noncontextual-
ity inequalities obtained from n-cycle Kochen–
Specker (KS) graphs [XSS+16, LSW11]. In this
case also, level one of the unitary-based relax-
ation retrieves tight quantum bounds (up to ma-

chine precision), SksQ = 3 + n cos π
n

1+cos π
n

for n ∈
{5, 7, 9, 11}, where Sks is the success metric given
in Ref. [XSS+16, Section III.C] (see Table 2).

Finally, we considered a class of novel univer-
sal noncontextuality inequalities, termed (n, 2)-
mporacs, based on the (n, 2)-porac. In addition to
the preparation equivalence conditions that en-
sue from parity obliviousness, we introduce mea-
surement equivalences given by 1

n

∑
y∈[n][0|My] '

1
n

∑
y∈[n][1|My]. While the noncontextual bounds

on the success metric Srac remain unaltered from
the (n, 2)-porac case (see Lemma 2), the quantum
bounds are further restricted. Again, the first
level of the unitary-based relaxation yields tight
upper bounds on the maximal quantum value,
Srac
Q , for n ∈ {2, . . . , 7} (see Table 3).
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S(p) SC SNC SQL SQ1 SQ2

p00 + p12 + p24 3 2.5 3 3 3
p00 + p11 + p24 3 2.5 2.8660254 2.8660254 2.8660254

p00 − p02 − 2p04 − 2p11 + 2p12 + 2p24 4.5 3 3.9209518 3.9209518 3.9209518
2p00 − p11 + 2p12 3.5 3 3.3660254 3.3660254 3.3660254

p00 − p04 + p11 + p12 + 2p24 5 4 4.6889010 4.6889010 4.6889010
p00 − p04 + 2p11 + 2p24 5 4 4.6457513 4.6457513 4.6457513

p00 − p03 − 2p04 − 2p11 + 2p12 + 2p24 4.5 3.5 3.5 3.5552760 3.5

Table 1: Maximal values for the six facet inequal-
ities [SSW18] in the universal contextuality scenario
(6, 3, 2,UP ,UM ) [SS18], where pyx = p(0|x, y), for
contextual behaviours (SC), noncontextual behaviours
(SN C), along with lower bounds on the maximal quan-
tum values SQ obtained from the see-saw semidefinite
programming method (SQL

), and upper-bounds on SQ
obtained from the first and second levels of the unitary-
based relaxation (SQ1 and SQ2). Notice that for the
six facet inequalities the lower bounds, SQL

, coincide
with the upper bounds, SQ1 , up to seven decimal places,
which provides a numerical proof for the optimal quan-
tum value, SQ. Furthermore, while for the first facet
inequality the quantum bound saturates the contextual
bound, SQ = SC , for all other inequalities quantum
behaviours fail to reproduce extremal contextual be-
haviours, i.e., SQ < SC . The seventh inequality is not a
facet inequality, but a contextuality inequality stemming
from a typing error in Ref. [SSW18], wherein it is stated
to be a facet inequality a. We include this inequality
in our results table, since it presents an example of the
quantum upper bound upon restricting ourselves to pro-
jective measurements, SQΠ

1
= SQΠ

L
= 3.4641016, being

lower than even the noncontextual bound, SN C = 3.5,
thus forming a numerical proof of Observation 7. The
seventh inequality also presents a case in which the sec-
ond level of our hierarchy was required to find a tight
bound.

aThe error was confirmed by private communication
and the noncontextual bound of 3.5 for this success metric
was calculated only in the present work.

5 Applications

5.1 Monogamy of contextuality

A new feature that we uncover using the re-
laxations described in the previous sections is
that of monogamy of contextuality. Consider a
prepare-and-measure scenario with two measur-
ing parties, Bob and Charlie, whose actions are
space-like separated. The preparation party, Al-
ice, shares a preparation according to her set-
ting x between Bob and Charlie. The ob-
served statistics in such a case are described
by pBC(kB, kC |x, yB, yC), where yB (yC) and
kB (kC) are the measurement settings and out-
comes of Bob (Charlie), respectively. The space-
like separation implies no-signalling between Bob

n SksC SksNC SksQL SksQ1

5 6 5 5.2360679 5.2360679
7 7 6 6.3176672 6.3176672
9 8 7 7.3600895 7.3600895
11 9 8 8.3863029 8.3863029

Table 2: Maximal values for generalised noncontextual-
ity inequalities based on n-cycle KS graphs for contex-
tual behaviours (Sks

C ), noncontextual behaviours (Sks
N C),

along with lower bounds obtained from the see-saw
semidefinite programming method (Sks

QL
) and upper

bounds obtained from the first level of the unitary-based
relaxation (Sks

Q1
). Again, in each case the lower bounds

(Sks
QL

) coincide with the upper bounds (Sks
Q1

) up to seven
decimal places, which provides a numerical proof for the
optimal quantum value, Sks

Q .

n Srac
C Srac

NC Srac
QL Srac

Q1

2 3/4 3/4 0.75 0.75
3 3/4 2/3 0.75 0.75
4 3/4 5/8 0.7165063 0.7165063
5 3/4 3/5 0.7041241 0.7041241
6 3/4 7/12 0.6863389 0.6863389
7 3/4 4/7 0.6767766 0.6767766

Table 3: Maximal values for the success probability
in the (n, 2)-mporac tasks for contextual behaviours
(Srac

C ), noncontextual behaviours (Srac
N C), along with

lower bounds obtained from the see-saw semidefinite
programming method (Srac

QL
), and upper bounds ob-

tained from the first level of the unitary-based relaxation
(Srac

Q1
). Again, in each case the lower bounds (SQL

) co-
incide with the upper bounds (Srac

Q1
) up to seven decimal

places, which provides a numerical proof for the optimal
quantum value, Srac

Q , and demonstrates the efficacy of
the unitary-based relaxation.

and Charlie [BCP+14], that is,

pB(kB|x, yB, yC) = pB(kB|x, yB, y′C)
∀kB, x, yB, yC , y′C

pC(kC |x, yB, yC) = pC(kC |x, y′B, yC)
∀kC , x, yB, y′B, yC ,

(17)

where pB and pC are the marginal distributions
of Bob and Charlie, respectively.

We consider the tripartite version of the (3, 2)-
porac task, wherein Alice’s preparations adhere
to the operational equivalences of preparations
ensuing from parity obliviousness (15), (16), and
the two measuring parties, Bob and Charlie,
are both aiming to maximise their average suc-
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cess probabilities, Srac
B and Srac

C , respectively, ex-
pressed by

Srac
Z = 1

24
∑
x,yZ

pZ(xyZ |x, yZ), (18)

where Z denotes either B or C, and pZ is the
respective marginal probability distribution. We
find that, say, Charlie’s maximum success prob-
ability is limited by that of Bob, i.e., their
maximum success probabilities satisfy certain
monogamy relations. For any behaviour in C also
satisfying no-signalling (NS), we obtain the re-
lation Srac

B + Srac
C ≤ 3

2 for the (3, 2)-porac (see
Fig. 3). Note that this relation is more restric-
tive than simply adding up the maximal success
probabilities attainable in C, Srac

C = 1, hence the
term monogamy.

Quantum behaviours in this setup, p ∈
Q, are described by pBC(kB, kC |x, yB, yC) =
tr
[
ρx(MyB

kB
NyC
kC

)
]
, where {ρx} are potentially en-

tangled states on HB ⊗ HC , {MyB
kB

= M ′yBkB ⊗
IC} and {NyC

kC
= IB ⊗ N ′yCkC } are the measure-

ment operators of Bob and Charlie, respectively,
and one might assume without loss of generality
that they are projections, in light of Observa-
tion 5. In order to obtain monogamy relations
in the quantum case, we employ our projection-
based semidefinite relaxation for the set QΠ, and
implement the relaxation QΠ

1+BC
10, built from

monomials of the projections of Bob, Charlie,
and products of Bob’s and Charlie’s projections,
MyB
kB
NyC
kC

(but not employing monomials corre-
sponding to products of different operators of

Bob or Charlie only, e.g. MyB
kB
M

y′B
k′B

). Besides

the constraints that ensue from parity oblivi-
ousness, the relaxation QΠ

1+BC includes commu-
tation relations (CR) [NPA08] that ensue from
the spatial separation between Bob and Charlie.
This relaxation gives us the monogamy relation
Srac
B +Srac

C ≤ 1.392. For the complete monogamy
relation, see Fig. 3, where we plot the maximum
attainable Srac

C given a fixed Srac
B .

5.2 Semi-device-independent quantum key dis-
tribution

We introduce the following semi-device-

10The set QΠ
1+BC emulates the intriguing physical sce-

nario wherein Alice distributes almost quantum correla-
tions [NGHA15] to Bob and Charlie.

0.5 0.6 0.7 0.80.6 0.7 0.8 00.6 0.7 0.8 0.9.6 0.7 0.8 0.90.7 0.8 0.9 1
0.5 0.6 0.7 0.8

0.7 0.8 0.9 1

0.8 0.9 1

0.9 1

1

Figure 3: Monogamy relations expressed as bounds on
the success probability Srac

C of Charlie, given the success
probability Srac

B of Bob. For contextual behaviours p ∈
C, the upper and lower bounds agree (as computing the
value is a simple linear program), and give the solid black
curve on the figure. For the quantum set Q, we obtain
upper bounds (solid blue curve) from the 1 +BC level
of the projection-based SDP hierarchy with additional
commutation relations (CR), and lower bounds (dashed
red curve) from the see-saw optimisation method (QL).

independent quantum key distribution protocol
based on the (3, 2)-porac: Alice and Bob play
many rounds of the (3,2)-porac game, in each
round uniformly randomly choosing their set-
tings, x = (x0, x1, x2) and y, and each of Bob’s
outcomes forms a bit of his raw key, b = k. After
accumulating statistics from many rounds, Bob
announces his input setting, y, for each round via
a classical public channel (that can be read but
not modified by any third party). After learning
these values, Alice only keeps her bit a = xy to
create her raw key, and discards the other two.
Bob then announces a part of his output bits,
to allow for the parties to estimate the success
metric of the porac task. Based on this estimate,
they either abort the protocol—if the success
metric does not reach a certain threshold—or
proceed to extract perfectly correlated key bits
from their remaining bits b and a, by means of
one-way classical communication.

The monogamy relations derived in the pre-
vious section imply the potential application of
preparation contextuality to quantum key dis-

Accepted in Quantum 2021-06-22, click title to verify. Published under CC-BY 4.0. 11



tribution. In particular, we might replace the
trusted party Charlie with a malicious eavesdrop-
per Eve, who is trying to read the shared key.
In a particularly paranoid scenario, we might
assume that Eve is responsible for the manu-
facturing of the devices of Alice and Bob, and
therefore she has perfect control and knowledge
of the states ρx that Alice is able to prepare,
as well as the measurements My

b that Bob is
able to perform. However, we assume that Al-
ice’s preparations, whatever they may be, re-
spect the operational equivalences necessary to
guarantee parity obliviousness. Further, for sim-
plicity, we assume that the devices behave in
the same way every round (i.i.d. assumption
[AF18]), and that while running the porac proto-
col, Alice and Bob have free will and can choose
their settings x and y independently of Eve (free
will assumption [ABG+07]). We further as-
sume that Eve measures her part of the quan-
tum state in each round—assuming no quantum
memory of Eve [AF18]—and produces a classi-
cal output e. The resulting general tripartite

correlation is of the form pABE|XY (a, b, e|x, y) =
δa,xy tr

[
ρx(My

b ⊗ Ee)
]
, where Alice’s prepara-

tions {ρx} are potentially entangled states on
HB⊗HE . Averaging over all the setting choices,
the parties end up with the tripartite probability
distribution,

pABE(a, b, e) =
∑
xy

pXY (x, y)pABE|XY (a, b, e|x, y),

(19)
and we will assume the uniform distribution
pXY (x, y) = 1

24 for all x, y.
According to the seminal result by Csiszár and

Körner [CsK78], the extractable key, r, between
Alice and Bob from the above distribution is
lower bounded by

r ≥ I(A : B)− I(A : E) = H(A|E)−H(A|B),
(20)

where I(A : B) is the mutual information of A
and B, H(A|B) is the conditional Shannon en-
tropy, and these quantities are computed from
the bipartite marginal distributions.

We bound the first term via the min-entropy
H(A|E) ≥ Hmin(A|E), where

Hmin(A|E) = −
∑
e

pE(e) log
[
max
a
{pA|E(a|e)}

]
= −

∑
e

pE(e) log
[
pA|E(e|e)

]
≥ − log

[∑
e

pE(e)pA|E(e|e)
]

= − log
[∑

e

pAE(e, e)
]

= − log
[ ∑
e,x,y

pXY (x, y)pAE|XY (e, e|x, y)
]

= − log
[ 1
24
∑
e,x,y

pE|XY (e|x, y) · δe,xy
]

= − log
[ 1
24pE|XY (xy|x, y)

]
= − logSrac

E ,

(21)

where Hmin is the min-entropy and Srac
E is Eve’s

success probability in the same porac task that
Alice and Bob perform. In Eq. (21), the second
equality is assuming an optimal guessing strat-
egy for Eve, and the inequality follows from the
concavity of the logarithm.

The term H(A|B) can always be computed
from the observed behaviour, which Alice and
Bob are able to estimate in the protocol. How-
ever, the monogamy relations derived in the pre-
vious section suggest that it might be advanta-
geous to express H(A|B) in terms of Bob’s suc-
cess probability, which potentially allows us to
bound Eve’s success. In order to be able to ex-
press H(A|B) in terms of Bob’s success probabil-

ity, we assume that independently of the settings
x and y, Bob’s output is b = xy with probabil-
ity Srac

B and b 6= xy with probability 1 − Srac
B

(this holds in the case of the optimal quantum
success probability, or when one assumes a noisy
scenario with uniform noise, e.g. employing the
noisy states ρ̃x = ηρx + (1 − η) Id , where ρx are
the optimal states and d is the dimension). Un-
der these assumptions, H(A|B) = h(Srac

B ), where
h is the binary entropy, and we obtain a bound on
the key rate in terms of the success probabilities
of Eve and Bob,

r ≥ − logSrac
E − h(Srac

B ). (22)

Since the logarithm is monotonically increas-
ing, in order to obtain a lower bound on the
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Figure 4: Lower bound on the key rate as a function
of Bob’s success probability employing the (3, 2)-porac
based key distribution scheme described in the main text,
computed via the relaxation QΠ

1+BE . We see that for
success probabilities Srac

B ' 0.776 close to the optimal
one, Alice and Bob are able to extract a secure key. If
the parties find the success metric to be lower than this
threshold value, the parties abort the protocol in light of
the potential presence of an eavesdropper.

key rate in terms of Bob’s success probabil-
ity, Srac

B , it is enough to upper bound Srac
E in

terms of Srac
B . This can be done using our

semidefinite relaxation techniques, analogously
to the monogamy relations obtained in Sec-
tion 5.1. We employed the projection-based re-
laxation QΠ

1+BE , and found that for a nontriv-
ial region, Srac

B ' 0.776, below the optimal suc-
cess probability Srac

Q ≈ 0.7886751, it is possible
to extract a secure key from the observed be-
haviour (see Fig. 4). Therefore, we have demon-
strated that preparation contextuality leads to
secure semi-device-independent quantum crypto-
graphic protocols11.

6 Summary

In this work, we sought to characterise the be-
haviours appearing in generalised contextuality
scenarios with operational equivalences of prepa-
rations and measurements. To this end, we laid
down a framework for rigorously defining con-
textuality scenarios and the associated polytope

11We note that in Ref. [SBA17] the authors study quan-
tum key distribution based on the monogamy of the
Klyachko–Can–Binicioglu–Shumovsky-type contextuality,
and in Ref. [TF15] the authors propose a quantum key
distribution protocol based on generalised measurement
contextuality. However, up to our knowledge, our pro-
posed protocol is the first demonstration of the potential
of preparation contextuality for semi-device-independent
quantum key distribution.

of valid contextual behaviours, C, in prepare-
and-measure experiments. We studied the set of
quantum contextual behaviours, Q. Moreover,
we defined subsets of quantum contextual be-
haviours, namely, QΠ and QΨ, wherein the ex-
perimental preparation and measurement proce-
dures are restricted to pure states, and projec-
tive measurements, respectively. We established
a number of general properties of these sets of
contextual behaviours, namely, the convexity of
Q (Observation 1), the convexity of QΠ (Obser-
vation 2), and the absolute absence of contex-
tuality in scenarios with only trivial operational
equivalences of preparations (Observation 3) and
in prepare-and-measure experiments with three
or fewer preparations (Observation 4). More-
over, in contextuality scenarios with only trivial
operational equivalences of measurement effects,
it is enough to consider projective measurements
(Observation 5). We also find that in some sce-
narios the preparations and measurements actu-
ally appearing in an experiment (as opposed to
their hypothetical counterparts appearing only in
operational equivalences) must be mixed states
and unsharp measurements, respectively, in order
to violate noncontextuality, or to produce maxi-
mally contextual quantum behaviours (Observa-
tions 6 and 7).

With the framework in place, we focused on
developing semidefinite programming techniques
to bound the amount of quantum contextuality,
as measured by the maximum quantum violation
of noncontextuality inequalities. However, the
fact that one needs to consider mixed states and
unsharp measurements presents new challenges.
In particular, one cannot employ simple modifi-
cations of the known semidefinite programming
techniques such as that of Ref. [NPA08]. To ad-
dress these issues, we formulate novel semidefi-
nite programming relaxations. First, to address
the inadequacy of pure states in contextuality
scenarios, our relaxation employs multiple mo-
ment matrices hinged on the corresponding quan-
tum preparations. The operational equivalences
of preparations then semantically extend to lin-
ear constraints on the moment matrices them-
selves. These constraints are notably indepen-
dent of the particulars of the operators indexing
the moment matrices. Second, to address the
inadequacy of projective measurements, we de-
vise a novel formulation of semidefinite program-
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ming relaxations, entailing moment matrices in-
dexed exclusively by monomials of unitary op-
erators. This unitary operator parameterisation
may be of independent interest to readers inter-
ested in noncommuting polynomial optimisation
methods. Our formulation allows one to retrieve
upper bounds on the quantum violation of non-
contextuality inequalities with arbitrary opera-
tional equivalences.

The resulting hierarchies of semidefinite pro-
grams are efficient, as they provide tight bounds
already at low levels. Consequently, we re-
trieve upper bounds on maximum quantum val-
ues, along with numerical proofs of their tight-
ness, for more than twenty-one distinct noncon-
textuality inequalities, spanning a diverse selec-
tion of contextuality scenarios. To demonstrate
the ease of implementation of these techniques,
we provide a code tutorial (Appendix B) for the
avid reader.

Moreover, these techniques also allow us to
bound functionals that are relevant for appli-
cations, specifically, to derive monogamy rela-
tions for preparation contextuality, and to lower
bound secure key rates of a novel semi-device-
independent quantum key distribution scheme
fuelled by quantum advantage in the (3, 2)-porac
task and the monogamy of preparation contextu-
ality.

While in this work we have considered contex-
tuality scenarios with operational equivalences of
preparations and measurements, in general, con-
textuality scenarios may also include operational
equivalences of transformations [Spe05]. Extend-
ing the framework and the SDP technique so as
to include operational equivalences of transfor-
mations forms an essential future research av-
enue. Additionally, proving (or disproving) the
convergence of our SDP hierarchy to the set of
quantum contextual behaviours (in analogy with
the convergence of the Navascués-Pironio-Aćın
hierarchy, approximating the quantum set of be-
haviours in Bell scenarios [NPA08]) presents an-
other immediate research direction.

Note added
While finalising this article, we became aware

of the related work in Ref. [TCUA21], which
also features a hierarchy of SDP relaxations for
bounding the set of quantum contextual be-
haviours. The hierarchy in Ref. [TCUA21] is
considerably different from the one presented
here. The authors employ a single unhinged
moment matrix, and to accommodate the inad-
equacy of pure states and projective measure-
ments, they utilise additional localising moment
matrices, each hinged on a positive semidefinite
operator. For contextuality scenarios with only
trivial measurement equivalences, their hierarchy
should, to the best of our knowledge, perform at
least as well as the one presented here. However,
in the test cases we considered, the present hier-
archy yielded tight bounds with a smaller number
of total variables. Furthermore, in general con-
textuality scenarios with non-trivial operational
equivalences our approach employing unitary op-
erators provides faster convergence. On the
other hand, the hierarchy in Ref. [TCUA21] ad-
mits an interesting generalisation to quantifying
the simulation cost of contextuality.
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A Proofs
In this section we recall the statements from the main text and provide their proofs.

Observation 1. For all contextuality scenarios the set of quantum behaviours Q is convex.

Proof. Let us consider two quantum behaviours appearing in an arbitrary contextuality scenario,
p, p̃ ∈ Q, such that p(k|x, y) = tr

(
ρxM

y
k

)
and p̃(k|x, y) = tr

(
ρ̃xM̃

y
k

)
, where ρx and My

k are quantum
states and measurements on a Hilbert space H, and ρ̃x and M̃y

k are quantum states and measurements
on a Hilbert space H̃, respectively. Furthermore, the quantum preparations ρx and ρ̃x and the quantum
measurement operators My

k and M̃y
k satisfy operational equivalences of form (6).

Consider an arbitrary convex combination, p̂ = λp + (1− λ)p̃, where λ ∈ [0, 1], i.e.,

p̂(k|x, y) = λp(k|xy) + (1− λ)p̃(k|x, y) ∀x, y, k. (23)

We show that p̂ ∈ Q by providing explicit states and measurements, such that p̂(k|x, y) = tr
(
ρ̂xM̂

y
k

)
.

In particular, consider the states,

ρ̂x = λρx ⊕ (1− λ)ρ̃x ∈ B+(H⊕ H̃), (24)

and the measurement operators,

M̂y
k = My

k ⊕ M̃
y
k ∈ B+(H⊕ H̃). (25)

It is straightforward to verify that these direct sums constitute valid quantum states and measurements
on Ĥ = H⊕H̃, satisfy the same operational equivalence constraints (6), and that they indeed reproduce
the desired behaviour, p̂(k|xy) = tr

(
ρ̂xM̂

y
k

)
.

Observation 2. For all contextuality scenarios the subset of quantum behaviours QΠ is convex.

Proof. The proof is identical to the proof of the previous observation. Additionally, observe that if the
measurement operators are projections, i.e., (My

k )2 = My
k and (M̃y

k )2 = M̃y
k for all y and k, then the

the measurement operators of the direct sum measurements are also projections, i.e., (M̂y
k )2 = M̂y

k for
all y and k.

Observation 3. For all contextuality scenarios with only trivial equivalences of preparations, T =
(X,Y,K, ∅,OEM ), all behaviours are noncontextual, i.e., NC = Q = C.

Proof. Let pC ∈ C in scenario T be a generic contextual behaviour with elements pC(k|x, y). Firstly,
consider the quantum strategy in which ρx = |x〉〈x| where {|x〉}x∈[X] is an orthonormal basis of CX
and My

k =
∑
x∈[X] p

C(k|x, y) |x〉〈x|. Since each 0 ≤ pC(k|x, y) ≤ 1 we have that 0 ≤ My
k ≤ I, and

since
∑
k∈[K] p

C(k|x, y) = 1 we find
∑
k∈[K]M

y
k = I for all x ∈ [X] and y ∈ [Y ]. Moreover, it is

straightforward to verify that this strategy reproduces the given behaviour. Finally, noting that since
pC ∈ C and therefore satisfies Eq. (4), we find that these measurements satisfy operational equivalence
conditions (6) as,

∑
k∈[K],y∈[Y ]

βwj (k, y)My
k =

∑
x∈[X]

 ∑
k∈[K],y∈[Y ]

βwj (k, y)pC(k|x, y)

 |x〉〈x| = ∑
x∈[X]

ew |x〉〈x| ≡ Fw, (26)

for all w ∈ [W ] and all j ∈ [Ww]. Thus we have shown Q = C.
Similarly, we may show NC = C as follows. Consider an ontological model with a discrete ontic

state space Λ ≡ [X], and let µx for x ∈ [X] be epistemic states such that µx(x) = 1, for all x ∈ [X].
Furthermore, consider the response schemes ξMy(k|x) = pC(k|x, y), for all x ∈ [X] = Λ, k ∈ [K]
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and y ∈ [Y ]. Clearly, this strategy reproduces the observed behaviour as
∑
λ∈[X] µx(λ)ξMy(k|λ) =

pC(k|x, y). Finally, we find this strategy satisfies the measurement equivalences in (5) since∑
k∈[K],y∈[Y ]

βwj (k, y)ξMy(k|x) =
∑

k∈[K],y∈[Y ]
βwj (k, y)pC(k|x, y) = ew, (27)

for all x ∈ [X], w ∈ [W ] and all j ∈ [Ww].

Observation 4. For all contextuality scenarios with three or fewer preparation procedures, T = (X ≤
3, Y,K,OEP ,OEM ), all behaviours are noncontextual, i.e., NC = Q = C.

Proof. Notice that in such contextuality scenarios, up to relabelling, there is only one non-trivial
family of sets of operational equivalences of preparations when X = 3, namely,

P2 ' αP0 + (1− α)P1 (28)

for some α ∈ [0, 1]. We will show the result directly, however note that it could also be shown using
Observation 3 and showing that since one of the preparations is a convex combination of the other
two, the scenario reduces to that with two preparations and no preparation equivalences.

Given a behaviour pC ∈ C, one can verify that the quantum preparations represented by the density
matrices ρ0 = |0〉〈0|, ρ1 = |1〉〈1| and ρ2 = αρ0 + (1 − α)ρ1 and the operators My

k = pC(k|0, y) |0〉〈0| +
pC(k|1, y) |1〉〈1| satisfying 0 ≤ My

k ≤ I, and
∑
k∈[K]M

y
k = I, reproduces the observed behaviour as

tr
(
ρxM

y
k

)
= pC(k|x, y). Moreover, these quantum preparations satisfy operational equivalences (28).

Hence, we have shown Q = C.
Now consider an ontological model, with a discrete ontic state-space Λ ≡ {0, 1}, three epistemic

states µ0(0) = 1, µ1(0) = 0, µ2(0) = α, and Y measurements, My, with response schemes ξMy(k|x) =
pC(k|x, y), for all x ∈ Λ and k ∈ [K]. This model not only reproduces the observed behaviour as∑
λ∈{0,1} µx(λ)ξMy(k|λ) = pC(k|x, y), but the epistemic states also satisfy the operational equivalences

implied by (28). This implies that NC = C, which concludes the proof.

Observation 5. For all contextuality scenarios with only trivial equivalences of measurement effects
T ≡ (X,Y,K,OEP , ∅), projective measurements are sufficient to recover the quantum set, i.e., Q =
QΠ.

Proof. For every quantum behaviour, p ∈ Q, appearing in an arbitrary contextuality scenario of the
form (X,Y,K,OEP , ∅), there exist density operators {ρx}X−1

x=0 satisfying the operational constraints
OEP of the form (6), and POVMs

{
{My

k }
K−1
k=0

}Y−1
y=0 , on a finite-dimensional Hilbert space H, such that

p(k|x, y) = tr
(
ρxM

y
k

)
(29)

for all x, y, k. Starting from this construction, we show that there also exists a set of density
operators {ρ̂x}X−1

x=0 satisfying the same operational constraints OEP , and projective measurements{
{P yk }

K−1
k=0

}Y−1
y=0 , on a finite-dimensional Hilbert space K, such that

p(k|x, y) = tr
(
ρ̂xP

y
k

)
(30)

for all x, y, k.
Our main technical tool is Naimark’s dilation theorem.

Theorem 1 (Naimark dilation theorem). For every POVM {Mk}K−1
k=0 on a finite-dimensional Hilbert

space H, there exists another finite-dimensional Hilbert space K, an isometry V : H → K and a
projective measurement {Pk}K−1

k=0 on K, such that for every state ρ on H, we have that

tr(ρMk) = tr
(
V ρV †Pk

)
. (31)
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Let us apply Naimark’s dilation theorem to the first measurement, {M0
k}

K−1
k=0 . In particular, there

exists a finite-dimensional Hilbert space K0, an isometry V0 : H → K0, and a projective measurement
{P 0

k }
K−1
k=0 on K0, such that

tr
(
ρxM

0
k

)
= tr

(
V0ρxV

†
0 P

0
k

)
(32)

for all x, k. Following from the isometry property, V †0 V0 = IH, it follows that for the rest of the
measurement operators we have

tr
(
ρxM

y
k

)
= tr

(
V0ρxV

†
0 V0M

y
kV
†

0

)
(33)

for all x and k, and for all y = 1, 2, . . . , Y − 1.
Let us now define ρ(0)

x ≡ V0ρxV
†

0 . It is clear that ρ(0)
x ≥ 0 and tr

(
ρ

(0)
x

)
= 1, and therefore it is a valid

state on K0. Note that in order to define new measurement operators, it is not enough to consider the
operators V0M

y
kV
†

0 , since the sum of these over k is V0V
†

0 , which is not equal to the identity in general.
Let us therefore define My,(0)

k ≡ V0M
y
kV
†

0 + IK0 − V0V
†

0 for all y = 1, 2, . . . , Y − 1 and M0,(0)
k ≡ P 0

k . It
is straightforward to verify that all My,(0)

k ≥ 0 (since they are sums of positive semidefinite operators),
and that

∑
kM

y,(0)
k = IK0 for all y. Moreover, it is also easy to see that

p(k|x, y) = tr
(
ρ(0)
x M

y,(0)
k

)
(34)

for all x, y, k, and by construction, the measurement {M0,(0)
k }K−1

k=0 is projective.
In the next step, we apply Naimark’s dilation theorem to the measurement {M1,(0)

k }K−1
k=0 . In par-

ticular, there exists a finite-dimensional Hilbert space K1, an isometry V1 : K0 → K1 and a projective
measurement {P 1

k }
K−1
k=1 on K1, such that

tr
(
ρ(0)
x M

1,(0)
k

)
= tr

(
V1ρ

(0)
x V †1 P

1
k

)
(35)

for all x, k. Let us now define the states ρ(1)
x ≡ V1ρ

(0)
x V †1 and the measurement operators M1,(1)

k ≡ P 1
K

and My,(1)
k ≡ V1M

y,(0)
k V †1 + IK1 − V1V

†
1 for all y 6= 1, on the Hilbert space K1. It is straightforward to

verify that that {M0,(1)
k }K−1

k=0 is still a projective measurement, and that with this notation we have
that

p(k|, x, y) = tr
(
ρ(1)
x M

y,(1)
k

)
(36)

for all x, y, k, where the measurements {M0,(1)
k }K−1

k=0 and {M1,(1)
k }K−1

k=0 are projective.
It is clear now that the Naimark dilation theorem can be applied successively until every mea-

surement is projective. Formally, for every n = 0, . . . , Y − 1, we recursively define the measurement
operators

M
y,(n)
k ≡

{
Pnk if y = n

VnM
y,(n−1)
k V †n + IKn − VnV †n if y 6= n,

(37)

acting on the Hilbert space Kn, which, together with the projective measurement {Pnk }
K−1
k=0 , and the

isometry Vn : Kn−1 → Kn, describes the Naimark dilation of the measurement {Mn,(n−1)
k }K−1

k=0 . In
order to be able to start the recursive definition, we set My,(−1)

k ≡ My
k for all y, k and K−1 ≡ H.

Similarly, we recursively define the states

ρ(n)
x ≡ Vnρ(n−1)

x V †n (38)

on the Hilbert space Kn, and set ρ(−1)
x ≡ ρx. It follows that the measurements

{
{My,(Y−1)

k }K−1
k=0

}Y−1
y=0

are all projective on the Hilbert space KY−1, and the states ρ
(Y−1)
x , on the same Hilbert space,
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satisfy the operational constraints OEP , due to the linearity of the transformation ρx 7→ ρ
(Y−1)
x ≡

VY−1VY−2 · · ·V0ρxV
†

0 . . . V
†
Y−2V

†
Y−1. Moreover, we have that

p(k|x, y) = tr
(
ρ(Y−1)
x M

y,(Y−1)
k

)
(39)

for all k, x, and y, which concludes the proof.

Observation 6. In general, for contextuality scenarios with non-trivial equivalences of preparations,
pure states cannot produce all quantum contextual behaviours, i.e., QΨ ( Q.

Proof. In the simplest non-trivial contextuality scenario (4, 2, 2,OEP , ∅), consider the (2, 2)- setup
with an operational equivalence of the form 1

2P00 + 1
2P11 ' P01. Now, if we demand that the involved

preparations are pure quantum states, i.e., ρ2
x0,x1 = ρx0,x1 for all x0, x1 ∈ {0, 1}, it is straightforward

to see that the constraints implied by the given operational equivalence can only be satisfied when
the three quantum preparations featuring in the operational equivalence condition are identical. This
observation in turn leads to the upper bound on the performance of pure states in the task, Srac

QΨ = 3
4 ,

saturated by the strategy, ρ1,0 = |0〉〈0| and ρ1,1 = ρ0,0 = |1〉〈1| and M0
0 = M1

1 = |1〉〈1|. One can
see that this strategy is indeed optimal from the upper bound retrieved from the first level of our
pure-state based relaxation, Srac

QΨ
1

= 3
4 , or analytically. Now, the noncontextual bound, quantum lower

bound, and the upper bound obtained via the first level of our projection-based and unitary-based
hierarchy are identical Srac

NC = Srac
QL = Srac

QΠ
1

= 7
8 , showing that Srac

QΨ � Srac
Q and hence QΨ ( Q.

Alternatively, we obtain a numerical proof by considering the scenario (4, 2, 2,OEP (α), ∅) and noting
that there exist non-empty intervals of the value α for which Srac

QΨ
1
< Srac

Q as shown in Fig. 2.

Observation 7. In general, for contextuality scenarios with non-trivial equivalences of measurement
effects, projective measurements cannot produce all quantum contextual behaviours, i.e., QΠ ( Q.

Proof. Consider the contextuality scenario (32, 2, 3,OEP ,OEM ) motivated by the (2, 3)-mporac task,
a generalization of the (2, 2)-mporac, wherein Alice is encoding two trits x0, x1 ∈ [3]. Operational
equivalences of preparations are such that the parity trit (x0 + x1) mod 3 remains secret, explicitly
the hypothetical preparations 1

3(Paj + Pbj + Pcj ) are equivalent for all j ∈ {0, 1, 2} where aj , bj , cj are
the three pairs of trits summing to j. Additionally, Bob has two three outcome measurements with
operators {My

k }
1,2
y=0,k=0 which satisfy the following equivalence conditions of measurement effects,

1
2[0|M0] + 1

2[0|M1] ' 1
2[1|M0] + 1

2[1|M1] ' 1
2[2|M0] + 1

2[2|M1]. (40)

We shall now demonstrate that the operational equivalences (40) do not allow for any projective mea-
surements, rendering the set of quantum contextual behaviour obtained when the individual quantum
measurements are projective QΠ to be ∅. It is straigtforward to see that the operational equivalences
(40) necessitate the following constraints on quantum measurement effects,

1
2

 M0
0 +M1

0
M0

1 +M1
1

M0
2 +M1

2

 '


I
3
I
3
I
3

 . (41)

Let us now assume that each My
k is a projection, i.e., (My

k )2 = My
k . Now from the equation (41) we

have M1
k = 2I

3 −M
0
k , for all k ∈ {0, 1, 2}, which leads us to,

(M1
k )2= 4I

9 −
4M0

k

3 + (M0
k )2,

= 4I
9 −

M0
k

3 , (42)
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Figure 5: A quantum strategy for (2, 3)-mporac task, in the contextuality scenario (32, 2, 3,OEP ,OEM ), wherein
the nine preparation settings are indexed by two trits x0, x1 ∈ [3], the set OEP entails operational equivalences of
preparations such that the parity trit (x0 + x1) mod 3 remains a secret, and OEM entails operational equivalences
of measurement effects of the form (40). This strategy violates the noncontextual bound and attains Srac

QL
=

0.5257834 > Srac
N C = 0.5 > Srac

QΠ = 1
3 . Here, the displayed projections (right) Πy

k are scaled down to become
measurement operators My

k = 2
3Πy

k for all y ∈ [2] and k ∈ [3], which allows for the violation of the noncontextual
bound, and a success metric gain of Srac

QL
≈ 0.5257834−0.3333333 = 0.1924501. This constitutes a part of the proof

of Observation 7, wherein we show that a any strategy wherein all effects are projections is simply not allowed in this
task, thereby demonstrating that in certain universal contextuality scenarios unsharp measurements can outperform
the sharp measurements.

where the second equality follows from the projectivity assumption (M0
k )2 = M0

k . On the other hand
the assumption (M1

k )2 = M1
k implies 2I

3 −M
0
k = 4I

9 −
M0
k

3 which yields M0
k = I

3 for any k ∈ {0, 1, 2},
which is not a projection, and therefore contradicts our initial projectivity assumption. The maximal
noncontextual success probability of (2, 3)-mporac is greater than 1

3 , i.e., SNC = 1
2 . Finally, there exist

POVMs satisfying the constraints (41), such as those depicted in Fig. 5. The states and POVMs in Fig.
5 show that Q is non-empty which concludes the proof (the strategy also surpasses the noncontextual
bound SNC = 1

2 and achieve a success probability of SQL ≈ 0.5257834, while the first level of our
unitary-based hierarchy returns the bound SQ1 = 0.5555555).

We stumbled upon another numerical proof for the desired thesis while testing our relaxations on
the facet inequalities in the contextuality scenario (6, 3, 2,UP ,UM ) from [SSW18]. Specifically, the
seventh inequality in Table 1 (which was listed as a facet inequality in [SSW18] due to a typing error)
has a lower value when we restrict ourselves to projective measurements SQΠ

1
= SQΠ

L
= 3.4641016, as

compared to even the noncontextual bound SNC = 7
2 , and to the quantum lower bound SQL = 7

2 , and
the bounds obtained from the first and second level of our unitary based relaxation SQ1 = 3.5552760
and SQ2 = 3.5.

Lemma 1. Any operator 0 ≤ M ≤ I on a finite dimensional Hilbert space H can be written as
M = I

2 + U+U†
4 , where U is a unitary operator on H.

Proof. Every such operator M can be written in terms of its spectral decomposition,

M =
dimH−1∑
j=0

λj |j〉〈j| , (43)

where {|j〉}dimH−1
j=0 is an orthonormal basis on H (the eigenbasis of M), and 0 ≤ λj ≤ 1 for all j.

Then, consider the unitary operator,

U =
dimH−1∑
j=0

eiαj |j〉〈j| ,
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such that λj = 1
2(1 + cosαj). Notice that such a set {αj}j can always be found for any set {λj}j

satisfying 0 ≤ λj ≤ 1 for all j. Therefore, it holds that

M =
dimH−1∑
j=0

1
2(1 + cosαj) |j〉〈j| =

dimH−1∑
j=0

[1
2 + 1

4(eiαj + e−iαj )
]
|j〉〈j| = I

2 + U + U †

4 .

Lemma 2. The maximal noncontextual success probability of (n, 2)-mporac remains the same as the
maximal noncontextual success probability of the (n, 2)-porac, that is, Srac

NC = 1
2(1 + 1

n).

Proof. As the (n, 2)-mporac has additional measurement equivalence constraints compared to the
standard (n, 2)-porac—which has the noncontextual bound 1

2(1 + 1
n)– we have that Srac

NC ≤ 1
2(1 + 1

n).
All we need to prove is that 1

2(1 + 1
n) is a viable success probability in presence of the additional

operational equivalences of measurement effects. Let us consider a binary ontic state space Λ = {0, 1}.
Further, we consider the epistemic states that simply encode the first bit of Alice, that is, µx(x0) = 1,
and are consequently noncontextual. Finally, let the response schemes be given by ξM0(λ|λ) = 1,
and ξMy(λ|λ) = n−2

2(n−1) for all y 6= 0. These response schemes satisfy the additional operational
equivalences of the (n, 2)-mporac task, specifically, 1

n

∑
y∈[n] ξMy(0|.) = 1

n

∑
y∈[n] ξMy(1|.) = 1

2 , and
hence are noncontextual. It is straightforward to verify that these epistemic states and response
schemes achieve the desired success probability SracNC = 1

2(1 + 1
n), which concludes the proof.
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B Tutorial code
As a demonstration of the ease of implementation of the relaxations presented in this work, we provide a
basic verbose code for the universal contextuality scenario (6, 3, 2,UP ,UM ), where we have the following
operational equivalences,

1
2(P0 + P1) ' 1

2(P2 + P3) ' 1
2(P4 + P5), (44)

1
3([0|M0] + [0|M1] + [0|M2]) ' 1

3([1|M0] + [1|M1] + [1|M2]). (45)

Here we will be employing Matlab in conjunction with a standard optimization toolbox YALMIP,
and SDPT3 as our SDP solver.

For this scenario we will employ the operator sequence O = (I) ‖ (Uyk , U
y
k
†)Y−1,K−2
y=0,k=0 . We begin by

declaring the specifications of the prepare-and-measure experiment, the total number of operators,
empty arrays for the constraints, a probability cell for storing the observed behaviour, an empty array
to for the results, and X SDP variables,

X = 6; % six settings for the preparation device
Y = 3; % three settings for the measurement device
K = 2; % binary outcomes
O = 2*Y*(K−1)+1; % total number of operators in our list
conP = []; % an empty list for constraints on the moment matrix level
conM = []; % an empty list for constraints on the substrate level
Prob = cell(X,Y,K−1); % a cell for probabilities
S = []; % an empty list for upper bounds
G = cell(X,1); % cell for X moment matrices

It is a feature of our formulation that one can easily segregate constraints on abstract moment matrices,
from those that depend specifically on the operators in the operator list. The former includes the
following constraints that ensue from the positive semidefiniteness of the quantum states, and the
equivalence conditions of the preparations (44),

for x = 0:X−1
G{x+1}=sdpvar(O,O,'hermitian','complex'); % declaration of our SDP variables
conP = [conP;G{x+1} ≥ 0]; % semi−definite constraints

end
conP = [conP; G{1} + G{2} == G{3} + G{4}; G{1} + G{2} == G{5} + G{6}]; % preparation ...

equivalences

Now, let us collect constraints that are specific to the operator list we are employing. First, we create
an indexing function which returns the position of the operator in each moment matrix, given the
operator specifiers,

idx = @(y, k, u) 2*(K−1)*y + 2*k + u + 2; % function to return the position of the ...
operators

where Uy,u=0
k = Uyk , and Uy,u=1

k = Uyk
†
. Let us now specify how the operators {Uyk

†}Y−1,K−2
y=0,k=0 are

related to {Uyk }
Y−1,K−2
y=0,k=0 , along with the constraints that ensue from the unitarity of the operators in

our list,

for x = 0:X−1
for y = 0:Y−1

for k = 0:K−2
conM = [conM; G{x+1}(1,idx(y,k,0)) == G{x+1}(idx(y,k,1),1)];
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conM = [conM; G{x+1}(idx(y,k,0),1) == G{x+1}(1,idx(y,k,1))];
end

end
for j = 1:O

conM = [conM; G{x+1}(j,j) == 1]; % unitarity constraints
end

end

The measurement equivalences (45) amount to additional constraints on the unitary operators,
specifically,

Y−1∑
y=0

(Uy0 + Uy0
†) = 0 (46)

which can be enforced in the following way, specific to our operator list,

for x = 0:X−1
for j = 1:O

sum1 = 0; sum2 = 0;
for y = 0:Y−1

for k = 0:K−2
sum1 = sum1 + G{x+1}(j,idx(y,k,0)) + G{x+1}(j,idx(y,k,1));
sum2 = sum2 + G{x+1}(idx(y,k,0),j) + G{x+1}(idx(y,k,1),j);

end
end
conM = [conM; sum1 == 0; sum2 == 0]; % measurement equivalences

end
end

We can now collect the observed data, p(k|x, y) = 1
2 + 1

4(tr
{
ρxU

k
y

}
+ tr

{
ρxU

k
y
†}),

for x = 0:X−1
for y = 0:Y−1

for k = 0:K−2
Prob{x+1,y+1,k+1} = 0.5 + 0.25 * (G{x+1}(1, idx(y,k,0)) + G{x+1}(1, ...

idx(y,k,1)));
end

end
end

Now we are in the position to retrieve quantum bounds on facet inequalities in Table 1 and in
[SSW+21],

S1 = real(Prob{1,1,1} + Prob{3,2,1} + Prob{5,3,1});
diagnostics = optimize([conP;conM], −S1, sdpsettings('solver', 'sdpt3'));
S = [S;value(S1)];
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S2 = real(Prob{1,1,1} + Prob{2,2,1} + Prob{5,3,1});
diagnostics = optimize([conP;conM], −S2, sdpsettings('solver', 'sdpt3'));
S = [S;value(S2)];
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S3 = real(Prob{1,1,1} − Prob{3,1,1} −2 * Prob{5,1,1} −2 * Prob{2,2,1} + 2 * ...

Prob{3,2,1} + 2 * Prob{5,3,1});
diagnostics = optimize([conP;conM], −S3, sdpsettings('solver', 'sdpt3'));
S = [S;value(S3)];
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S4 = real(2* Prob{1,1,1} − Prob{2,2,1} +2* Prob{3,2,1});
diagnostics = optimize([conP;conM], −S4, sdpsettings('solver', 'sdpt3'));
S = [S;value(S4)];
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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S5 = real(Prob{1,1,1} − Prob{5,1,1} + Prob{2,2,1} + Prob{3,2,1} + 2 * Prob{5,3,1});
diagnostics = optimize([conP;conM], −S5, sdpsettings('solver', 'sdpt3'));
S = [S;value(S5)];
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S6 = real(Prob{1,1,1} − Prob{5,1,1} + 2*Prob{2,2,1} + 2 * Prob{5,3,1});
diagnostics = optimize([conP;conM], −S6, sdpsettings('solver', 'sdpt3'));
S = [S;value(S6)];
%−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
S7 = real(Prob{1,1,1} − Prob{4,1,1} −2 * Prob{5,1,1} −2 * Prob{2,2,1} + 2 * ...

Prob{3,2,1} + 2 * Prob{5,3,1});
diagnostics = optimize([conP;conM], −S7, sdpsettings('solver', 'sdpt3'));
S = [S;value(S7)];

where the first six expressions correspond to the facet inequalities of the noncontextual polytope in
this scenario (see Table 1), while the seventh expression from equation (26) in [SSW+21] is the third
facet inequality with a typing error. We can display the results by

format long;
disp(S)
>>3.000000003034520
>>2.866025404556603
>>3.920951869054678
>>3.366025404977135
>>4.688901060747579
>>4.645751315302937
>>3.555276067392406
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Figure 6: Quantum protocols that attain maximal quantum values (upto machine precision) for all six facet inequal-
ities in the contextuality scenario (6, 3, 2,UP ,UM ), where pyx = p(0|x, y). The states and the measurements are
depicted on a plane of the Bloch sphere. In each case, the states ρ0, ρ2, ρ4 are depicted with solid black arrows, the
states ρ1, ρ3, ρ5 are represented by dashed black arrows, and the projections Π0

0,Π1
0,Π2

0 are represented by dashed
red arrows. In each case, ρ0 + ρ1 = ρ2 + ρ3 = ρ4 + ρ5 = I, according to UP . Observe that for the second, fourth
and sixth inequalities, we have skipped pairs of states that do not feature in the expression of the respective facet
inequalities, as these can be arbitrary, as long as they add up to I. Finally, the measurements remain unaltered for
all six facet inequalities, that is, Π0

0 + Π1
0 + Π2

0 = 3I
2 , according to UM .
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