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One of the basic distinctions between
classical and quantum mechanics is the
existence of fundamentally incompatible
quantities. Such quantities are present
on all levels of quantum objects: states,
measurements, quantum channels, and
even higher order dynamics. In this
manuscript, we show that two seemingly
different aspects of quantum incompati-
bility: the quantum marginal problem of
states and the incompatibility on the level
of quantum channels are in many-to-one
correspondence. Importantly, as incom-
patibility of measurements is a special case
of the latter, it also forms an instance of
the quantum marginal problem. The gen-
erality of the connection is harnessed by
solving the marginal problem for Gaussian
and Bell diagonal states, as well as for pure
states under depolarizing noise. Further-
more, we derive entropic criteria for chan-
nel compatibility, and develop a converg-
ing hierarchy of semi-definite programs for
quantifying the strength of quantum mem-
ories.

1 Introduction

Incompatibility of measurements is one of the
most intriguing features of quantum theory [1].
It refers to the fact that certain measurements
cannot be performed simultaneously. Although
being an abstract concept on the mathemati-
cal level, measurement incompatibility is impor-
tant also from an experimental perspective. It
gives rise to the non-classical behaviour in var-
ious quantum protocols such as quantum steer-
ing [2–5], contextuality [6, 7], tests of macroreal-

ism [8, 9], quantum communication [10–18], and
non-locality [19, 20]. Crucially, any set of incom-
patible measurements results in genuinely quan-
tum behavior given that one possesses a prop-
erly chosen catalyst state. Conversely, compat-
ible measurements give rise to only classical be-
havior regardless of how the system is prepared.

Being intimately related to the quantum ad-
vantage in various tasks, it becomes desirable to
search for the fundamental properties of quantum
theory that allow for the existence of incompat-
ible measurements. Motivated by this question,
we attack the problem with a general approach
towards the fact that not all quantum resources
can be broadcasted. More precisely, we show that
a recently introduced concept of channel incom-
patibility, which includes measurement incompat-
ibility and no-broadcasting as special cases, is
one-to-many connected to an instance of the so-
called quantum marginal problem.

The quantum marginal problem asks whether,
for a set of reduced states, there is a global state
that has these states as its marginals. In general,
the quantum marginal problem, which is also
known as the N -representability problem [21], is
considered to be one of the most fundamental un-
solved problems in quantum chemistry [22]. In
fact, the general problem is proven to be QMA-
complete [23]. Similar to measurement incom-
patibility, the marginal problem has strong im-
plications on practical applications. Namely, it is
related to the monogamy of entanglement, which
refers to the fact that entanglement cannot be
shared arbitrarily [24].

In this manuscript, we focus on an instance of
the quantum marginal problem, that is the most
relevant from the viewpoint of quantum corre-
lations. This allows us to demonstrate the im-
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portance of our results on a broad range of top-
ics, e.g., quantum memories and various relevant
marginal problems. More precisely, we develop
an efficient method for deciding the strength of
quantum memories, based on semidefinite pro-
gramming (SDP). Moreover, we derive entropic
criteria for channel incompatibility, characterize
the antidegradability of qubit channels, and solve
the marginal problem for the general Gaussian
case, for pairs of Bell-diagonal states, and for
pairs of general pure states under depolarizing
noise.

2 Quantum marginal problem

Given a collection of |k| states {%Jk}
|k|
k=1 where

Jk ⊂ I and I = {1, . . . , n}, the question is
whether there exists a global state %I on HI , such
that %Jk = trI\Jk [%I ] for all k. For example, given
two bipartite states %AB1 and %AB2 the problem is
to find a tripartite state %AB1B2 compatible with
them.

Partial results on the quantum marginal prob-
lem are known [25–28], however, most of them
concern non-overlapping marginals, i.e. the
case of disjoint sets Jk and concern only pure
global states. We concentrate on an instance of
the quantum marginal problem, where all given
marginals are bipartite and overlap on a single
party, namely I := {A,B1, . . . , Bn} and Jk =
{A, Bk}. One immediate necessary condition for
the existence of a global state is the common
marginal on A, i.e. %A = trBk [%ABk ] is the same
for all k. In our scenario, the global state does
not need to be pure.

As a special case we have symmetric extendibil-
ity: A bipartite state %AB is said to have n sym-
metric extensions if there exists a state %AB1...Bn

such that %AB = trI\ABk [%AB1...Bn ] for all k. The
set of states possessing n symmetric extensions
for all n ≥ 2 coincides with the set of separable
states [29–32].

A natural quantifier regarding the marginal
problem is the consistent robustness. In the sim-
plest case, one has a pair of bipartite states % :=
(%AB1 , %AB2) sharing a common first marginal %A.
The consistent robustness is defined as

RcF [%] = min
{
t ≥ 0

∣∣∣∣%+ tτ

1 + t
∈ F

}
, (1)

where the optimization is performed over all non-
negative real numbers t and pairs of states τ :=

(τAB1 , τAB2) having %A as the first marginal. The
set F denotes those pairs of states for which the
marginal problem has a solution. Note that we
do not restrict the pairs τ to belong to the set F .
The consistent robustness can be defined analo-
gously for the problem of symmetric extendibility
and for sets of three or more states.

3 Quantum channels and compatibility

Quantum channels, which are completely positive
trace preserving maps, describe changes in quan-
tum systems induced by, e.g., measurements or
time evolution. These are linear maps on oper-
ators taking states of an input system HA into
states of the output system HB; we denote such
channels as ΦA→B.

To introduce channel compatibility, we need
three systems denoted as HA, HB1 , and HB2 .
Channels ΦA→B1 and ΦA→B2 are called com-
patible if there exists a broadcasting channel
from which they can be obtained as marginals
[33]. More precisely, compatibility refers to
the existence of a channel ΦA→B1B2 such that
ΦA→B1(%) = trB2 [ΦA→B1B2(%)] and ΦA→B2(%) =
trB1 [ΦA→B1B2(%)] for all input states %. This for-
mulation can be directly generalized to sets of
channels: Consider the set I := {A,B1, . . . , Bn}
and its subsets Jk = {A, Bk}, each associated
with a channel ΦJk := ΦA→Bk . These chan-
nels are compatible if there is a channel ΦI with
the input system A and the multipartite out-
put Hilbert space HB1 ⊗ · · · ⊗ HBn such that
ΦJk(%) = trI\Jk [ΦI(%)] for all input states %.

We note that channel compatibility is a natu-
ral generalization of measurement compatibility,
i.e., the property of having a simultaneous read-
out for many measurements [33]. This follows
directly from identifying measurements as chan-
nels with classical outputs and noting that the
broadcast channel corresponds to the simultane-
ous readout. On top of being more general, chan-
nel compatibility differs from measurement com-
patibility in a crucial manner: Channels can be
incompatible with themselves. A channel ΦA→B
is n-extendible, i.e., it is n times compatible with
itself, if it can be broadcasted n times by some
channel. These channels are very well known in
the literature (see, e.g. Refs. [33–36] and Refs.
therein). A channel is 2-extendible if and only
if it is a post-processing of its conjugate chan-
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nel [33, 34]. Such channels are also called an-
tidegradable. Channels that are n-extendible for
any n ≥ 2 are exactly the entanglement breaking
channels (or measure-and-prepare channels) [33].

Similarly to the marginal problem, channel in-
compatibility has a natural quantifier called the
generalized robustness. For a channel tupleΛ one
defines the generalized robustnessRgF (Λ) with re-
spect to compatible tuples F as

RgF (Λ) = min
{
t ≥ 0

∣∣∣∣Λ + tΓ

1 + t
∈ F

}
, (2)

where the optimization is over channel tuples Γ.
For a single channel, one can take the set F to be
channels that are n-extendible.

4 The channel-state dualism

In this paper, we mainly work with finite-
dimensional Hilbert spaces. We present the
methodology for this setting in the main text
and discuss the straight-forward generalization to
the infinite-dimensional case in Appendix G. The
infinite-dimensional case is only needed for the
Gaussian scenario.

Whenever %A =
∑
n tn |n〉〈n| is a full-rank state

on HA with the canonical purification |ΩA〉 :=∑
n

√
tn |nn〉, we denote for all channels ΦA→B

the |ΩA〉-Choi state as S|ΩA〉(ΦA→B) := (id ⊗
ΦA→B)(|ΩA〉〈ΩA|). Recall that, traditionally in
the finite-dimensional setting, the Choi-state of
a channel ΦA→B is defined w.r.t. the maximally
entangled vector |ΩA〉 = d

−1/2
A

∑dA−1
n=0 |nn〉. In

the infinite-dimensional case however, this vec-
tor is not available and we have to content our-
selves with the Choi-states defined w.r.t. more
general maximally entangled vectors. According
to Refs. [5, 37], the map S|ΩA〉 is a well defined
bijection between the set of channels ΦA→B and
the set of bipartite states %AB with the fixed first
marginal trB[%AB] = %A.

Conversely, when %AB is a state on HA ⊗HB,
we can assume that the reduced state %A =
trB[%AB] is of full rank by restricting the dimen-
sion of the subsystem A. By giving %A the canon-
ical purification |ΩA〉, we call the unique channel
ΦA→B(%) := trA[%AB(%−1/2

A %TA%
−1/2
A ⊗ 1HB )] the

|ΩA〉-Choi channel of %AB. Here %TA is the par-
tial transpose of % on the system A.

5 Main result

Having an equal marginal on Alice’s side is a nec-
essary condition for the existence of a solution to
the marginal problem. As this amounts to fixing
the mapping in the Choi-Jamiołkowski isomor-
phism, we are ready to state our main result.

Theorem 1. Fix the Choi-Jamiołkowski isomor-
phism, i.e., the full-rank state on HA and its
canonical purification. A set of channels is com-
patible if and only if the marginal problem in-
volving their Choi states has a solution. More-
over, this connection is quantitative in that the
consistent robustness of the marginal problem in
Eq. (1) matches with the incompatibility robust-
ness of the channels in Eq. (2).

The proof can be found in Appendix A. Note
that as a special case of the result one gets a
connection between symmetric extendibility and
self-compatibility of channels.

6 From states to channels: quantum
memories

A prominent way of quantifying the strength of
quantum memories is by asking how close the cor-
responding quantum channel is to a measure-and-
prepare channel. The generalised robustness with
respect to measure-and-prepare channels gives a
reasonable measure of such distance, as it has
the basic properties one expects from a resource
quantifier, i.e., faithfulness, monotonicity, con-
vexity, and stability under tensor products [38].
The quantifier has also an operational meaning
as the amount of advantage a quantum memory
can give over memoryless channels in correlation
tasks [17, 38]. The quantifier is simply called the
robustness of quantum memories (RoQM). Al-
though having many desired properties, RoQM
has one drawback: general methods for its effi-
cient evaluation remain unknown. We note that
approximate methods were developed in Ref. [38].

Here, we provide a strategy for the efficient
evaluation of the RoQM. Measure-and-prepare
channels are closely related to separable states
through the Choi-Jamiołkowski isomorphism. As
the set of separable states can be characterised
with a converging hierarchy of SDPs, Theorem
1 can be used to develop a hierarchy of SDPs
converging to the RoQM. On the round n of the
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Figure 1: Generalized robustness of depolarizing chan-
nel Λ(ρ) = (1 − ν)ρ + ν 1

d1d for d = 2 with respect to
the set F of measure-and-prepare channels. Solutions
for 1− 5 levels of hierarchy [39,40] are compared to the
exact solution obtained with PPT condition [41].The hi-
erarchy of [39,40] becomes computationally demanding
for higher levels. In practice, a PPT condition can be
added to each level of this hierarchy, which in our case
would lead to its convergence at level 1.

hierarchy, one calculates the robustness with re-
spect to n-extendible channels. As n-extendible
channels form a superset of n+1-extendible chan-
nels, every round of the hierarchy gives a lower
bound on the next one, see Fig. 1. The hierarchy
converges to the RoQM, as infinitely many times
extendible channels coincide with measure-and-
prepare channels [33], see Appendix C for details.

Observation 2. The robustness of quantum
memories can be evaluated with a converging hi-
erarchy of SDPs.

We note that every level of the hierarchy can
be evaluated from correlations between inputs
to the channel and the measurement outcomes
on the output [17, 38]. These correlations cor-
respond to decoding (output measurement) an
encoded message (input state) after it has gone
through the channel. For completeness, we il-
lustrate this technique in Appendix B for both
n-self-compatibility and symmetric extendibility.
This results in an experimentally feasible scenario
for investigating the strength of quantum mem-
ories. Indeed, similar techniques have been used
for experimental evaluation of the robustness of
quantum steering and coherence [42,43].

7 From states to channels: entropic
criteria

For states of low dimension the quantum
marginal problem, and hence compatibility of
channels (see Theorem 1), can be tackled with

0 0.2 0.4 0.6 0.8 1
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Entropic (d=2)
Analytical (d=2)
Entropic (d=16)
Analytical (d=16)

Figure 2: Areas of compatibility of two depolarizing
channels with parameters µ and ν for two cases: d = 2
and d = 16.

SDPs [44, 45]. However, for higher-dimensional
cases this approach becomes computationally de-
manding. One can nevertheless give some ap-
proximate solutions by means of entropic con-
straints, see, e.g., Ref. [46]. Now we demonstrate
the use of Theorem 1 by translating the basic
entropic results into witnesses of channel incom-
patibility.

Observation 3. Incompatibility of channels can
be determined by inequalities satisfied by von
Neumann entropy.

Indeed, let us define the |ΩA〉-entropy of
a channel ΦA→B as the von Neumann en-
tropy of its |ΩA〉-Choi state H|ΩA〉(ΦA→B) =
− tr

[
S|ΩA〉(ΦA→B) logS|ΩA〉(ΦA→B)

]
. Entropy of

the reduced states of |ΩA〉-Choi state of ΦA→B
are simply von Neumann entropy of state %A,
H(%A) for which |ΩA〉 is a canonical purify-
ing vector, and von Neumann entropy of %B =
ΦA→B(%TA), where transpose is taken with respect
to the basis in which |ΩA〉-Choi state of ΦA→B is
defined.

Von Neumann entropy is known to satisfy cer-
tain linear inequalities, namely, strong subaddi-
tivity [47] and weak monotonicity (Eq. (3.2) of
Ref. [48]). The latter can be directly applied to
our problem. It takes the following form for two
channels ΦA→B1 and ΦA→B2

H|ΩA〉(ΦA→B1)+H|ΩA〉(ΦA→B2)
−H(%B1)−H(%B2) ≥ 0. (3)

The above criteria are applicable to channels
of arbitrary dimension and are experimentally
testable e.g. by means of process tomogra-
phy [49]. In Fig. 2 we show the boundaries of the
areas of compatibility of two depolarizing chan-
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nels ΦA→B1 and ΦA→B2 defined as

ΦA→B1(%) = (1− µ)W (q, p)%W (q, p)† + µ

d
1,

(4)

ΦA→B2(%) = (1− ν)W (r, s)%W (r, s)† + ν

d
1,

(5)

with W (q, p) |j〉 = ei
π
d

(q+2j)p |j + q〉, for
q, p, r, s ∈ Zd for dimensions d = 2 and
d = 16 and compare those with analytical results
of Ref. [50] (also given in Eq. (6)). We note that
the entropic criterion in Eq. (3) is not the only
one that can be translated and that the criteria
may depend on the choice of Choi isomorphism
(see Appendix D).

It is clear that the aforementioned entropic con-
straints can also be applied to the problem of
symmetric extendibility (see Appendix D). More-
over, the symmetric extendibility of a bipartite
qubit state has been fully resolved in Ref. [51] and
this result readily characterizes self-compatibility
and, hence, the antidegradability of any qubit-
to-qubit channel. See the straight-forward trans-
lation in Appendix E. A very similar analysis
to characterize the antidegradable qubit-to-qubit
channels has been carried out in [52].

8 From channels to states: depolariz-
ing noise and the Bell-diagonal marginal
problem

Consider two depolarizing channels ΦA→B1 and
ΦA→B2 as defined in Eqs. (4) and (5). The com-
patibility of these channels was completely char-
acterized in Ref. [50]. Namely for µ, ν ∈ [0, 1],
the channels ΦA→B1 and ΦA→B2 are compatible
if and only if

µ+ 2
d

√
µν + ν ≥ 1. (6)

Using Theorem 1 we get the following result.

Observation 4. Consider two pure states
|ϕAB1〉 and |ϕAB2〉, such that the common
marginal %A is of full rank. For µ, ν ∈ [0, 1], there
is a tripartite state %AB1B2 such that %AB1 =
(1 − µ) |ϕAB1〉〈ϕAB1 | + µ1

d%A ⊗ 1d and %AB2 =
(1 − ν) |ϕAB2〉〈ϕAB2 | + ν 1

d%A ⊗ 1d if and only if
inequality (6) holds.

The proof of the above Observation is pre-
sented in Appendix F.

Another result concerns Pauli channels, which
we denote by Φp(%) = p0% + pxσx%σ

†
x +

pyσy%σ
†
y+pzσz%σ

†
z for any probability vector p =

(p0, px, py, pz). According to Ref. [50], channels
Φp and Φq are compatible if and only if there are
real numbers α, β, γ such that Mp,q(α, β, γ) ≥ 0,
where

Mp,q(α, β, γ) =


p0 α β 〈q〉1 − γ
· px γ 〈q〉2 − β
· · py 〈q〉3 − α
· · · pz

 ,
(7)

and 〈q〉1 = 1
2(q0−qx−qy+qz), 〈q〉2 = 1

2(q0−qx+
qy − qz), and 〈q〉3 = 1

2(q0 + qx − qy − qz). Note
that, since the diagonal entries of the above ma-
trix are within the interval [0, 1], we may restrict
the range of the parameters α, β, and γ within
[−1, 1].

A two-qubit state % is called Bell-diagonal if
there is a probability vector p such that % = %p :=
p0 |Ω0〉〈Ω0|+px |Ωx〉〈Ωx|+py |Ωy〉〈Ωy|+pz |Ωz〉〈Ωz|,
where |Ω0〉 := 1√

2(|00〉+ |11〉) and |Ωr〉 := (12 ⊗
σr) |Ω0〉 for r = x, y, z. The following Observa-
tion follows from Theorem 1 and the above result
on compatibility of Pauli channels and provides
the solution to the marginal problem of two Bell-
diagonal two-qubit states.

Observation 5. For probability vectors p and
q, there is a three-qubit state %AB1B2 such that
%AB1 = %p and %AB2 = %q if and only if there are
α, β, γ ∈ [−1, 1] such that Mp,q(α, β, γ) ≥ 0.

Together with the symmetric extendibility re-
sult of Ref. [51], Observation 5 can be taken as
a first step towards characterizing all those pairs
of two-qubit states which are margins of a three-
qubit state.

9 Gaussian marginal problems and
Gaussian broadcasting

To extend our technique to continuous variable
systems, we derive necessary and sufficient con-
ditions for the solvability of marginal problems
involving Gaussian states. Using this and Theo-
rem 1 allows also the characterization of compat-
ibility of Gaussian channels. This generalizes the
compatibility results in Ref. [53].
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Recall that a Gaussian state % on an N -mode
system is uniquely characterized by the covari-
ance matrix C% associated with the mean squares
of the quadrature operators and the displace-
ment vector d% associated with the means of the
quadratures. We concentrate here on the case of
three systems A, B1, and B2 with modes NA,
NB1 , and NB2 ; the general case is discussed in
Appendix G. We denote the special symplectic
matrices of any C ∈ {A,B1, B2} by

SC :=
(

0 1NC
−1NC 0

)
.

We are ready to present the solution to the Gaus-
sian marginal problem, the proof of which is
found in Appendix G.

Observation 6. The marginal problem involv-
ing the Gaussian states %AB1 and %AB2 has a
solution if and only if there is a Gaussian state
%AB1B2 solving the problem. Moreover, if

C%ABi =
(
CA Xi

XT
i CBi

)
, i = 1, 2,

the marginal problem is solvable if and only if
there is a real (2NB1×2NB2)-matrix Y such that CA + iSA X1 X2

XT
1 CB1 + iSB1 Y

XT
2 Y T CB2 + iSB2

 ≥ 0.

To translate the above result to channels, we
recall that a channel ΦA→Bi , i = 1, 2, is Gaussian
if it maps Gaussian states into Gaussian states.
Such channel corresponds to real matrices K
(2NBi ×2NBi) and L (2NA×2NBi) and a vector
m ∈ R2NBi (satisfying certain conditions stated
in Appendix G) such that ΦA→Bi = ΦK,L,m

maps a Gaussian state % into the Gaussian state
σ with Cσ = LTC%L+K and dσ = LTd% +m.

Using Theorem 1 together with Observation 6
we get the following Observation, the proof of
which is in Appendix G.

Observation 7. Gaussian channels are compat-
ible if and only if they have a Gaussian joint
channel. Specifically, the channels ΦKi,Li,mi ,
i = 1, 2, are compatible if and only if there is
a real (2NB1 × 2NB2)-matrix Z such that

(
K1 + iSB1 − iLT1 SAL1 Z − iLT1 SAL2

ZT + iLT2 S
T
AL1 K2 + iSB2 − iLT2 SAL2

)
≥ 0.

10 Conclusions

We built a general connection between chan-
nel compatibility and marginal problems. This
brings together seemingly different modes of in-
compatibility, i.e. incompatibility of states, mea-
surements and channels. As a special case,
this proves a connection between symmetric ex-
tendibility of states and self-compatibility of
channels.

To demonstrate the usefulness of the con-
nection, we translated various key results be-
tween the fields resulting in, e.g. entropic crite-
ria for channel incompatibility, an efficient com-
putational method for evaluating the strength
of quantum memories, and solutions to various
marginal problems.

The connection between compatibility and
marginal problems as presented in Theorem 1 is
also valid when the input system of the chan-
nels is a separable Hilbert space but not necessar-

ily finite dimensional. The other Hilbert spaces
may even be non-separable. Marginal problems
are mainly studied in the finite-dimensional set-
tings, but this connection allows one to approach
infinite-dimensional marginal problems using the
well-established methods of incompatibility in
infinite-dimensional systems.

Acknowledgments

RU is thankful for the financial support from
the Finnish Cultural Foundation. NM acknowl-
edges the financial support by First TEAM
Grant No. 2016-1/5. TK acknowledges sup-
port by the DFG and the ERC (Consolidator
Grant 683107/TempoQ). EH acknowledges sup-
port from the National Natural Science Founda-
tion of China (Grant No. 11875110).

Accepted in Quantum 2021-05-27, click title to verify. Published under CC-BY 4.0. 6



Note added

While finishing this work, we became aware of a
related approach to the channel marginal prob-
lem. Namely, the authors of Ref. [54] define the
quantum channel marginal problem as the ques-
tion whether various local dynamics can be seen
as instances of the same global dynamics. The
difference to our approach is that whereas we
concentrate on channels having the same input
system, Ref. [54] allows for various different in-
puts. As an example, in the approach of Ref. [54]
two identity channels are compatible, when they
don’t have an overlapping input system, whereas
identity channels are by default incompatible in
our approach due to the impossibility of perfect
broadcasting. To conclude, one could say that
our approach is more directly motivated from the
perspective of generalising measurement incom-
patibility, whereas the approach of Ref. [54] is
more oriented towards generalizing the quantum
marginal problem.
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A Formal statement and proof of Theorem 1
In this appendix we give a more formal statement of our central result, Theorem 1, with a proof. We
also give some small additional results alluded to in this paper this far.

Let us first derive the form of the Choi channel for a given bipartite state given in the end of Section
4. Let us assume that ΦA→B is a channel and %AB is a state on HAB such that this state and channel
are connected with the Choi-Jamiołkowski isomorphism associated with a canonical purification |ΩA〉
of the first margin %A of %AB. We may assume that there are tn > 0 such that

∑
n tn = 1 and an

orthonormal basis {|n〉}n of HA such that |ΩA〉 =
∑
n

√
tn |nn〉. Denote the transpose defined w.r.t.

the basis {|n〉}n by D 7→ DTA . Recall that we may define the Heisenberg dual Φ∗A→B (a completely
positive (normal) linear map taking bounded operators of the output HB to those of the input HA) of
ΦA→B through tr[%Φ∗A→B(D)] = tr[ΦA→B(%)D]. We have, for any bounded operator D on HA and E
on HB,

tr[%AB(D ⊗ E)] = tr[(id⊗ ΦA→B)(|ΩA〉〈ΩA|)(D ⊗ E)] = 〈ΩA|D ⊗ Φ∗A→B(E) |ΩA〉

=
∑
m,n

√
tmtn 〈m|D |n〉 〈m|Φ∗A→B(E) |n〉 =

∑
m,n

√
tmtn 〈n|DTA |m〉 〈m|Φ∗A→B(E) |n〉

= tr
[
%

1/2
A DTA%

1/2
A Φ∗A→B(E)

]
= tr

[
ΦA→B(%1/2

A DTA%
1/2
A )E

]
.

Note that this calculation holds even in the case where HA (and HB) is infinite dimensional and
separable. If dimHA <∞, we may substitute D = %

−1/2
A %TA%

−1/2
A , and we obtain the form of the Choi

channel as described in Section 4. Note also that, even whenHA is separable but not finite dimensional,
ΦA→B is fully determined by evaluating it on inputs %1/2

A D%
1/2
A with bounded operators D on HA

whenever %A is faithful (which is the proper counterpart of being of full rank in infinite dimensions)
since this set is dense in the trace class of HA w.r.t. the trace norm. We may now formalize Theorem 1.

Theorem 1. (formal) Denote I := {A,B1, . . . , Bn} for n ∈ N and Jj := {A,Bj}, j = 1, . . . , n,
where A is associated with the Hilbert space HA and Bj with HBj , j = 1, . . . , n. Moreover, we define
Hj := HA ⊗HBj and H := HA ⊗HB1 ⊗ · · · ⊗ HBn .

(i) Let %A be a full-rank (or, in the infinite-dimensional case, faithful) state on HA and |ΩA〉 be a
canonical purification for %A. Channels ΦA→Bj from HA to HBj , j = 1, . . . , n, are compatible if
and only if there is a state % on H such that trI\Jj [%] = S|ΩA〉(ΦA→Bj ) for j = 1, . . . , n.

(ii) Let %j be a state over Hj for all j = 1, . . . , n. There is a state % on H such that trI\Jj [%] = %j
if and only if trBj [%j ] = %A is fixed for all j = 1, . . . , n and, upon assuming that %A is of full
rank (or faithful) and picking a canonical purification |ΩA〉 for %A, the |ΩA〉-Choi channels of %j ,
j = 1, . . . , n, are compatible.

(iii) Let ΦA→Bj be channels fromHA toHBj and %j be states overHj sharing the common (full-rank or
faithful) A-margin %A for j = 1, . . . , n, and pick a canonical purification |ΩA〉 for %A. Whenever
ρj = S|ΩA〉(ΦA→Bj ) for j = 1, . . . , n, the incompatibility robustness of (ΦA→B1 , . . . ,ΦA→Bn)
coincides with the consistent marginal robustness of (%1, . . . , %n).

Proof. Let us prove item (i): Let us first assume that ΦA→Bj are compatible and fix a joint channel
Φ for them; recall that the input space of Φ is HA and the output space is HB1 ⊗ · · · ⊗ HBn . Denote
%j := S|ΩA〉(ΦA→Bj ), j = 1, . . . , n, and % := S|ΩA〉(Φ). Denote the identity operator on HBj by 1j .
Using the above derivation for the Choi channel, we have, for all j = 1, . . . , n,

tr[%j(D ⊗ E)] = tr
[
ΦA→Bj (%

1/2
A DTA%

1/2
A )E

]
= tr

[
Φ(%1/2

A DTA%
1/2
A )(11 ⊗ · · · ⊗ 1j−1 ⊗ E ⊗ 1j+1 ⊗ · · · ⊗ 1n)

]
= tr[%(D ⊗ 11 ⊗ · · · ⊗ 1j−1 ⊗ E ⊗ 1j+1 ⊗ · · · ⊗ 1n)] = tr

[
trI\Jj [%](D ⊗ E)

]
.

for all bounded operators D on HA and E on HBj . Thus, %j = trI\Jj [%], j = 1, . . . , n. The proof of
the converse statement is contained in the proof of item (ii).
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Let us go on to proving item (ii): Note that, for the existence of a joint state % of the claim, it
is necessary that the A-margins of the states %j , j = 1, . . . , n, coincide. According to our earlier
observation, we may freely assume that this shared margin %A is of full rank (or faithful) and we may
fix a canonical purification |ΩA〉 for it. Assume first that there is % such that trI\Jj [%] = %j . Denote,
for each j = 1, . . . , n, by ΦA→Bj the channel such that S|ΩA〉(ΦA→Bj ) = %j and by Φ the channel
(with the input HA and output HB1 ⊗ · · ·⊗HBn) such that S|ΩA〉(Φ) = %. Denote, again, the identity
operator on HBi by 1i and pick j ∈ {1, . . . , n}. For any bounded D on HA and E on HBj ,

tr
[
trI\Jj [Φ(%1/2

A D%
1/2
A )]E

]
= tr

[
Φ(%1/2

A D%
1/2
A )(11 ⊗ · · · ⊗ 1j−1 ⊗ E ⊗ 1j+1 ⊗ · · · ⊗ 1n)

]
= tr

[
%(DTA ⊗ 11 ⊗ · · · ⊗ 1j−1 ⊗ E ⊗ 1j+1 ⊗ · · · ⊗ 1n)

]
= tr

[
%j(DTA ⊗ E)

]
= tr

[
ΦA→Bj (%

1/2
A D%

1/2
A )E

]
.

According to our discussion after the derivation of the Choi channel in the beginning of this appendix,
this implies ΦA→Bj (%) = trI\Jj [Φ(%)] for all states % on HA and j = 1, . . . , n. The proof of the converse
statement follows from the proof of item (i).
The item (iii) follows from the observation that the Choi-Jamiołkowski isomorphism S|ΩA〉 is an

affine bijection between the set of channels ΦA→B and the set of states %AB such that trB[%AB] = %A
is fixed (and of full rank or faithful). Thus, all the convex structures of these sets are mapped in a
one-to-one fashion and, particularly, the two robustness measures coincide.

B Operational interpretation
The generalised robustness corresponds to a convex distance from a free or resourceless set F . Impor-
tantly, it also quantifies the outperformance a resource provides over the free set in correlation based
games [12, 17, 55, 56]. Note that in what follows in this section, we concentrate on self-compatibility
of channels and symmetric extendibility of states. This is simply because the techniques are more
compactly presentable in this scenario as opposed to channel compatibility and the marginal problem.
We note that the techniques do generalise to these cases by following, e.g., [17].

An input-output game G is a tuple consisting of an input ensemble {σa}, a POVM {Nb} on the
output, and a real-valued reward function {ωab} assigning a score to each input-output pair (a, b). The
players aim at communicating the input states using a quantum channel Λ that maximizes the payoff

P (Λ, G) :=
∑
a,b

ωabtr[Λ(σa)Nb].

We note that the payoff is covariant under scaling and shifting of the reward function {ωab}. To remove
this covariance (i.e. to treat all games on an equal footing), we define a canonical form of a game as
one having the minimum payoff equal to zero and the maximal payoff equal to one, when optimized
over quantum channels. The reason for using canonical games is that they provide a tight connection
between optimal payoff and robustness measure, as is shown below.

Using an optimal solution of the robustness optimization problem in Eq. (2) for single channels
(i.e. the free set is the set of n-extendible channels) one can write Λ = (1 + RgF [Λ])ΛF − RgF [Λ]Γ,
where ΛF ∈ F and Γ is some channel. Noting that in the canonical form the input-output games
have non-negative payoffs and that the payoff is linear in the first argument, we get P (Λ, G) ≤ (1 +
RgF [Λ]) maxΞ∈F P (Ξ, G). Crucially, this upper bound can be reached with an appropriate choice of the
game. To see this, we first note that the robustness can be written in the Choi picture as

RgF (Λ) = min
{
t ≥ 0

∣∣∣∣SΛ + tSΓ
1 + t

= ΛF ∈ SF
}
, (8)

where S refers to the canonical Choi map and the set SF is the image of the free set under this map.
By solving SΓ = 1

t (SΛ̃ − SΛ), where Λ̃ = (1 + t)ΛF , one gets

1 +RgF [Λ] = min
SΛ̃∈CSF

tr
[
SΛ̃
]

s.t.: SΛ̃ ≥ SΛ,
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where SΦ is the canonical Choi picture, i.e. the one using the isotropic state, of a channel Φ, and CK
is the conic hull of a set K, that is the set one gets by multiplying the set K with the non-negative
part of the real line. This is an instance of a cone program and as such it has the dual form [12,45]

1 +RgF [Λ] = max
W≥0

tr[SΛW ] (9)

s.t.: tr[SΨW ] ≤ 1 ∀ SΨ ∈ SF .

For scenarios with the Slater condition being satisfied the optimal value of the primal and the dual
problem coincide. The validity of the Slater condition corresponds to finding a SΓ ∈ CSF such that
SΓ > SΛ. This is clearly true whenever there is a full-rank point in the cone CSF . As the completely
mixed state is in the cone we consider, we conclude that the optimal value of the primal and the dual
problem coincide.

Crucially, any positive operatorW on the shared system can be written asW =
∑
a,b ωabσ

T
a ⊗Nb with

ωab being real numbers, (·)T denoting the transposition in the computational basis, and the sets {σa}
and {Nb} forming an ensemble and a POVM respectively. Using the inverse of the Choi-Jamiołkowski
map, this shows that the objective function of Eq. (9) is an instance of an input-output game for each
choice ofW . As from Eq. (2) it is clear that for an optimal witnessW one has tr[WSΓ] = 0, an optimal
solution of Eq. (9) forms an instance of a canonical correlation game up to scaling. We arrive at the
following formula noting that the left-hand-side is independent of scaling

sup
G

P (Λ, G)
maxΞ∈F P (Ξ, G) = 1 +RgF [Λ].

It should be mentioned that on each level n of self-compatibility, the conic program above reduces to
a semi-definite program. These programs are efficiently solvable and they result in an optimal witness
W . Using the above calculation, one can easily find an implementation for these optimal witnesses as
an input-output game. In this way, although evaluating the robustness of quantum memories remains
a hard task, on each level of our converging hierarchy, one gets better lower bounds on the robustness
that have a simple implementation as an input-output game.

To see how the above can be applied to symmetric extendibility, we call correlation game Gcor a
tuple consisting of a POVM {Ma} on Alice, a POVM {Nb} on Bob, and a real-valued reward function
ωab assigning a score to each pair of outcomes (a, b). The task of the players is to prepare a shared
state %AB that maximizes the following payoff

P (%AB, Gcor) :=
∑
a,b

ωabtr[(Ma ⊗Nb)%AB].

As in the case of input-output games, the payoff is covariant under scaling and shifting of the reward
function. This motivates the definition of a canonical correlation game as one that has minimum payoff
equal to zero and the maximal payoff equal to one when optimized over shared states.

As symmetric extendibility can be seen as a property of a single state, we shorten the notation by
considering Eq. (1) for individual shared states instead of sets of states. To simplify the discussion
further, we take a relaxed version of the consistent robustness, i.e. the generalized robustness RgF
defined analogously to the case of channels in Eq. (2). In case of states this becomes Eq. (1) with the
modification that the states τ do not have to share a common marginal with %AB.

As for input-output games, that the payoff is linear in the first argument and one has P (%AB, Gcor) ≤
(1 +RgF [%AB]) maxσAB∈F P (σAB, Gcor). The upper bound can again be reached with a proper choice
of the game. To see this, we write the robustness as

1 +RgF [%AB] = min
σ̃AB∈CF

tr[σ̃AB]

s.t.: σ̃AB ≥ %AB,
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where CF is the conic hull of F . This is again an instance of a cone program and its dual reads

1 +RgF [%AB] = max
W≥0

tr[%ABW ]

s.t.: tr[σABW ] ≤ 1 ∀ σAB ∈ F.

The Slater condition is valid as the completely mixed state is a free state which can be scaled to be
strictly larger than %AB.

In the case of states, we write the positive operatorW on the shared system asW =
∑
a,b ωabMa⊗Nb

with ωab being real numbers and the sets {Ma} and {Nb} forming POVMs. As from Eq. (1) it is clear
that for an optimal witness W one has tr[WτAB] = 0, the optimal solution forms an instance of a
canonical correlation game up to scaling. We arrive at the following formula noting that the left-hand-
side is independent of scaling

sup
Gcor

P (%AB, Gcor)
maxσAB∈F P (σAB, Gcor)

= 1 +RgF [%AB]

Symmetric extendibility can be characterised through hierarchy of semi-definite programs in which
the level n of the hierarchy checks for the existence of n symmetric extensions [39, 40]. Choosing
the set F to be those shared states that have n or less symmetric extensions gives a task-oriented
characterization for the level n of the hierarchy. The statement holds true also for the limit of infinite
extensions, i.e. for separability. Hence, whereas it is not clear whether states with n symmetric
extensions can outperform states with n+ 1 extensions in correlation experiments based on quantum
steering and non-locality, we have derived a task-oriented characterization for all levels of the hierarchy
in terms of correlation games.

As mentioned above, the correlation game characterization can be given for the marginal problem
as well. To see this, one can perform all the above calculations by treating pairs (or sets) of shared
states and payoff functions as direct sums, cf. [17].

C Proof of Observation 2

According to our main result, Theorem 1, the set EB of entanglement-breaking channels and the set
of separable states Ssep are in one-to-one correspondence set up by the channel-state duality (with a
fixed generating full-rank state). Similarly, for each n = 1, 2, . . ., the set Chn of channels n times
compatible with themselves and the set Sn of bipartite states with n symmetric extensions are in
one-to-one correspondence. We concentrate on the finite-dimensional case where all these sets are
compact (with respect to the natural topologies; the trace norm topology and the CB-norm topology),
Sn ⊃ Sn+1 and Chn ⊃ Chn+1 for all n = 1, 2, . . ., and

∞⋂
n=1
Sn = Ssep,

∞⋂
n=1

Chn = EB.

Let Φ be a quantum memory (a channel) and denote its general noise robustness w.r.t. Chn by
Rn. Recall that this means that Rn is the minimum of numbers t ≥ 0 such that there is a channel
Ψ such that (1 + t)−1(Φ + tΨ) ∈ Chn. Since EB ⊂ Chn for all n, we have Rn ≤ R where R is
the generalized robustness w.r.t. EB, i.e., the generalized robustness of the quantum memory resource
of Φ. This robustness is the minimum of numbers t ≥ 0 such that there is a channel Ψ such that
(1 + t)−1(Φ + tΨ) ∈ EB. Moreover, since Chn+1 ⊂ Chn, Rn ≤ Rn+1 for all n. Denote by R0 the
supremum of {Rn}∞n=1. Naturally, R0 ≤ R. Pick, for each n = 1, 2, . . ., a channel Ψn such that

Φn := 1
1 +Rn

(Φ +RnΨn) ∈ Chn.
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Since the set of all channels (with fixed input and output systems) is compact in this finite-dimensional
setting, by passing onto a subsequence, if necessary, we may assume that Ψn

n→∞→ Ψ for some channel
Ψ. As Rn

n→∞→ R0, it easily follows that

Φn
n→∞→ Φ0 := 1

R0 + 1(Φ +R0Ψ)

and, since Φn ∈ Chn for all n = 1, 2, . . . and EB is closed, we have Φ0 ∈ EB. By the definition of the
general noise robustness, we now have R ≤ R0. Thus, R = R0, implying that (Rn)∞n=1 converges to
the general robustness of the quantum memory resource of Φ.

D More entropic constraints
Further constraints can be derived by combining SSA and WM constraints in a way that the resulting
inequalities do not contain the unknown parameters like |ΩA〉-entropy of global channels. This can be
done with the techniques of linear programming (see e.g. Ref. [57]). In particular, the so-called Fourier-
Motzkin algorithm can be used to eliminate variables from the given system of linear inequalities.
Geometrically, this elimination corresponds to a projection in the space of the vector of variables.
In our case, since e.g., the |ΩA〉-entropy of the global channel ΦA→B1,B2,B3 cannot be accessed, the
corresponding variable needs to be eliminated from the system of inequalities given by SSA and WM
constraints. Here we introduce a new constraint for compatibility of three channels ΦA→B1 , ΦA→B2 ,
and ΦA→B3 obtained from Fourier-Motzkin elimination:

H|ΩA〉(ΦA→B1) +H|ΩA〉(ΦA→B2) + 2H|ΩA〉(ΦA→B3)−H(%B1)−H(%B2)− 2H(%A) ≥ 0. (10)

When one tries to resolve the compatibility of channels via explicit methods of marginal problem,
e.g. SDP, the choice of |ΩA〉 in Choi isomorphism does not play any role. This is, however, not the
case when one applies the entropic constraints. For the case of two depolarizing channels the optimal
Choi isomorphism corresponds to the maximally entangled state. For channels with other types of
noise the optimal choice of |ΩA〉 can be different. For example, for the noise 1

d−11d−1 = 1
d−1

∑d−1
i=1 |i〉〈i|

the optimal |ΩA〉 =
∑d
i=1
√
ti |i〉 ⊗ |i〉 is the one with td epsilon-small and the rest of ti close to 1

d−1 .
Naturally, the entropic constraints can be applied to the problem of self-compatibility of quantum

channels (as a translation of the results on symmetric extendibility of states). Taking both marginal
entropies and |ΩA〉-entropies of channels equal, we obtain conditions for self-compatibility of channel
ΦA→B: H|ΩA〉(ΦA→B)−H(%B) ≥ 0 and 2H|ΩA〉(ΦA→B)−H(%B)−H(%A) ≥ 0 from Eq. (3) and Eq. (10)
respectively. Whenever H(%A) ≥ H(%B), the second constraint is tighter.

E Self-compatibility of channels
We now go on to study self-compatibility of channels. In the discussion earlier on the entropic bounds
for the compatibility of channels, we have defined the |ΩA〉-entropy of a channel as von Neumann
entropy of its |ΩA〉-Choi state. However, one can equivalently define it as the Shannon entropy of
the |ΩA〉-Choi state spectrum. In that sense, the results on the entropic bounds provide nonlinear
inequalities for spectra of 2-extendible channels. One would expect, however, that the explicit forms
of these spectra can be very cumbersome to write. On the other hand, some spectral constrains for
symmetric extendibility of two-qubit states are known [51], which we translate below to the problem
of self-compatibility of channels.

In order to identify the spectrum of the Choi-state of a channel, recall that operators Ki : HA → HB,
i = 1, 2, . . ., contribute a Kraus decomposition for an A → B-channel Φ if Φ(%) =

∑
iKi%K

†
i (where

the series converges w.r.t. the trace norm). For any state %A on HA, Φ has a Kraus operators Ki

such that tr
[
%AK

†
iKj

]
= 0 whenever i 6= j; see Section 3.1 of [37]. In this case, we say that Ki are

%A-orthogonal. Whenever %A is of full rank and |ΩA〉 is a canonical purification for %A, we have the
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spectral decomposition S|ΩA〉(Φ) =
∑
i |wi〉〈wi| where |wi〉 = (1H ⊗Ki) |ΩA〉 for any %A-orthogonal set

{Ki}i of Kraus operators for Φ [37, Proposition 1]. Thus, the spectrum of S|ΩA〉(Φ) consists of the
numbers

λΦ
%A

(i) := tr
[
Ki%AK

†
i

]
and the vector λΦ

%A
:=
(
λΦ
%A

(i)
)
i
is essentially independent of the particular %A-orthogonal set of Kraus

operators for Φ.
Let A, B, and C be now qubit systems. According to Ref. [51], a state % onHA⊗HB is symmetrically

extendible, i.e., there is a three-qubit state HABC such that %AB = % = %AC if and only if tr
[
trA[%]2

]
≥

tr
[
%2]−4

√
det(%). Let ΦA→B be the Choi channel of %, i.e., % = S|ΩA〉(ΦA→B) for a standard purification

|ΩA〉 of trB[%]. The right-hand side of the above inequality can be written entirely in terms of the
spectrum of % and, thus, in terms of the probability vector λΦA→B

%A
. Moreover, trA[%] = ΦA→B(%A).

Thus, we have the following:

Observation 8. A qubit-to-qubit channel Φ is 2-extendible if, for some (and, hence, for any) full-rank
qubit state %A,

tr
[
Φ(%A)2

]
≥
∑
i

λΦ
%A

(i)2 − 4
∏
i

√
λΦ
%A

(i).

In particular, choosing %A = 1
21 and a Hilbert-Schmidt-orthogonal set {Ki}Ri of Kraus operators for

Φ, R ≤ 4 being the Kraus rank of Φ, the channel Φ is 2-extendible if and only if

tr
[
Φ(1)2

]
≥
∑
i

‖Ki‖4HS −
16

2R/2
∏
i

‖Ki‖HS

where, for any qubit operator K, the Hilbert-Schmidt norm is defined as ‖K‖HS :=
√

tr[K†K].

F Proof of Observation 4
Proof. Suppose that |ΩA〉 is a standard purifying vector for %A. It easily follows that there are unitaries
UB1 and UB2 such that |ϕAB1〉 = (1d ⊗ UB1) |ΩA〉 and |ϕAB2〉 = (1d ⊗ UB2) |ΩA〉. Clearly the original
states are margins of a tripartite state if and only if there is a tripartite state %AB1B2 such that
%AB1 = %µ and %AB2 = %ν where %λ := (1 − λ) |ΩA〉〈ΩA| + λ1

d%A ⊗ 1d for all λ ∈ [0, 1]. Using the
channel state dualism S|ΩA〉, this problem is equivalent with finding those µ, ν ∈ [0, 1] such that the
channels % 7→ (1− µ)%+ µ1

d1d and % 7→ (1− ν)%+ ν 1
d1d are compatible. This happens, according to

the above, if and only if the inequality (6) holds.

G Multipartite Gaussian marginal problems and compatibility questions
We fix natural numbers NA, NB1 ,. . . , and NBn and Hilbert spaces HA := L2(RNA) and HBi :=
L2(RNBi ), i = 1, . . . , n. Whenever C ⊆ {A,B1, . . . , Bn} and q, p ∈ RNC we define the operator

RC(q,p) := −qTPC + pTQC

where QC and PC are the canonically conjugated position and momentum operators of the subsystem
C in vector form. In the sequel, whenever we have linear combinations of these operators, they are
understood as the uniquely defined operators defined on the intersection of the domains of all these
operators which is a dense subspace of L2(RNC ). We also define

R(z) := RA(zA)⊗ 1B1 ⊗ · · · ⊗ 1Bn + 1A ⊗RB1(zB1)⊗ 1B2 ⊗ · · · ⊗ 1Bn + · · ·
· · ·+ 1A ⊗ 1B1 ⊗ · · · ⊗ 1Bn−1 ⊗RBn(zBn)

for all zA ∈ R2NA and zBi ∈ R2NBi , i = 1, . . . , n. We define the field operators RC(z) similarly for any
subsystem C.
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Any state on any of the subsystems or on the entire system is called Gaussian if its characteristic
function is a Gaussian function. This means that a Gaussian state % over, say, system C is such that
the means 〈RC(z)〉% and 〈RC(z)2〉% are defined for all z ∈ R2NC where NC is the sum of the number
of modes of the individual subsystems in C, and the displacement vector is defined through

〈RC(z)〉% = dT% SCz, z ∈ R2NC ,

and the covariance matrix is defined through

〈
(
RC(z)− dT% SCz1C

)2〉% = 1
4z

TC%z, z ∈ R2NC ,

where SC =
⊕
D∈C SD. The covariance matrix necessarily satisfies C% + iSC ≥ 0.

We next present and prove a useful lemma. Reading the proof, one easily sees that the following
lemma can be generalized to the extent that, for Hilbert spacesH1 andH2 and self-adjoint (unbounded)
operators Ai on Hi, i = 1, 2, and any state σ on H1⊗H2 such that the second moment of Ai is defined
in the marginal state σ(i), i = 1, 2, also the expectation value 〈A⊗ B〉σ is defined. However, we only
need the following special case of this more general fact.

Lemma 9. Suppose that σ is a state over Bi&Bj with i < j such that 〈RBi(z)2〉σBi and 〈RBj (w)2〉σBj
are defined for any z ∈ R2NBi and w ∈ R2NBj . It follows that 〈RBi(z) ⊗ RBj (w)〉σ is defined for all
z ∈ R2NBi and w ∈ R2NBj .

Proof. Pick z ∈ R2NBi and w ∈ R2NBj . Denote by Pi the spectral measure of RBi(z), by Pj the
spectral measure of RBj (w), by Pi,j the spectral measure of RBi(z) ⊗ RBj (w) and by Pi ⊗ Pj the
PVM (projection-valued measure) on R2 such that (Pi ⊗ Pj)(X × Y ) = Pi(X) ⊗ Pj(Y ) for all Borel
(or Lebesgue) subsets X and Y of R. Using the fact that Pi,j = (Pi ⊗ Pj) ◦ f−1, where f : R2 → R is
the multiplication map f(x, y) = xy, and the Cauchy-Schwarz inequality, we have∫

R
|z| tr[σPi,j(dz)] =

∫
R2
|xy| tr

[
σ(Pi ⊗ Pj)

(
d(x, y)

)]
≤
√∫

R2
x2 tr

[
σ(Pi ⊗ Pj)

(
d(x, y)

)] ∫
R2
y2 tr

[
σ(Pi ⊗ Pj)

(
d(x, y)

)]
=
√∫

R
x2 tr

[
σ
(
Pi(dx)⊗ 1Bj

)] ∫
R
y2 tr

[
σ
(
1Bi ⊗ Pj(dy)

)]
=
√∫

R
x2 tr[σBiPi(dx)]

∫
R
y2 tr

[
σBjPj(dy)

]
=
√
〈RBi(z)2〉σBi 〈RBj (w)2〉σBj <∞.

This means that the expectation value 〈RBi(z)⊗RBj (w)〉σ is defined.

Using the above lemma and the quantum central limit theorem, we may prove the following theorem
stating that the marginal problem involving Gaussian states sharing a common subsystem has a solution
if and only if it has a solution in the form of a Gaussian state over the entire system. This is a
generalization of Observation 6.

Theorem 10. The marginal problem involving, for each i = 1, . . . , n, a Gaussian state %i over the
system A&Bi has a solution if and only if it has a Gaussian solution, i.e., there is a Gaussian state %G
over A&B1& · · ·&Bn such that %GABi = %i for all i = 1, . . . , n. Moreover, if, for each i = 1, . . . , n,

C%i =
(
CA Xi

XT
i CBi

)
,
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the above marginal problem has a solution if and only if, for each i, j ∈ {1, . . . , n}, i < j, there is a
real (2NBi × 2NBj )-matrix Yi,j such that

CA + iSA X1 X2 · · · Xn

XT
1 CB1 + iSB1 Y1,2 · · · Y1,n

XT
2 Y T

1,2 CB2 + iSB2 · · · Y2,n
...

...
... . . . ...

XT
n Y T

1,n Y T
2,n · · · CBn + iSBn

 ≥ 0. (11)

Proof. Fix a state % over the entire system A&B1& · · ·&Bn such that %ABi = ρi for all i = 1, . . . , n.
We will prove the existence of the Gaussian state %G of the claim using the quantum central limit
theorem. In order to apply this theorem, we have to show that the first and, more importantly, the
second moments of the quadrature operators are defined in the state ρ. We first look at the first
moments and show that we may, essentially, disregard them. It immediately follows that 〈R(z)〉% is
defined for all z = (zA, zB1 , . . . ,zBn) ∈ R2(NA+NB1+···+NBn ) since

〈R(z)〉% = dT%ASAzA + dT%B1
SB1zB1 + · · ·+ dT%BnSBnzBn .

We may assume in this proof that d%i = 0 for all i = 1, . . . , n. Indeed, if this is not the case and not
all of these displacement vectors d%i =: di = (dA,dBi) are zero, the states %̃i = WABi(di)ρiWABi(di)∗
are easily found to have null displacement vectors; the operators WC(z) above are the displacement
operators (or Weyl operators), WC(z) = eiRC(z) for all C ⊆ {A,B1, . . . , Bn} and z ∈ RNC . It
follows that the state %̃ = W (dA,dB1 , . . . ,dBn)%W (dA,dB1 , . . . ,dBn)∗ is such that %̃ABi = %̃i for all
i = 1, . . . , n and that the displacement vector of %̃ vanishes. Let us thus assume that the displacement
vectors of %i vanish and % is a state over the entire system A&B1& · · ·&Bn, whose displacement vector
vanishes, such that %ABi = %i for all i = 1, . . . , n.

We next move on to the second moments and show that 〈R(z)2〉% is defined for all z ∈
R2(NA+NB1+···+NNn ). Pick z = (zA, zB1 , . . . ,zBn) ∈ R2(NA+NB1+···+NBn ) where zA ∈ R2NA and
zBi ∈ R2NBi for i = 1, . . . , n. Squaring the operator R(z) and (naïvely) calculating the expecta-
tion value of this square in %, we easily see that

〈R(z)2〉% = 〈RA(zA)2〉%A + 2
n∑
i=1
〈RA(zA)⊗RBi(zBi)〉%ABi

+2
∑

i,j: i<j
〈RBi(zBi)⊗RBj (zBj )〉%BiBj +

n∑
i=1
〈RBi(zBi)2〉%Bi .

According to the preceding lemma, the terms in the second sum above are defined and, as the states
ρA = (ρi)A, ρABi = ρi, and ρBi = (ρi)Bi , i = 1, . . . , n, are Gaussian, the other terms are defined as well;
recall that the reduced states of Gaussian states are Gaussian as well. Thus, we have 〈R(z)2〉% <∞.

We are now ready to employ the quantum central limit theorem to derive the desired Gaussian state
%G from %. Denote by ρG the Gaussian state with the covariance matrix C% (and null displacement
vector). For any n ∈ N, let %(n) be the state over A&B1& · · ·&Bn whose characteristic function is
given by

tr
[
%(n)W (z)

]
= χ%(n)(z) = χ%(z/

√
n)n

for all z ∈ R2(NA+NB1+···+NBn ). According to the quantum central limit theorem presented in [58],
these characteristic functions converge pointwise to χ%G as n→∞ and, since the Weyl operators span
an ultraweakly dense operator system of the algebra of bounded operators over our system, it follows
that the sequence (%(n))∞n=1 converges to %G σ-weakly, i.e., for all bounded linear operators D over the
system, limn→∞ tr

[
%(n)D

]
= tr

[
%GD

]
. Since the evaluation functions

σ 7→ tr
[
σ(DA ⊗ 1B1 ⊗ · · · ⊗ 1Bi−1 ⊗DBi ⊗ 1Bi+1 ⊗ · · · ⊗ 1Bn

]
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for all bounded operators DA over system A and DBi over system Bi, i = 1, . . . , n, are σ-weakly
continuous, it immediately follows that the set of those states of the entire system A&B1& · · ·&Bn
with the fixed bipartite margins %1, . . . , %n is σ-weakly closed (as the intersection of preimages of
the above evaluation functions) and thus %G also has the required margins since %(n) has the bipartite
margins %i, i = 1, . . . , n, for all n ∈ N as can be easily seen (to convince oneself of this, see the following
calculation). However, let us construct a more direct proof for this. We have, for any i ∈ {1, . . . , n},
zA ∈ R2NA , and zBi ∈ R2NBi ,

tr
[
%GABiWABi(zA, zBi)

]
= tr

[
%G
(
WA(zA)⊗ 1B1 ⊗ · · · ⊗ 1Bi−1 ⊗WBi(zBi)⊗ 1Bi+1 ⊗ · · · ⊗ 1Bn

)]
= tr

[
%GW (zA, 0, . . . , 0, zBi , 0, . . . , 0)

]
= χ%G(zA, 0, . . . , 0, zBi , 0, . . . , 0)

= lim
n→∞

χ%(n)(zA, 0, . . . , 0, zBi , 0, . . . , 0) = lim
n→∞

χ%(n−1/2zA, 0, . . . , 0, n−1/2zBi , 0, . . . , 0)n

= lim
n→∞

tr
[
%W (n−1/2zA, 0, . . . , 0, n−1/2zBi , 0, . . . , 0)

]n
= lim
n→∞

tr
[
%ABiWABi(n−1/2zA, n

−1/2zBi)
]n

= lim
n→∞

tr
[
%iWABi(n−1/2zA, n

−1/2zBi)
]n

= lim
n→∞

χ%i(n−1/2zA, n
−1/2zBi)n = lim

n→∞
χ%i(zA, zBi) = χ%i(zA, zBi) = tr[%iWABi(zA, zBi)],

where we have used the fact that G(n−1/2zA, n
−1/2zBi)n = G(zA, zBi) for a Gaussian distribution G

with a vanishing mean in the third-to-last equality above. Since the Weyl operators in the subsystem
A&Bi span an ultraweakly dense operator system, we have %GABi = %i. This concludes the proof for
the existence of the state %G of the claim.

We finally prove the last claim regarding the covariance matrices of %i and the condition for the
solvability of the marginal problem they set up in Inequality 11. Let C%i be as in the claim for all
i = 1, . . . , n and suppose %G is the Gaussian solution for the marginal problem. It follows that, for
each i, j ∈ {1, . . . , n}, i < j, there is a real (2NBi × 2NBj )-matrix Yi,j such that

C%G =


CA X1 X2 · · · Xn

XT
1 CB1 Y1,2 · · · Y1,n

XT
2 Y T

1,2 CB2 · · · Y2,n
...

...
... . . . ...

XT
n Y T

1,n Y T
2,n · · · CBn

 ;

this follows in a straight-forward manner by checking the covariance matrices of the A&Bi-marginals
of %G. This is an allowed covariance matrix if and only if C%G + iSA ⊕ SB1 ⊕ · · · ⊕ SBn ≥ 0 which is
equivalent to Equation (11).

Let us go on to studying Gaussian channels. Recall that matrices K and L and a vector m define
a Gaussian channel ΦA→B = ΦK,L,m if and only if

K + iSB − iLTSAL ≥ 0. (12)

We also recall that the Gaussian channel ΦK,L,m is also characterized by the Weyl operator condition
for the Heisenberg dual:

Φ∗K,L,m

(
WB(z)

)
= e−

1
4z

TKz+imT zWA(Lz), z ∈ R2NB . (13)

According to [59], for any Gaussian state %A, there is Gaussian purification, i.e., a purifying vector
|ΩA〉 such that |ΩA〉〈ΩA| is a Gaussian state. Since the identity channel is trivially Gaussian and
the tensor product of two Gaussian channels is Gaussian (as can be easily verified), it follows that
(idA⊗ΦA→B)(|ΩA〉〈ΩA|) is Gaussian. Especially, when %A above is faithful, we obtain a state-channel
dualism that maps Gaussian channels into Gaussian states.
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Let us fix α > 1 and denote λ := ln
(
α+1
α−1

)
. Define the Hamiltonian of the Harmonic oscillator on

system A as Hosc = 1
2(‖Q‖2 + ‖P ‖2) where Q and P are the position and momentum operators of

system A in vector form. We fix the faithful (sic) state %A := 2 sinh (λ/2) e−λHosc the characteristic
function of which is given by tr[%AWA(z)] = χ%A(z) = e−

1
4α‖z‖

2
for all z ∈ R2NA [60]. This means that

%A is Gaussian and is defined by a vanishing displacement vector and the covariance matrix α12NA .
Denote by Z the block-diagonal (2NA × 2NA)-matrix with the (2× 2)-blocks

σz :=
(

1 0
0 −1

)
on the diagonal. Following [59], we may give %A the purification |ΩA〉 ∈ HA ⊗HA such that |ΩA〉〈ΩA|
is associated with the covariance matrix

C0 :=
(

α12NA
√
α2 − 1Z√

α2 − 1Z α12NA

)
. (14)

Indeed, one may easily verify that
(
(SA⊗SA)TC0

)2 = −14NA implying that C0 corresponds to a pure
state. We keep the above state %A, the purification |ΩA〉, and the matrix C0 fixed in the proof of the
following result which generalizes Observation 7.

Theorem 11. Gaussian channels Φi = ΦKi,Li,mi (with input system A and output system Bi),
i = 1, . . . , n, are compatible if and only if, for any i, j ∈ {1, . . . , n}, i < j, there is a real (2NBi×2NBj )-
matrix Zi,j such that

K1 + iSB1 − iLT1 SAL1 Z1,2 − iLT1 SAL2 · · · Z1,n − iLT1 SALn
ZT

1,2 + iLT2 S
T
AL1 K2 + iSB2 − iLT2 SAL2 · · · Z2,n − iLT2 SALn

...
... . . . ...

ZT
1,n + iLTnS

T
AL1 ZT

2,n + iLTnS
T
AL2 · · · Kn + iSBn − iLTnSALn

 ≥ 0. (15)

Moreover, if Φi, i = 1, . . . , n, are compatible, they have a Gaussian joint channel.

Proof. Denote Si := S|ΩA〉(Φi) for i = 1, . . . , n. For any i = 1, . . . , n, we have idA ⊗ Φi = ΦK′i,L
′
i,m
′
i

where K ′i := 0⊕Ki, L′i := 12NA ⊕Li, and m′i := 0⊕mi. It follows that the covariance matrix of Si
is

Ci := (L′i)TC0L
′
i +K ′i =

(
α12NA

√
α2 − 1ZLi√

α2 − 1LTi Z αLTi Li +Ki

)
(16)

for all i = 1, . . . , n. The channels Φi, i = 1, . . . , n are compatible if and only if the marginal problem
involving the states Si, i = 1, . . . , n, has a solution. This is equivalent, according to Theorem 10, to
the existence, for all i, j ∈ {1, . . . , n}, i < j, of a real (2NBi × 2NBj )-matrix Yi,j such that(

α12NA + iSA X
XT Y

)
≥ 0 (17)

where we have denoted by X the horizontal row
√
α2 − 1(ZL1 · · · ZLn) of blocks and

Y :=


αLT1L1 +K1 + iSB1 Y1,2 · · · Y1,n

Y T
1,2 αLT2L2 +K2 + iSB2 · · · Y1,n
...

... . . . ...
Y T

1,n Y T
2,n · · · αLTnLn +Kn + iSBn

 .
Since the matrix α12NA + iSA is positive and invertible (guaranteed by α > 1), this is equivalent with
the Schur complement of α12NA + iΩA in the matrix appearing on the LHS of Inequality (17) being
positive, i.e., with Y −XT (α12NA + iSA)−1X ≥ 0. Using the easily verifiable fact that

Z(α12NA + iSA)−1Z = (α12NA − iSA)−1 = 1
α2 − 1(α12NA + iSA),
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one immediately obtains XT (α12NA + iSA)−1X =
(
LTi (α12NA + iSA)Lj

)n
i,j=1. Defining, for all

i, j ∈ {1, . . . , n}, i < j, the real (2NBi × 2NBj )-matrix Zi,j := Yi,j − αLTi Lj , the inequality Y −
XT (α12NA + iSA)−1X ≥ 0 becomes Inequality (15). We immediately obtain the necessary and
sufficient condition for the compatibility of Φi, i = 1, . . . , n, as stated in the claim.
Assume now that Φi, i = 1, . . . , n, are compatible, i.e., for all i, j ∈ {1, . . . , n}, i < j, there is a

real (2NBi × 2NBj )-matrix Zi,j such that Inequality (15) is satisfied. Define the Gaussian channel
Ψ := ΦK,L,m (with the input system A and output system B1& · · ·&Bn) by setting

K :=


K1 Z1,2 · · · Z1,n
ZT

1,2 K2 · · · Z2,n
...

... . . . ...
ZT

1,n ZT
2,n · · · Kn

 ,

L := (L1 · · · Ln), and m := m1 ⊕ · · · ⊕mn. This is, indeed, an allowed Gaussian channel as the
inequality

K + iSB1 ⊕ · · · ⊕ SBn − iLTSAL ≥ 0

that the matrices K and L must satisfy is easily found to be the same as Inequality (15). It is
immediate that ΨA→Bi obtained from Ψ by tracing out other output systems except for Bi coincides
with Φi for all i = 1, . . . , n since, for any i = 1, . . . , n, z ∈ R2NBi , and denoting by w ∈ R2(NB1+···+NBn )

the vector (01, . . . , 0i−1, zi, 0i+1, . . . , 0n), where 0j is the zero-vector in R2NBj , j = 1, . . . , n, and by
WB the Weyl representation associated with the subsystem B1& · · ·&Bn,

Ψ∗A→Bi
(
WBi(z)

)
= Ψ∗

(
1B1 ⊗ · · · ⊗ 1Bi−1 ⊗WBi(z)⊗ 1Bi+1 ⊗ · · · ⊗ 1Bn

)
= Ψ∗

(
WB(w)

)
= e−

1
4w

TKw+imTwWA(Lw)

= e−
1
4z

TKiz+mT
i zWA(Liz) = Φ∗i

(
WBi(z)

)
where we have used Equation (13).
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