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Recently, it was shown that when reference frames are associated to quantum systems,
the transformation laws between such quantum reference frames need to be modified to
take into account the quantum and dynamical features of the reference frames. This led
to a relational description of the phase space variables of the quantum system of which
the quantum reference frames are part of. While such transformations were shown to
be symmetries of the system’s Hamiltonian, the question remained unanswered as to
whether they enjoy a group structure, similar to that of the Galilei group relating clas-
sical reference frames in quantum mechanics. In this work, we identify the canonical
transformations on the phase space of the quantum systems comprising the quantum
reference frames, and show that these transformations close a group structure defined
by a Lie algebra, which is different from the usual Galilei algebra of quantum mechan-
ics. We further find that the elements of this new algebra are in fact the building
blocks of the quantum reference frames transformations previously identified, which we
recover. Finally, we show how the transformations between classical reference frames
described by the standard Galilei group symmetries can be obtained from the group
of transformations between quantum reference frames by taking the zero limit of the
parameter that governs the additional noncommutativity introduced by the quantum
nature of inertial transformations.

1 Introduction
In the standard description of quantum mechanics, the quantum states arising as solutions of the
Schrödinger equation of a free particle are invariant under transformations between reference frames
linked by (centrally extended) Galilei transformations [1, 2]. These transformations define a Lie
group of symmetries, such that the composition of any symmetry transformation results in another
transformation belonging to the group. In this setting, while the system under study is quantum,
the reference frames themselves are abstract entities with no quantum properties (they are sharply
defined) and no dynamical behaviour. They are usually identified with the “laboratory” within
which the quantum system lives. This dichotomy between the description of the system and that
of the reference frames raises questions, since at least in some limit the quantum and dynamical
properties of the reference frame might become non-negligible compared to those of the quantum
system.

Associating reference frames to physical systems, which can ultimately be quantum systems,
leads to the notion of Quantum Reference Frames (QRFs). QRFs have been extensively discussed
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in the literature in different contexts. In the quantum information literature [3–16], they have been
shown to be a useful tool to overcome superselection rules, to devise communication tasks in the
absence of a shared reference frame between two parties. Independently, some authors have argued
that, in quantum gravity, the gauge nature of the gravitational field requires considering QRFs
[17, 18], and that QRFs admit a description in terms of deformed symmetries [19]. In addition,
QRFs have been proposed to be relevant in a quantum formulation of the equivalence principle
[20–22]. From a foundational perspective, quantum mechanics can be formulated in relational
terms [23] from the perspective of QRFs [24–27]. Recently, a relational formulation of QRFs
has been used to perform QRFs transformations in different contexts, such as Galilean [28–31]
and special-relativistic [32, 33] quantum physics, quantum clocks models [34–37], cosmology [38],
finite-dimensional quantum systems [39, 40], and superpositions of curved spacetimes [22].

In this work, we are going to focus on the formalism introduced in Ref. [28], where it was shown
that one can develop a framework where the reference frames are part of the quantum system under
study. In this setting, reference frames are assigned a possibly evolving quantum state and the
phase space of the full quantum system is described via relational phase space coordinates. Of
course, the laws of transformation between different QRFs must somewhat generalize the usual
Galilei transformations, in order to accommodate the quantum properties of the transformation
parameters and the relational description of the phase space coordinates. Thanks to these devel-
opments, the reference frames become less abstract entities, and can be identified with specific
elements of the system. For example, one can consider a quantum system made up of several free
particles, and describe it as it is seen by any one of them, and subsequently change the description
to that corresponding to the point of view of a different particle. The crucial point is that, when
transforming the phase space coordinates from the point of view of one particle to the other, one
ends up performing, in the terminology of Ref. [28], an extended Galilean transformation, where
the commutative parameter of standard Galilean transformations is replaced by a quantum oper-
ator on the Hilbert space of the QRF. Moreover, since any of the particles can be taken as a QRF,
it makes sense to describe the system in terms of relational phase space coordinates.

Going back to the standard description of quantum mechanics we illustrated above, two crucial
features of the Galilei transformations between classical reference frames are that these transfor-
mations are in fact symmetries of the Hamiltonian of free particles and that they close a group,
namely, the composition of any two Galilei transformations gives a transformation that is again a
Galilei transformation. Of course in the context of the standard description of quantum mechanics
the second feature is implied by the first one, but in the following we will treat the two properties
separately. In fact, in the QRFs framework such implication is not obviously demonstrated and is
the main subject of the work presented here.

Establishing whether QRF transformations describe some kind of symmetries of the quantum
system is a non trivial task already. The question was answered positively in Ref. [28], where it
was demonstrated that QRF transformations can be constructed so to be extended symmetries of
the Hamiltonian of the system. As we will review in the following Sec. 2, this result was achieved
by realizing that the dynamical nature of QRFs requires to include the time evolution operators
explicitly in the QRF transformation, besides promoting the commutative parameters of standard
Galilean transformations to quantum operators. In this work, we take this result as a starting
point and set to the task of investigating the group nature of QRF transformations.

In order to uncover the group structure of the transformations defined in Sec. 2, in Sec. 3
we take one step back and look at the time-independent version of the QRF transformations
corresponding to generalised translation and boost transformations. Specifically, we consider the
transformations in the form they take when the time evolution of the quantum system comprising
the QRFs is ignored. The generators of these simplified transformations are identified with tensor
product operators, acting on the tensor product of the phase space algebras of the QRF to which
we are transforming and of the quantum particle which is being transformed. This allows us to find
that these two operators, together with two additional ones, close a Lie algebra that will be called
the relational Lie algebra for QRFs. Looking back at the results described in Sec. 2, we observe
that these two additional operators were already included in the full QRF transformations for
independent reasons. In fact, in the construction of Sec. 2 the additional operators were needed to
preserve the relational nature of the phase space coordinates, which would otherwise be lost if only
acting with a generalised translation or boost. This fact motivates the underlying Lie symmetry
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to be called a relational one. So we find that, starting from just the extended translation and
boost generators and requiring that a group structure exists, we are forced to introduce all of the
additional building blocks of the QRF transformations defined in Sec. 2, and it is at the level of
these building blocks that the group structure is apparent.

A similar result is found when the time evolution of the quantum system is accounted for, as we
do in Sec. 4. In this case we find that the Lie algebra of which the extended translation and boost
generators are part is even larger, namely a 7-dimensional one, that will be called the dynamical
Lie algebra for QRFs. Once more it only contains generators that had already been included in
the QRF transformations of Sec. 2, in order to ensure that the latter define extended symmetry
transformations of the Hamiltonian and in order to preserve the relational nature of the phase space
coordinates. The group structure we uncover for the building elements of the QRF transformations
is indeed reflected in the composition rule of two QRF transformations, as we show in Sec. 4.1.
Finally, while the structures we build depart significantly from the ones that are usual in quantum
mechanics, in Sec. 5 we are able to expose the “classical reference frame limiting procedure” which
allows us to recover the classical centrally extended Galilei algebra which describes the symmetries
of a quantum particle in standard quantum mechanics.

Notice that a different study of the relation between QRFs and symmetry groups was carried
out in Refs. [39, 40]. In particular, in Ref. [39] it was shown that, within a formalism which
identifies reference frames with elements of a symmetry group G, a consistent change of QRFs
can be obtained if and only if the QRFs carry a regular representation of a symmetry group.
In Ref. [40] it was shown that QRF transformations appear as symmetry transformations of the
physical system where they are defined. These works deal with finite-dimensional systems, and
focus on a different question —understanding a specific QRF transformation as a symmetry of
a given quantum system— to the one we answer here, i.e., finding that there exists a Lie group
of inertial transformations for QRFs that generalizes the Galilean inertial transformations for the
corresponding classical reference frames.

2 Quantum reference frames transformations
In this section we revisit the main results of Ref. [28], introducing a slightly different notation than
the one used in the original work, which is more suitable for the algebraic analysis we carry in the
following sections. In addition, we emphasise some conceptual aspects of the QRF formalism, such
as the way a measurement is described from the point of view of two different QRFs, in order to
make the presentation self-contained.

A QRF corresponds to a physical system to which a set of coordinates is associated, and which
can be in a quantum relationship with other physical systems. This formalism is operational, in that
primitive laboratory operations —preparation, transformations, and measurements of quantum
states— have fundamental status, and relational, because everything is formulated in terms of
relational quantities and the formalism does not require the presence of any external or absolute
reference frame.

In order to illustrate the idea of QRFs, we consider the simple situation of a quantum system
composed of three free particles. We describe quantum particles A and B in terms of the relative
coordinates to the initial QRF identified with particle C. The relational phase space variables

{x̂(C)
A , p̂

(C)
A , x̂

(C)
B , p̂

(C)
B } are given, respectively, by the position and momenta of particles A and B

as seen from C. We use the notation x
(j)
i to identify the coordinate of system i as seen by reference

j, and the analogous notation p
(j)
i holds for momenta. Throughout the paper we work in 1 spatial

dimension. Differently to Ref. [28], we take two different 3-dimensional Heisenberg-Weyl algebras
h(3) [41] to distinguish the effects due to the quantum behaviour of particles A and B:

[x̂(C)
A , p̂

(C)
A ] = i κ , [x̂(C)

B , p̂
(C)
B ] = i ~ , (2.1)

where we use ~ for B, i.e. the quantum system that is being transformed, which has the usual
properties of the standard description of quantum mechanics, while we use a different constant κ
for A, since this is taken as a QRF, while in usual quantum mechanics this would be a classical
object. We will see that a consistent treatment of QRF transformations requires κ = ~, since A
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and B can alternate in playing the role of observed quantum system and QRF, but keeping the
two constants formally different allows us to track the effects due to the quantum and dynamical
nature of the reference frame to which we transform, as well as to perform the appropriate smooth
limit to a classical reference frame scenario, which we do in Sec. 5.

2.1 QRF transformations and expectation values
The QRF transformation is a unitary transformation Ŝ which maps the quantum state in the

Hilbert space of A and B relative to C, H(C)
A ⊗ H(C)

B , to the quantum state in the Hilbert space

of B and C relative to A, i.e., H(A)
B ⊗ H(A)

C .1 The unitary action on a quantum state is then

Ŝ(C→A) |ψ〉(C)
AB = |ψ〉(A)

CB .
The property that the outcome of an experiment should be consistent in different (quantum)

reference frames is encoded in the conservation of probabilities. In particular, the probability of

detecting an outcome b∗ by measuring an observable Ô
(C)
AB in the initial QRF C is

p(b∗) = Tr
[
ρ̂

(C)
ABÔ

(C)
AB (b∗)

]
, (2.2)

where ρ̂
(C)
AB is the quantum state from the perspective of C and Ô

(C)
AB (b∗) is the projector on the

outcome b∗. The conservation of probabilities follows immediately from the unitarity of the QRF
transformation

p(b∗) = Tr
[
ρ̂

(A)
BCÔ

(A)
BC(b∗)

]
, (2.3)

where ρ̂
(A)
BC = Ŝ(C→A)ρ̂

(C)
AB(Ŝ(C→A))† and Ô

(A)
BC = Ŝ(C→A)Ô

(C)
AB (Ŝ(C→A))†. Clearly, this result

applies also for expectation values of observables.

The simplest transformation to relative positions Ŝ
(C→A)
x is defined as

Ŝ(C→A)
x = P̂ACe

i
~ x̂

(C)
A
⊗p̂(C)

B , (2.4)

where x̂
(C)
i , p̂

(C)
i , with i = A,B, are the phase space operators defined above, and P̂AC is an

operator, named “parity-swap” operator, which acts on A as

P̂AC x̂(C)
A P̂

†
AC = −x̂(A)

C , P̂AC p̂(C)
A P̂

†
AC = −p̂(A)

C , (2.5)

and on B as
P̂AC x̂(C)

B P̂
†
AC = x̂

(A)
B , P̂AC p̂(C)

B P̂
†
AC = p̂

(A)
B . (2.6)

The presence of such parity-swap operator is required in order to map consistently the full set of
relative positions of A and B from the point of view of C to the relative position of B and C from

the point of view of A. Explicitly, the QRF transformation Ŝ
(C→A)
x acts as (we leave the indication

(C → A) implicit)

Ŝxx̂
(C)
A Ŝ†x = −x̂(A)

C ; Ŝxp̂
(C)
A Ŝ†x = −p̂(A)

C − κ

~
p̂

(A)
B ;

Ŝxx̂
(C)
B Ŝ†x = x̂

(A)
B − x̂(A)

C ; Ŝxp̂
(C)
B Ŝ†x = p̂

(A)
B .

(2.7)

This transformation maps the position operators of A and B relative to C, i.e., x̂
(C)
A and x̂

(C)
B , into

the position operators of B and C relative to A, i.e., x̂
(A)
B and x̂

(A)
C , and the momenta p̂

(C)
A and

p̂
(C)
B into the canonically conjugated operators to x̂

(A)
B and x̂

(A)
C , respectively p̂

(A)
B and p̂

(A)
C .

This can be easily seen by describing what a position measurement would look like as described
from the perpective of QRF C and A. In particular, let us consider a simple (non-normalised)
state of A and B in the initial QRF C, i.e., |a〉A |b〉B , where a and b are respectively the position

1Notice that one can perform a completely analogous transformation by taking B instead of A as the new
reference frame. Likewise, this symmetric role of A and B applies to all the transformations we describe in the
following.

Accepted in Quantum 2021-05-04, click title to verify. Published under CC-BY 4.0. 4



of systems A and B relative to C. The expectation value of a measurement of the position of B
relative to C is then

〈x̂(C)
B 〉 = Tr

[
ρ̂

(C)
AB x̂

(C)
B

]
= B 〈b|A 〈a| x̂(C)

B |a〉A |b〉B = b, (2.8)

provided that we correctly normalise the quantum state. When we describe this measurement
from the point of view of A, we need to transform both the state, which becomes Ŝx |a〉A |b〉B =
|b− a〉B |−a〉C , and the observables. By doing this, we obtain the same expectation value, but
we describe this experiment as a measurement on both systems B and C, and specifically as a
measurement of their relative position, i.e.,

〈x̂(A)
B − x̂(A)

C 〉 = Tr
[
ρ̂

(A)
BC(x̂(A)

B − x̂(A)
C )

]
= C 〈−a|B 〈b− a| (x̂(A)

B − x̂(A)
C ) |b− a〉B |−a〉C = b, (2.9)

as prescribed by Eq. (2.3). Notice that it is perfectly admissible to measure x̂
(A)
B in the QRF

of A, but it would correspond to a different experiment to the one described above, equivalent to

measuring the observable x̂
(C)
B −x̂

(C)
A in the initial QRF C, and would give the consistent prediction,

in both QRFs, that 〈x̂(C)
B − x̂(C)

A 〉 = 〈x̂(A)
B 〉 = b − a. The treatment of measurements in different

QRFs shows that the transformation Ŝx preserves the relational character of the transformation,
because each position operator in different QRFs correspond to the measurement of the relative
distance of the system they refer to and the origin of the QRF. In addition, the measurement
procedure, as explained above, gives consistent predictions in the initial and final QRF. The full
description of the measurement in different QRFs is detailed in the Methods - Measurements as
seen from a quantum reference frame in Ref. [28].

2.2 Extended symmetry transformations
An especially interesting class of QRF transformations is the one that achieves an extended symme-
try transformation for the free-particle Hamiltonian. An extended symmetry transformation was
defined in Ref. [28] as a QRF tranformation mapping a Hamiltonian in the initial QRF C to a
Hamiltonian in the final QRF A having the same functional form as the initial Hamiltonian, but

with all labels A and C interchanged. In general, given the initial Hamiltonian Ĥ
(C)
AB of A and B

from the point of view of C, the Hamiltonian in the QRF A is obtained via a QRF transformation
Ŝ(C→A) as

Ĥ
(A)
BC = ŜĤ

(C)
AB Ŝ

† + i~
dŜ

dt
Ŝ†. (2.10)

A QRF transformation is an extended symmetry transformation if it maps the initial Hamiltonian

Ĥ
(C)
AB = (p̂(C)

A
)2

2mA + (p̂(C)
B

)2

2mB to Ĥ
(A)
BC = (p̂(A)

B
)2

2mB + (p̂(A)
C

)2

2mC . Such extended symmetry transformations
constitute the inertial transformations for QRFs corresponding to the superposition of Galilean
translations and the superposition of Galilean boosts, respectively

Ŝ
(C→A)
T = e−

i
κ Q̂

(A)
C

tP̂ACe
i
~ P̂

(C)
AB e

i
κ Q̂

(C)
A

t, (2.11)

Ŝ
(C→A)
b = e−

i
κ Q̂

(A)
C

tP̂ACe
i
κ ln
(
mC
mA

)
D̂

(C)
A e

i
~ K̂

(C)
AB e

i
κ Q̂

(C)
A

t, (2.12)

where Q̂
(j)
i = (p̂(j)

i
)2

2mi is the free-particle Hamiltonian of i from the point of view of j, and with

P̂
(C)
AB = x̂

(C)
A ⊗ p̂(C)

B , (2.13)

D̂
(C)
A = 1

2

(
x̂

(C)
A p̂

(C)
A + p̂

(C)
A x̂

(C)
A

)
, (2.14)

K̂
(C)
AB = p̂

(C)
A

mA
⊗ Ĝ(C)

B , (2.15)

where Ĝ
(C)
B = p̂

(C)
B t − mBx̂

(C)
B is the generator of the standard Galilean boost on particle B.

Compared to the definition of Ŝ
(C→A)
T and Ŝ

(C→A)
b given in Ref. [28], here we have distinguished

Accepted in Quantum 2021-05-04, click title to verify. Published under CC-BY 4.0. 5



the two constants ~ and κ. We use them, respectively, when the transformation acts on B or
exclusively on A. In this way κ will highlight all symmetry operations defined on the A phase
space only, although indeed the transformations (2.11) and (2.12) are symmetries only if ~ = κ.

Of course the analogous transformations Ŝ
(C→B)
T and Ŝ

(C→B)
b are extended symmetries of the

Hamiltonian as well for ~ = κ. Notice that the left-most term in Eqs. (2.11), (2.12) can be
commuted with the parity-swap operator and equivalently written as

e−
i
κ Q̂

(A)
C

tP̂AC = P̂ACe−
i
κ

mA
mC

Q̂
(C)
A

t
. (2.16)

The transformations of Eqs. (2.11)-(2.12) are generalizations of the standard translation and
Galilean boost transformations respectively, in a sense that will be explained shortly. Besides
including quantum transformation parameters and the parity swap operators2, as was done e.g.
for the quantum translation transformation of Eq. (2.4), the requirement that these transformations
are extended symmetry transformations leads to further including the time evolution operators of

the systems A and C, e±
i
κ Q̂

(j)
i
t. We stress that, consistently with Eq. (2.1), elementary unitary

transformations acting on A(C) are ruled by the κ parameter, while the ones acting on particle B
contain ~.

The transformation Ŝ
(C→A)
T corresponding to the “superposition of Galilean translations” acts

as

ŜT x̂
(C)
A Ŝ†T = −x̂(A)

C + p̂
(A)
C t

[
1
mC
− 1
mA

]
− κ

~
p̂

(A)
B

mA
t,

ŜT p̂
(C)
A Ŝ†T = −p̂(A)

C − κ

~
p̂

(A)
B ,

ŜT x̂
(C)
B Ŝ†T = x̂

(A)
B − x̂(A)

C + p̂
(A)
C

mC
t,

ŜT p̂
(C)
B Ŝ†T = p̂

(A)
B .

(2.17)

The physical meaning of this transformation is that the position of system B at time t from the
point of view of C is mapped to the relative position between system B at time t and system C
at time t = 0, while the momentum of B remains unchanged (as we expect for a translation). If
~ = κ this construction of the QRF transformation satisfies the transitive property, meaning that

the change of reference frame from C to A Ŝ
(C→A)
T is equivalent to the change of reference frame

from C to B and then from B to A, i.e., Ŝ
(C→A)
T = Ŝ

(B→A)
T Ŝ

(C→B)
T . The fact that transitivity

requires ~ = κ should not come as a surprise, since when composing the two transformations the
systems A and B play alternatively the role of transformed quantum system and of QRF, so that
their treatment should be symmetric. Notice that, when κ→ 0, the action of the transformation of
system B is the same as with finite κ, but the action of the transformation on the QRF A becomes
independent of the position and momentum of system B.

The transformation Ŝ
(C→A)
b corresponds to the “superposition of Galilean boosts”, and acts as

Ŝbx̂
(C)
A Ŝ†b = −mC

mA
x̂

(A)
C + p̂

(A)
C t

[
1
mA
− 1
mC

]
+ κ

~
p̂

(A)
B t−mBx̂

(A)
B

mA
,

Ŝbp̂
(C)
A Ŝ†b = −mA

mC
p̂

(A)
C ,

Ŝbx̂
(C)
B Ŝ†b = x̂

(A)
B −

p̂
(A)
C

mC
t,

Ŝbp̂
(C)
B Ŝ†b = p̂

(A)
B − mB

mC
p̂

(A)
C .

(2.18)

In Appendix A we provide an explicit calculation of the action of the operator e
i
~ ln mC

mA
D̂A on the

phase space operators. The physical meaning of this transformation is that system B at time t

2Notice that for the boost transformation the full parity swap operator which preserves the relational nature of

the phase space coordinates is P̂ACe
i
κ

ln
(
mC
mA

)
D̂

(C)
A so to also exchange appropriately the velocities of particles A

and C.
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from the point of view of C is boosted by an amount controlled by the momentum (velocity) of
system A. When κ → 0, the action of the transformation of system B is the same as with finite
κ, but the action of the transformation on the QRF A becomes independent of the position and
momentum of system B. Similarly to the previous case, if ~ = κ also this QRF transformation

satisfies the transitive property, i.e., Ŝ
(C→A)
b = Ŝ

(B→A)
b Ŝ

(C→B)
b [28].

A natural question at this point is what happens when two different extended symmetry trans-

formations are composed, for instance Ŝ
(C→A)
D = Ŝ

(B→A)
b Ŝ

(C→B)
T , where we take ~ = κ as explained

above. One would expect that the extended symmetry transformations close some group struc-
ture, analogously to what happens for the standard Galilei transformations. However, the group
structure of Galilei transformations relies crucially on the classical nature of the transformation
parameters, whose addition rule is given by the group structure of the transformations [1]. In the
case of QRF transformations matters become complicated due to the quantum nature of the trans-
formation parameters. In the rest of the paper we show how we can recover a group structure for

QRF transformations, and how the transformation Ŝ
(C→A)
D is written as a function of the elements

of the group that we derive.

3 Time-independent transformations: the relational Lie algebra
In order to investigate the group structure of the QRF transformations we start from a simplified
scenario, where we ignore the time evolution of the quantum system of which the reference frames
are part.

Considering the quantum system described in the previous section, comprising quantum par-
ticles A,B,C, we aim at describing the transformation from the QRF C to A. We start with the
two Heisenberg-Weyl algebras of Eq. (2.1):

[x̂A, p̂A] = i κ , [x̂B , p̂B ] = i ~ . (3.1)

where we omitted the (C) index for simplicity. When ignoring the dynamics of the quantum
particles, we can generalise the operators corresponding to the translations and Galilean boosts
acting on the particle B. This is done by exponentiating the standard Galilei generators at time
t = 0, namely the generator of translations P̂B = p̂B and the boost generator ĜB = −mBx̂B ,
and introducing non-commuting transformation parameters, x̂A for translations and p̂A/mA for
boosts, which encode the quantum properties of the reference frame one is transforming to. Thus
we define

ÛP = e i~ x̂A⊗P̂B , ÛG = e
i
~
p̂A
mA
⊗ĜB . (3.2)

The ⊗ symbol is included in order to emphasise the fact that in the QRFs setting such “quantum
Galilei” transformations are defined within the tensor space of two different non-Abelian algebras
acting on different spaces. The algebra A can be interpreted as the algebra generated by the non-
commuting translation x̂A and boost p̂A parameters of such “quantum Galilei” transformations.
On the other hand, the Heisenberg-Weyl algebra B is the usual quantum mechanical algebra of
position and momentum operators for the particle B, from which the generators of the Galilei
algebra of usual inertial transformations are constructed. This algebraic framework is inspired by
the theory of quantum groups, which are generalizations of Lie groups where group parameters
become noncommutative operators [42].

Because of the noncommutativity of the transformation parameters, the operators ÛP and ÛG
act on the phase space of both particles A and B. The generalised translation operator acts as
follows:

ÛP x̂A Û
−1
P = x̂A,

ÛP p̂A Û
−1
P = p̂A −

κ

~
p̂B ,

ÛP x̂B Û
−1
P = x̂B + x̂A,

ÛP p̂B Û
−1
P = p̂B ,

(3.3)
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while the generalised boost transformations act as

ÛG x̂A Û
−1
G = x̂A + κ

~
ĜB
mA

= x̂A −
κ

~
mB

mA
x̂B ,

ÛG p̂A Û
−1
G = p̂A,

ÛG x̂B Û
−1
G = x̂B ,

ÛG p̂B Û
−1
G = p̂B + mB

mA
p̂A.

(3.4)

From these results we see that the action of the quantum translation operator ÛP on the
particle B is the same as we would expect from the usual action of a Galilei translation, since x̂B
is translated by x̂A and momentum p̂B is not changed. Additionally, ÛP has a non-trivial action
on the momentum of the A particle. Similarly, the boost operator ÛG has the same action on the
particle B as the one expected from the standard Galilei boost, while it has a non-trivial action
on particle A, whose position operator is modified in terms of the position operator for B. We see
that, as expected, the nontrivial features of these transformations are governed by the parameter
κ, which sets the noncommutativity of the phase space of the QRF A.

Going back to the QRF transformations of the previous section, notice that the transforma-
tions defined by ÛP and ÛG in Eq. (3.2), correspond to the extended symmetry transformations in
Eqs. (2.11)-(2.12) taken at time t = 0 and up to the (generalised, in the case of boost transforma-
tions) parity swap operators. This is also reflected in the explicit form of the action on phase space
coordinates, compare Eqs. (2.17)-(2.18) to Eqs. (3.3)-(3.4). So at this level the transformations ÛP
and ÛG can be seen as QRF transformations which spoil the relational nature of the phase space
coordinates.

As we mentioned at the beginning of this section, the reason for introducing these transforma-
tions is to investigate the group structure of QRF transformations in a scenario that is stripped of
all non-essential structure, with the hope of learning something that can be usefully applied also
to the more refined framework of Sec. 2. Working with the operators UP and UG, the question of
whether they belong to some group structure can be investigated by searching for the correspond-
ing algebra for the operators P̂AB = x̂A⊗ p̂B and K̂AB = p̂A

mA
⊗ĜB . The main difficulty, compared

to the usual Galilei group, is that we are dealing with tensor product operators acting of the phase
spaces of both A and B rather than the usual translation and boost operators acting on the phase
space of B alone. Nevertheless, we are able to find the sought for algebra, which includes two
additional generators besides the ones we started from. In fact, it is a matter of straightforward
computation to show that the tensor product operators

P̂AB = x̂A ⊗ p̂B ,

K̂AB = p̂A
mA

⊗ ĜB ,

D̂A = 1
2 (x̂A p̂A + p̂A x̂A) ⊗ 1B ,

D̂B = 1A ⊗
1
2 (x̂B p̂B + p̂B x̂B)

(3.5)

satisfy the following commutation rules

[K̂AB , P̂AB ] = iκ
mB

mA
D̂B − i~

mB

mA
D̂A,

[D̂A, P̂AB ] = − i κ P̂AB ,
[D̂B , P̂AB ] = i ~ P̂AB ,

[D̂A, K̂AB ] = i κ K̂AB ,

[D̂B , K̂AB ] = − i ~ K̂AB ,

[D̂A, D̂B ] = 0.

(3.6)

Since these are linear commutators, the four operators (3.5) generate a 4-dimensional Lie algebra
and we will call Eq. (3.6) the relational Lie algebra R(4) for QRFs. The reason for this terminology
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resides in the physical interpretation of the operators D̂A, D̂B . The operator x̂i p̂i + p̂i x̂i for
i = A,B acts on the x̂i and p̂i operators by performing a dilation in each quadrature. More
precisely, the action of this operator on the position and momentum operators of the the two
quantum systems is (see also Appendix A)

e iκαD̂A x̂Ae− i
καD̂A = eαx̂A, e iκαD̂A p̂Ae− i

καD̂A = e−αp̂A,

e i~βD̂B x̂Be− i
~βD̂B = eβ x̂B , e i~βD̂B p̂Be− i

~βD̂B = e−β p̂B .
(3.7)

Hence, the role of this operator is to rescale the position and momentum operators of the two
quantum systems. An operator of this kind is exactly the one involved in the “generalised” parity
swap operator that enters in the QRF boost transformation of Eq. (2.12), and guarantees that
the phase space transformation defined by Ŝb preserves the relational nature of the phase space
coordinates. In the case of Eq. (2.12) the operator is used to enforce the condition that the velocity
of the final QRF A, as seen from the initial QRF C, is equal to the opposite of the velocity of C
as seen from A. Mathematically, this condition is written as

p̂A 7→ −
mA

mC
p̂C . (3.8)

It is clear that, by choosing α = ln mC
mA

in Eq. (3.7), and by subsequently applying the parity-swap

operator P̂AC introduced in Sec. 2, this condition can be implemented.
So we have taken a first meaningful step towards the understanding of the group structure of

the QRF transformations discussed in Sec. 2. Not only have we showed that the simplified QRF
transformations ÛP and ÛG form a group. By requiring that they do so we are automatically led
to solve the issue that ÛP and ÛG break the relational meaning of the phase space coordinates x̂i,
p̂j . In fact, in order to close the algebra of generators we need to introduce the velocity rescaling

operators D̂A, D̂B that are indeed the ones enforcing that the velocity of A as seen from C is the
opposite of the velocity of C as seen from A. This condition thus guarantees that the relational
quantities are mapped consistently and symmetrically under QRF transformation.

Before proceeding to the following section, in which we expand the scope of our analysis by
restoring the dynamical properties of the QRFs, we make one final observation on the properties
of the algebra of Eq. (3.6). By merging the two generators D̂A and D̂B into one single generator
D̂

D̂ = κ
1A

mA
⊗mBD̂B − ~

1A

mA
D̂A ⊗mB1B , (3.9)

we get a three-dimensional subalgebra

[P̂AB , K̂AB ] = −i D̂,

[P̂AB , D̂] = −2 i κ ~ mB

mA
P̂AB ,

[K̂AB , D̂] = 2 i κ ~ mB

mA
K̂AB ,

(3.10)

which is just the so(2, 1) ' sl(2,R) ' su(1, 1) real Lie algebra (see [41, 43]). The κ → 0 limit of
this algebra is a 3-dimensional Heisenberg-Weyl algebra h(3), which is indeed generated by ĜB , p̂B
and mB 1B . Note also that the generator D̂∗ = κ 1A

mA
⊗mBD̂B + ~ 1A

mA
D̂A ⊗mB1B is such that

[D̂∗, P̂AB ] = [D̂∗, K̂AB ] = [D̂∗, D̂] = 0, and the relational Lie algebra R(4) is thus isomorphic to
the direct sum of so(2, 1) with a central extension generated by D∗.

4 Time-dependent transformations: the dynamical Lie algebra
As we have seen in Sec. 2, the extended symmetry transformations for QRFs include information
about the dynamical behaviour of the quantum system. This is provided by a Hamiltonian Ĥ
describing the free relative motion of the quantum particles A and B, namely

Ĥ = p̂2
A

2mA
⊗ I + I ⊗ p̂2

B

2mB
. (4.1)
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In order to analyse in algebraic terms such dynamical content in a similar way as done in the
previous section, we modify the generator K̂AB appearing in the non-dynamical algebra of Eq. (3.5)
by considering the time-dependent version of the Galilean boost, which amounts to replacing the
operator ĜB defined in the previous section with

ĜB = p̂B t−mB x̂B . (4.2)

It is then straightforward to check that the following set of seven operators

P̂AB = x̂A ⊗ p̂B , K̂AB = p̂A
mA
⊗ ĜB ,

D̂A = 1
2 (x̂A p̂A + p̂A x̂A) ⊗ 1B , D̂B = 1A ⊗ 1

2 (x̂B p̂B + p̂B x̂B) ,

Q̂A = p̂2
A

2mA ⊗ 1B , Q̂B = 1A ⊗ p̂2
B

2mB , T̂ = p̂A ⊗ p̂B ,
(4.3)

closes again a Lie algebra, whose commutation rules are given by[
P̂AB , K̂AB

]
= i~

mB

mA
D̂A − iκ

mB

mA
D̂B + 2iκmB

mA
Q̂Bt, [P̂AB , D̂A] = i κ P̂AB ,

[P̂AB , D̂B ] = −i ~ P̂AB , [P̂AB , Q̂A] = i
κ

mA
T̂ , [P̂AB , Q̂B ] = 0,

[P̂AB , T̂ ] = 2 i κmB Q̂B , [K̂AB , D̂A] = −i κ K̂AB , [K̂AB , D̂B ] = i ~ K̂AB − 2 i ~
mA

T̂ t,

[K̂AB , Q̂A] = 0, [K̂AB , Q̂B ] = −i ~
mA

T̂ , [K̂AB , T̂ ] = −2 i ~mB Q̂A,

[D̂A, Q̂A] = 2 i κ Q̂A, [D̂A, D̂B ] = 0, [D̂A, Q̂B ] = 0,
[D̂A, T̂ ] = i κ T̂ , [D̂B , Q̂B ] = 2 i ~ Q̂B , [D̂B , Q̂A] = 0,
[D̂B , T̂ ] = i ~ T̂ .

(4.4)
We call this algebra the dynamical Lie algebra D(7) of QRF transformations, which is actually a
one-parametric family of Lie algebras with parameter t. Note that the fact that all the generators
of the dynamical Lie algebra given by Eq. (4.3) are quadratic functions in terms of the phase space
operators is essential in order to guarantee that they close a Lie algebra.

We recall that in the previous section we were forced to introduce the generators D̂A and D̂B in
order to close the algebra containing P̂AB and K̂AB . Then it turned out that these generators were
exactly the ones we needed in order to build the extended symmetry transformations of Sec. 2 in
the t = 0 case. Analogously, now we see that when t 6= 0 the set {P̂AB , K̂AB , D̂A, D̂B} is no longer
a subalgebra. The requirement that these generators close some larger algebra when t 6= 0 leads
us to introduce further operators {Q̂A, Q̂B , T̂}, which are indeed needed to build the extended
symmetry transformations ŜT , Ŝb of the previous section in the t 6= 0 case, Eqs. (2.11) and (2.12).

So, as already stated for the non-dynamical algebra of Sec. 3, the generators of the algebra
of Eq. (4.4) constitute the building blocks of the extended symmetry transformations ŜT and
Ŝb. The only element that is missing to write the transformations ŜT and Ŝb is the parity-swap
operator P̂AC . However, the algebraic structure can be determined independently of the parity-
swap operator. The role of P̂AC is to ensure that the full set of relational variables is mapped
consistently, but it does not influence the group structure of the QRF transformations. This fact
allows us to identify the physical meaning of the additional generators {Q̂A, Q̂B , T̂} appearing
in Eq. (4.4). Specifically, the operators Q̂A, Q̂B generate the free motion of the particles A and
B, respectively. In the extended symmetry transformation framework this kind of operators is
introduced in order to enforce the invariance of the Hamiltonian of the quantum system. The
action of the operator T̂ on the position and momentum operators is

e
i
~αT̂ x̂Ae

− i
~αT̂ = x̂A + κ

~
αp̂B , e

i
~αT̂ p̂Ae

− i
~αT̂ = p̂A,

e
i
~βT̂ x̂Be

− i
~βT̂ = x̂B + βp̂A, e

i
~βT̂ p̂Be

− i
~βT̂ = p̂B ,

(4.5)

where α and β have the physical dimensions of a time divided by a mass. Hence, the physical
meaning of T̂ is to generalise to QRFs the Galilean transformation x′ = x− vt without necessarily
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transforming the velocity through the momentum p̂B . Notice that the operator T̂ appears in the

Ŝb transformation, when the time-dependent Galilean boost is explicitly written as ÛK̂ = e
i
~
p̂A
mA

ĜB

and ĜB = p̂Bt−mBx̂B .
From the point of view of the four-dimensional quantum phase space (x̂A, p̂A, x̂B , p̂B), each of

the generators X̂ of the dynamical Lie algebra provides an action on such phase space through the
corresponding group element

ÛX̂ = eiλX̂ , (4.6)

with some appropriate (commutative) transformation parameter λ. By explicitly computing the
action of the group element ÛX̂ for any X̂ of the algebra of Eq. (4.4) on the phase space coordinates

it is easy to see that ÛX̂ generates a linear canonical transformation, see Table 1, as it was expected

since ÛX̂ is always a unitary operator. Note that the group of linear canonical transformations in
a 2N -dimensional phase space is the real symplectic group Sp(2N,R) [44]. For N = 2 we have
that Sp(4,R) is 10-dimensional, and the dynamical Lie group generated by the Lie algebra (4.4)
is a 7-dimensional subalgebra of Sp(4,R).

x̂A p̂A x̂B p̂B

UP = e i~ P̂AB x̂A p̂A − κ
~ p̂B x̂B + x̂A p̂B

UG = e i~ K̂AB x̂A + κ
~

1
mA

(p̂Bt−mBx̂B) p̂A x̂B + t p̂AmA p̂B + mB
mA

p̂A

e iκαD̂A eαx̂A e−αp̂A x̂B p̂B

e i~αD̂B x̂A p̂A eβ x̂B e−β p̂B

e iκαQ̂A x̂A + α
mA

p̂A p̂A x̂B p̂B

e i~αQ̂B x̂A p̂A x̂B + α
mB

p̂B p̂B

e i~ αT̂ x̂A + α κ
~ p̂B p̂A x̂B + α p̂A p̂B

Table 1: Action of the seven one-parametric subgroups of the dynamical algebra D(7) onto the quantum phase
space variables for two generic particles, giving rise to the corresponding canonical transformations. These
uniparametric subgroups together with the parity-swap operator P̂ provide the building blocks from which QRF
transformations (2.11) and (2.12) can be constructed. Notice that for UP and UG we have fixed the parameter
λ appearing in UX̂ = eiλX̂ to λ = 1/~, since this is the relevant case from the QRF transformations point of
view. For the other generators we have assumed the parameter λ to be proportional to the most appropriate
between 1/κ and 1/~ in order to make contact with the exponential operators arising in the definition of QRF
transformations, but we have left the proportionality constant α free in order to consider more general phase
space transformations than the ones related to the extended symmetry transformations of Sec. 2.

Finally, we stress that if we specialize the full dynamical algebra (4.4) when t = 0, and we
define the new generator

D̂ = κ
1A

mA
⊗mBD̂B − ~

D̂A

mA
⊗mB1B , (4.7)

then the operators {P̂AB , K̂AB , D̂, Q̂A, Q̂B , T̂} generate a 6D subalgebra where {P̂AB , K̂AB , D̂}
define a su(1, 1) ' sl(2,R) algebra and {Q̂A, Q̂B , T̂} is a 3D Abelian sector. As it is explicitly
discussed in Appendix B, this 6D algebra turns out to be isomorphic to the Poincaré algebra of
special relativistic transformations in (2+1) dimensions, and in this way an “accidental” dynamical
Poincaré symmetry arises in the context of QRF transformations at t = 0. Once again, this fact
shows that the introduction of noncommutative Galilean translation and boost parameters changes
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completely the algebraic framework for the theory in which inertial transformations for QRFs have
to be defined.

4.1 Composition of two QRF transformations
We are now in the position of answering the question we asked at the end of Sec. 2, and write
the transformation obtained by composing two QRF transformations as a function of the QRF

group elements. In particular, we look for an explicit expression of the transformation Ŝ
(C→A)
D ≡

Ŝ
(B→A)
b Ŝ

(C→B)
T , i.e.,

Ŝ
(C→A)
D = e−

i
~ Q̂

(A)
B

tP̂ABe
i
~ ln
(
mB
mA

)
D̂

(B)
A e

i
~ K̂

(B)
AC e

i
~ Q̂

(B)
A

te−
i
~ Q̂

(B)
C

tP̂BCe
i
~ P̂

(C)
BA e

i
~ Q̂

(C)
B

t, (4.8)

where as discussed in Sec. 2 we have set κ = ~. The action on the phase space coordinates is the
following

ŜDx̂
(C)
A Ŝ†D = −mB

mA
x̂

(A)
B − mA +mC

mA
x̂

(A)
C + p̂

(A)
B t

[
1
mA
− 1
mB

]
+ p̂

(A)
C t

[
1
mA

+ 1
mC

]
,

ŜDp̂
(C)
A Ŝ†D = −mA

mB
p̂

(A)
B ,

ŜDx̂
(C)
B Ŝ†D = −x̂(A)

C + p̂
(A)
C t

[
1
mC
− 1
mB

]
+ mC +mA

mB

p̂
(A)
B

mB
t,

ŜDp̂
(C)
B Ŝ†D = −p̂(A)

C + mA +mC

mB
p̂

(A)
B .

(4.9)

A lengthy computation shows that this new transformation can be written as a QRF transformation
from C to A in terms of the generators of Eq. (4.3) as follows:

ŜD = P̂AC e−
i
~
mA
mC

Q̂
(C)
A

t
e
− i

~

(
1−

m2
C

m2
B

)
Q̂

(C)
B

t
e
i
~ ln
(
mC
mA

)
D̂

(C)
A e

i
~ ln
(
mB
mC

)
D̂

(C)
B

× e−
i
~

(
mA
mC

)2
P̂

(C)
AB e

i
~
mC
mB

K̂
(C)
AB e

i
~
mA
mC

P̂
(C)
AB e

i
~ Q̂

(C)
A

t.

(4.10)

The transformation ŜD can also be shown to be an extended symmetry of the free Hamiltonian

Ĥ
(C)
AB = (p̂(C)

A
)2

2mA + (p̂(C)
B

)2

2mB , because

Ĥ
(A)
BC = ŜDĤ

(C)
AB Ŝ

†
D + i~

dŜD
dt

Ŝ†D =

(
p̂

(A)
B

)2

2mB
+

(
p̂

(A)
C

)2

2mC
. (4.11)

Some intuition concerning the roots of the computational complexity of the previous results
can be obtained by resorting to the well-known Baker-Campbell-Haussdorf (BCH) formula, which
gives the algebraic background for Lie group multiplication formulae by providing the solution in
Ẑ for the equation

eX̂ eŶ = eẐ , (4.12)

where both X̂ and Ŷ belong to a Lie algebra g. Such solution can be explicitly given (see [45]) as
a formal series in the Lie algebra elements whose first terms are given by

Ẑ = X̂ + Ŷ + 1
2 [X̂, Ŷ ] + 1

12([X̂, [X̂, Ŷ ]]− [Ŷ , [X̂, Ŷ ]]) , (4.13)

plus, in general, an infinite number of terms involving higher order commutators between X and
Y . In the particular case that [X̂, [X̂, Ŷ ]] = [Ŷ , [X̂, Ŷ ]] = 0, all higher order terms vanish and we
have that

eX̂ eŶ = eX̂+Ŷ+ 1
2 [X̂,Ŷ ] . (4.14)

This is exactly what happens when we consider the multiplication of a standard Galilean boost
generated by Ĝ ≡ X̂ and a Galilean translation generated by P̂ ≡ Ŷ , since [Ĝ, P̂ ] = i~ M̂ and the
mass generator commutes with both Ĝ and P̂ , see Eq. (5.1). Therefore, if we consecutively apply
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a Galilean boost and a translation to a one-particle quantum state, the only difference that we
obtain with respect to applying the same transformations in reverse ordering is a phase factor which
depends on the mass of the particle. However, if we are dealing with the generalized translation and
boost transformations (3.2) for QRFs, the situation is much more involved. Now, the BCH series
no longer finishes with the first commutator [K̂AB , P̂AB ], and the full series has to be computed
by including the new Lie algebra generators that arise as higher order commutators. In fact, the
essential result that we have shown is that this BCH multiplication can be self-consistently closed
for all the basic QRF transformations if we consider the 7-dimensional dynamical Lie group defined
by Eq. (4.4).

5 The classical reference frame limit
It is well-known that the centrally extended Galilei group is the symmetry group of the rays of
Hilbert space solutions of the Schrödinger equation for a massive particle [1, 2]. We recall that
the (1+1) centrally extended Galilei algebra generating such group of inertial transformations for
a quantum particle is given by

[Ĝ, P̂0] = i ~ P̂ , [Ĝ, P̂ ] = i ~ M̂, [P̂0, P̂ ] = 0, [M̂, ·] = 0, (5.1)

where Ĝ, P̂ , P̂0 are, respectively, the generators of boost transformations, space translations and
time translations, while M̂ is the central extension (mass operator) which has to be added to the
usual Galilei transformations in order to recover the invariance (up to a phase) of the Schrödinger
wave functions. The Casimir operator for this algebra is

Ĉ = 2 M̂ P̂0 − P̂ 2 , (5.2)

from which the one-particle Hamiltonian of a free Galilean particle in (1+1) dimensions can be
identified with the time-translation generator

P̂0 = P̂ 2

2 M̂
+ Ĉ , (5.3)

as expected. The one-particle (B) representation of the Galilei algebra with Ĉ = 0 is given by

P̂0 = p̂2
B

2mB
, Ĝ = p̂B t−mB x̂B , P̂ = −p̂B , M̂ = mB . (5.4)

Therefore, a (1+1) centrally extended Galilei inertial transformation is given by the group element

g = e i~ θ M̂ e i~ b P̂0 e i~ a P̂ e i~ v Ĝ , (5.5)

where a Galilei group element is parametrized as (θ, b, a, v).
In our framework, the classical reference frame limit of the generators of the dynamical Lie

algebra defined in Eq. (4.4) is algebraically given by taking the κ → 0 in the algebra, which
at the level of the representation in Eq. (4.3) is tantamount to saying that the positions and
momenta for particle A become commutative functions, that we will denote as objects without
hats (x̂A → xA, p̂A → pA). Note that the separate existence of the parameter κ allows us to
consider formally this limit as different from the usual classical limit ~ → 0, since we do not
want to suppress the quantum nature of particle B. This is why we call this procedure a “classical
reference frame limit”, under which the generators {P̂AB , K̂AB , Q̂B} of the dynamical algebra (4.3)
have the following classical counterparts

P̂ cAB = xA ⊗ p̂B ,

K̂c
AB = pA

mA
⊗ (p̂B t−mB x̂B),

Q̂cB = 1A ⊗
p̂2
B

2mB
,

(5.6)
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where xA and pA are now commuting functions, which act as constant operators on the left hand
side of the tensor product. The commutation rules among the operators of Eq. (5.6) are just the
κ→ 0 limit of (4.3), and it is straightforward to check that if we define

P̂0 = Q̂cB Ĝ = mA

pA
K̂c
AB P̂ = − 1

xA
P̂ cAB M̂ = mB 1B , (5.7)

we obtain the representation (5.4) for the (1+1) centrally extended Galilei Lie algebra (5.1). There-
fore, when κ 6= 0 the extended Galilei algebra is by no means a subalgebra of the dynamical Lie
algebra D(7), but it can be obtained as a subalgebra of its κ→ 0 limit under a suitable redefinition
of the generators that takes into account the values of the phase space variables for particle A.

Moreover, this classical reference frame limit gives rise to the classical symplectic structure on
the (now commutative) algebra of functions on the phase space for particle A through the standard
definition of the Poisson bracket as a limit of the commutator, namely

{xA, pA} = lim
κ→0

[x̂A, p̂A]
i κ

= 1 . (5.8)

In this sense, the κ→ 0 limit gives rise to the classical Hamiltonian structure for the A variables,
which can still be considered as dynamical ones from a classical mechanics perspective. Therefore,
the κ → 0 limit provides the appropriate tool in order to obtain classical dynamical reference
frames, where the non-vanishing commutation rule between the quantum boost and translation
parameters becomes a non-vanishing canonical Poisson bracket between their classical counterparts.

We stress that this classical reference frame limiting procedure can be considered algebraically
analogous to the one providing the classical electromagnetic field description of a quantum matter
system B interacting with a single-mode quantum electromagnetic field A, which we describe as a
quantum harmonic oscillator. In this case, the full interacting system is described as a state living
on the tensor product Hilbert space H = HA⊗HB . Here, HA is the Hilbert space of the quantum
harmonic oscillator, where the quadrature field operators satisfy the canonical commutation rule
[x̂A, p̂A] = i ~, and HB is the Hilbert space encoding the quantum matter. In the case that the
quantum system B can be effectively described as a two-level system, the algebra of observables
for B is the su(2) Lie algebra, while the electromagnetic field algebra is the Heisenberg-Weyl
algebra (thus giving rise to the so-called Dicke model [46]). Then the classical electromagnetic
field description of the system can be obtained by performing the “strong field” limit, which arises
when the harmonic oscillator states A of the quantum field have very high quantum numbers
or, equivalently, that the number of photons is much larger than the number of atoms in the
sample [47]. This limit would be algebraically equivalent to taking the ~→ 0 limit for the A Hilbert
space only, while the quantum system B remains untouched. Indeed, the algebraic structure and
the representation theory underlying the quantum field – quantum matter model are much more
involved than the corresponding ones for the classical field - quantum matter one (see [48]).

6 Comments and conclusions
In this work we have contributed to the understanding of the role of quantum reference frame
(QRF) transformations as symmetries of quantum mechanical systems. It had been previously
demonstrated that QRF transformations are extended symmetries of the free particle Hamilto-
nian, in the sense explained around Eq. (2.10). However, an important property of symmetry
transformations is that they should close a group structure, but this was still unproven. We found
that the difficulties encountered so far could be traced back to the fact that the group structure
is not apparent at the level of the full QRF transformations, but it is realised at the level of
their individual building blocks defining the canonical transformations on the phase space of the
quantum system which includes the QRFs. They consist of the noncommutative generalisation of
Galilean translation and boost generators, together with other operators that were included in the
QRF transformations in order to ensure they preserved the relational nature of the phase space
coordinates and that they were extended symmetries of the Hamiltonian, namely velocity-rescaling
operators and time-evolution operators. What is interesting is that, even though we started from
just the generalised translation and boost generators, we were led to add the other transformations
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when searching for the Lie algebra they could close. The Lie algebra we obtained is a 7-dimensional
Lie algebra, which recovers the usual centrally extended Galilean algebra as a subalgebra when the
classical reference frame limit is taken. Thanks to the identification of the elements which close the
group structure, we were able to show that indeed the composition of two QRF transformations
can be written in terms of these elements, so that their role as symmetries of the quantum system is
reinforced. Also, the introduction of a second parameter κ governing the noncommutativity of the
operators appearing in the QRF transformations makes it possible to consider a classical reference
frame limit of the algebra of symmetries, under which we recover the usual Galilean symmetries
from a dynamical framework.

From a more technical viewpoint, in Sec. 4 we stressed the relevance of linear canonical trans-
formations in the definition of the symmetry algebra for quantum reference frames. This suggests
that the symplectic group Sp(2N,R), as the group of linear canonical transformations on the 2N -
dimensional phase space, should play an outstanding role in the QRF description of a system of N
quantum particles in (1+1) dimensions. In the particular setting for N = 2 here presented, since
the sp(4,R) Lie algebra is isomorphic to the Anti-de Sitter Lie algebra so(3, 2), the emergence of
dynamical Lorentz symmetries in the context of Galilean QRFs, like the so(2, 1) one generated by
the relational Lie algebra {P̂AB , K̂AB , D̂}, becomes natural. In this sense, a deeper understand-
ing of the representation theory of the full 7-dimensional dynamical Lie algebra is worth being
explored, as well as the derivation of its complete group law for arbitrary group parameters. This
could be helpful in order to understand in group-theoretical terms why in the QRF scenario we are
constrained to choose a specific set of dynamical group parameters in order to define the specific
symmetries of the system, while more generic group transformations would be possible.

Evidently, the generalization of the approach here presented to QRFs defined by Galilean par-
ticles living in (2+1) and (3+1) dimensions has to be faced in the near future. In this sense,
preliminary studies show that the definition of noncommutative translations and boosts for addi-
tional dimensions can be done just by mimicking the approach here presented. Nevertheless, the
introduction of rotation transformations for QRFs is by no means a trivial task, since the under-
lying issue of the definition of the noncommutative angle operator associated to a given rotation
has to be fixed in a consistent way with respect to the rest of symmetries, a problem to which
the literature on QRFs has already devoted some effort (see Ref. [30]). In any case, we think that
being able to set the symmetry problem for QRF transformations in a Lie group framework makes
it possible to use all the well-known group-theoretical machinery in order to face this and other
relevant open questions from a novel perspective.
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Appendix

A Calculation of the action of the operator D̂

Let us consider the operator ÛD = e
i
~αD̂, where D̂ = 1

2 (x̂p̂ + p̂x̂) (in the main text, the position
and momentum operators can refer to both particles A and B). Let us now consider the non

symmetrised version of the operator ÛD, which we denote as T̂D = e
i
~αx̂p̂, which has the same

action on the phase space operators as its symmetrised version, i.e., ÛDx̂Û
†
D = T̂Dx̂T̂

−1
D , because
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ÛD = T̂De
1
2α and Û†D = T̂−1

D e−
1
2α. Hence, we can write

T̂Dx̂T̂
−1
D =

∞∑
n=0

1
n!

(
i

~
αx̂p̂

)n
x̂T̂−1

D (A.1)

If we define Â = i
~αx̂p̂ we find

Âx̂ = x̂Â+ αx̂; (A.2)
Â2x̂ = x̂Â2 + 2αx̂Â+ α2x̂; (A.3)
Â3x̂ = x̂Â3 + 3αx̂Â2 + 3α2x̂Â+ α3x̂; (A.4)

... (A.5)

Ânx̂ =
n∑

m=0

(
n

m

)
(αmx̂) Ân−m. (A.6)

We can thus rewrite

T̂Dx̂ =
∞∑
n=0

n∑
m=0

1
m!(n−m)! (αmx̂) Ân−m =

=
∞∑
m=0

∞∑
`=0

1
m!`! (αmx̂) Â` =

= eαx̂T̂D.

(A.7)

We then find
ÛDx̂Û

†
D = eαx̂, ÛDp̂Û

†
D = e−αp̂. (A.8)

If we now define, e.g., α = ln mC
mA

and we look for the action of the operator e
i
~ ln mc

mA
D̂A as defined

in the main text, we find

e
i
~ ln mc

mA
D̂A x̂

(C)
A e

− i
~ ln mC

mA
D̂A = mC

mA
x̂

(C)
A , e

i
~ ln mc

mA
D̂A p̂

(C)
A e

− i
~ ln mC

mA
D̂A = mA

mC
p̂

(C)
A . (A.9)

By also adding the parity-swap operator, we find the desired result

P̂ACe
i
~ ln mc

mA
D̂A x̂

(C)
A e

− i
~ ln mC

mA
D̂AP̂†AC = −mC

mA
x̂

(A)
C ,

P̂ACe
i
~ ln mc

mA
D̂A p̂

(C)
A e

− i
~ ln mC

mA
D̂AP̂†AC = −mA

mC
p̂

(A)
C .

(A.10)

B (2+1) Poincaré symmetry arising at t = 0
As we mentioned in Section 4, if we consider the commutation rules (4.4) when t = 0, and we
define the new generator

D̂ = κ
1A

mA
⊗mBD̂B − ~

D̂A

mA
⊗mB1B , (B.1)

then a 6D Lie subalgebra is generated by {P̂AB , K̂AB , D̂, Q̂A, Q̂B , T̂}, with commutation rules
given by

[P̂AB , K̂AB ] = −i D̂, [P̂AB , D̂] = −2 i κ ~ mB
mA

P̂AB , [K̂AB , D̂] = 2 i κ ~ mB
mA

K̂AB ,

[P̂AB , Q̂A] = i κ
mA

T̂ , [P̂AB , T̂ ] = 2 i κmB Q̂B , [P̂AB , Q̂B ] = 0,
[K̂AB , Q̂A] = 0, [K̂AB , Q̂B ] = −i ~

mA
T̂ , [K̂AB , T̂ ] = −2 i ~mB Q̂A,

[D̂, Q̂A] = −2 i κ ~ mB
mA

Q̂A, [D̂, Q̂B ] = 2 i κ ~ mB
mA

Q̂B , [D̂, T̂ ] = 0,
[Q̂A, Q̂B ] = 0, [Q̂A, T̂ ] = 0, [Q̂B , T̂ ] = 0 .

(B.2)
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Note that this algebra has a semidirect product structure where {P̂AB , K̂AB , D̂} define a su(1, 1) '
sl(2,R) ' so(2, 1) Lie subalgebra (see also (3.6)) and {Q̂A, Q̂B , T̂} provide a 3D Abelian sector.
Surprisingly enough, it can be shown through a straightforward computation that this 6D Lie
subalgebra is isomorphic to the (2+1) Poincaré Lie algebra of relativistic inertial transformations

[Ĵ , P̂i] = i εijP̂j , [Ĵ , K̂i] = i εijK̂j , [Ĵ , P̂0] = 0,
[P̂i, K̂j ] = −i δijP̂0, [P̂0, K̂i] = −i P̂i, [K̂1, K̂2] = −i Ĵ ,
[P̂0, P̂i] = 0, [P̂1, P̂2] = 0,

(B.3)

where i, j = 1, 2, and εij is a skew-symmetric tensor with ε12 = 1. Here Ĵ is the rotation generator,

{K̂1, K̂2} are the generators of special relativistic boost transformations and {P̂0, P̂1, P̂2} are,
respectively, the time and space translation generators. The change of basis relating the two
algebras is given by

Ĵ = 1
2
√
κ ~

(P̂AB + mA

mB
K̂AB),

K̂1 = 1
2
√
κ ~

(P̂AB −
mA

mB
K̂AB),

K̂2 = mA

2κ ~mB
D̂, (B.4)

P̂0 = ~mA Q̂A + κmB Q̂B ,
P̂1 =

√
κ ~ T̂ ,

P̂2 = −~mA Q̂A + κmB Q̂B ,

while the inverse change of basis reads

D̂ = 2κ ~ mB

mA
K̂2,

K̂AB =
√
κ ~

mB

mA
(Ĵ − K̂1),

P̂AB =
√
κ ~ (Ĵ + K̂1), (B.5)

T̂ = 1√
κ ~

P̂1,

Q̂A = 1
2 ~mA

(P̂0 − P̂2),

Q̂B = 1
2κmB

(P̂0 + P̂2).

As a consequence, the (2+1) Poincaré algebra arises as an ‘accidental’ dynamical symmetry
for QRFs since it only holds for t = 0. In fact, in our approach we are considering a specific
representation of the Poincaré algebra given by

Ĵ = 1
2
√
κ ~

(x̂A ⊗ p̂B − p̂A ⊗ x̂B) ,

K̂1 = 1
2
√
κ ~

(x̂A ⊗ p̂B + p̂A ⊗ x̂B) ,

K̂2 = − 1
4κ (x̂A p̂A + p̂A x̂A)⊗ 1B + 1

4 ~1A ⊗ (x̂B p̂B + p̂B x̂B) ,

P̂0 = ~
2 p̂

2
A ⊗ 1B + κ

21A ⊗ p̂
2
B , (B.6)

P̂1 =
√
κ ~ pA ⊗ pB ,

P̂2 = −~
2 p̂

2
A ⊗ 1B + κ

21A ⊗ p̂
2
B .

We recall that the two quadratic Casimir operators for the (2+1) Poincaré algebra are given by

Ĉ = P̂ 2
0 − P̂ 2

1 − P̂ 2
2 , Ŵ = −Ĵ P̂0 + K̂1P̂2 − K̂2P̂1 ,

and in the representation of Eq. (B.6) we have that Ĉ = 0 and Ŵ = 0. Therefore we have a massless
and spinless representation of the Poincaré algebra since both the mass and the Pauli-Lubanski
Casimir have zero eigenvalues.

Some comments could be in order:

Accepted in Quantum 2021-05-04, click title to verify. Published under CC-BY 4.0. 17



• The transformation (B.5) provides a relativistic interpretation of the 6D dynamical algebra
for QRF at t = 0, in terms of the generators of (2+1) Poincaré transformations, which act
on the 4D quantum phase space of the particles AB through the representation (B.6). In
particular, the generators P̂AB and K̂AB that were introduced as the QRF version of the
Galilean translation and boost operators can be now interpreted as the superposition of a
Poincaré rotation J and the boost K1, while the D̂ generator is the K2 boost. Moreover,
from (B.5) we see that the relativistic energy P0 turns out to be a superposition of the QRF
Hamiltonians Q̂A and Q̂B weighted by the noncommutativity parameters ~ and κ. However,
note that that the change of basis (B.5) is well-defined provided that both ~ and κ do not
vanish.

• The classical reference frame limit κ → 0 has nothing to do with the nonrelativistic c → ∞
limit of the Poincaré algebra. Such a nonrelativistic limit is obtained in the kinematical basis
by applying the automorphism

Pi →
1
c
Pi, Ki →

1
c
Ki , i = 1, 2 , (B.7)

where c is the speed of light and, afterwards, by taking the c→∞ limit of the algebra (see, for
instance, [49]). The transformation (B.7), when applied onto (B.5) shows that the generators
{P̂AB , K̂AB , Q̂A, Q̂B} of the dynamical algebra cannot be homogeneously transformed in the
limit c→∞, and thus the nonrelativistic limit cannot be defined for the generators of QRF
transformations.
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