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Estimating correctly the quantum phase of a physical system is a central
problem in quantum parameter estimation theory due to its wide range of
applications from quantum metrology to cryptography. Ideally, the optimal
quantum estimator is given by the so-called quantum Cramér-Rao bound, so
any measurement strategy aims to obtain estimations as close as possible to
it. However, more often than not, the current state-of-the-art methods to es-
timate quantum phases fail to reach this bound as they rely on maximum
likelihood estimators of non-identifiable likelihood functions. In this work we
thoroughly review various schemes for estimating the phase of a qubit, iden-
tifying the underlying problem which prohibits these methods to reach the
quantum Cramér-Rao bound, and propose a new adaptive scheme based on
covariant measurements to circumvent this problem. Our findings are carefully
checked by Monte Carlo simulations, showing that the method we propose is
both mathematically and experimentally more realistic and more efficient than
the methods currently available.

1 Introduction
The aim of statistical estimation theory in classical systems is to estimate a probability
distribution based on a series of observations. More precisely, given a statistical model
P = {p(x | θ) | θ ∈ Θ ⊂ Rn} and a series of observations {X1, . . . , XN} generated by a
particular distribution density p(x | θ), the aim is to design an estimator θ̂(X1, , . . . , XN )
which is as close as possible to the parameter θ, measured in terms of a cost function,
usually the Mean Square Error (MSE), between θ̂ and θ. A fairly remarkable result, the
celebrated Cramér–Rao bound (CRB), states that the variance of an unbiased estimator,
is at least as high as the inverse of the Fisher information of p(x | θ). The estimators
that saturate this bound are called efficient. An example of an efficient estimator is the
maximum likelihood, that saturates the CRB when the number of measurements tends to
infinity.

This classical result has, however, some subtleties, namely: for the maximum likeli-
hood estimator to be consistent (i.e. the estimator converges to the parameter when the
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number of outcomes tends to infinity), the likelihood function must be identifiable (i.e.
the likelihood has a unique global maximum), Θ must be a compact set, and all probabil-
ity distributions in the statistical model must have the same support. Statistical models
satisfying the previous conditions are called regular models.

While the actual role that the process of measurement plays in extracting information
from a classicaly system is not particularly relevant, the situation is completely different
in a quantum system, making the process of parameter estimation mathematically more
involved. Suppose ρ is an unknown density operator acting on a Hilbert space H, that
represents the state of the system. Let us assume that ρ belongs to a particular subset of
parametrized states

S = {ρθ; θ ∈ Θ ⊂ Rn} . (1)
The parametrized states ρθ are the result of the evolution of an initial probe state ρ by
a trace-preserving dynamical process dependent upon a parameter θ. Note that different
initial conditions give rise to different subsets of parametrized states.

Quantum parameter estimation aims to produce the best estimation for θ under the
premise that the system is prepared in a state of the parametric family S. Notice that,
unlike its classical counterpart, quantum estimation consists of two parts: the choice of
the measurements to perform on the system, and then the processing of their outcomes
through an estimator θ̂. Note that measured data is a set of random outcomes with
a probability distribution depending on the parameter, and an estimator is a random
variable whose outcomes estimates the parameter. Thus, the pair measurement-estimator
forms a strategy of estimation in the quantum case one can play around with seeking for
an optimal estimation strategy. Indeed, each choice of measurement defines a classical
statistical model, whose lowest possible CRB maximises the Fisher information. Thus the
maximum of all possible Fisher informations, over the space of measurements allowed by
the postulates of Quantum Mechanics, is called the Quantum Fisher Information (QFI),
and its inverse, the Quantum Cramér-Rao Bound (QCRB). In other words, the QCRB
is the minimum over all possible MSE of any possible estimation strategy allowed by
Quantum Mechanics. If the Fisher information for a particular choice of measurement M
is equal to the QFI, this measurement is called optimal.
One way to find an optimal measurement is to use the set of operators {M(j)} to represent
the measurement, where eachM(j) corresponds to a projector onto each of the eigenspaces
of the symmetric logarithmic derivative (SLD) L(θ) [5], defined by

∂ρθ
∂θ

= 1
2 (L(θ)ρθ + ρθL(θ)) . (2)

It turns out that, in general, this measurement is so-called locally optimal. This means
that the optimal measurement depends on the actual value of the parameter we want
to estimate and the classical Fisher information given by that measurement is a local
maximum in the parameter space that characterizes the measurement. Thus estimating the
parameter using a locally optimal measurement is rather impractical. Two approaches have
been developed to overcome this problem. The first one is based on adaptive estimation
schemes which updates a guess for a locally optimal measurement [1, 13]. The second
method seeks a set of initial conditions that do not depend on the unknown parameter
[7, 33]. Both methods are based on the maximum likelihood estimator (MLE) which
implies that in order to obtain it, the aforementioned set of regularity conditions must be
met [6, 11, 20]. We will see that the MLE derived from optimal measurements may fail to
satisfy these conditions and thus these two approaches fail to attain the QCRB.

The problem of non-identifiable likelihood functions often appears when estimating the
quantum phase of a system, a particular problem with a wide range of applications from
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quantum metrology to cryptography, as many problems can be recast into a quantum phase
estimation [10, 24, 27]. In this framework, when trying to use locally optimal measurements
[12, 14, 19, 31, 33], it may happen that adaptive schemes fail to reach the QCRB [28] due
to the fact that regularity conditions are not met [13]. A paradigmatic example of non-
identifiablity is provided when trying to perform qubit phase estimation which are, in
general, unable to reach the QCRB [1, 7].
The main goal of the present work is to introduce a new adaptive scheme for quantum
phase estimation which saturates the QCRB independently of the initial condition that
generates S. We will first show that the Adaptive Quantum State Estimation method
(AQSE), a general method for parameter estimation [35], does not achieve the QCRB when
applied to a qubit phase estimation. The reason why AQSE does not converges is that
the statistical model, built with the measurement that maximizes the Fisher information
(the locally optimal measurement), is not identifiable. We will further show that the
non-identifiability problem is solved by taking a sample of measures from a covariant
measurement. The covariant measurement is identifiable and is chosen to minimize the
MSE for one measure. With the covariant sample, we can then construct a confidence
interval where the underlying statistical model is now regular. Then we will apply the
AQSE method inside the confidence interval.
The paper is organized as follows. We start by giving a brief review of quantum estimation
theory with special emphasis in covariant estimation techniques for periodic parameter
estimation (section 2). Then, we review different estimation strategies for the phase of a
qubit and discuss their weakness and strengths, in particular we discuss the effects of non-
identifiable probabilistic models in the estimation error (section 3). Once we understand
the problems with different estimation strategies, we present a two-step estimation scheme.
Numerical simulations suggest that this scheme is able to reach the QCRB (section 4). We
end the paper with a summary of the main results and our conclusions (section 5).

2 Quantum parameter estimation
Recall that, given a set of independent observations {x1, . . . , xN} from a random variable
X with probability density p(x | θ), the likelihood function is defined as

L(θ | x1, ..., xN ) =
N∏
i=1

p(xi | θ). (3)

From here, we can derive the maximum likelihood estimator for θ, whose mean square
error obeys the CRB [20]

MSE(θ̂) ≥ 1
NF (θ;X) , (4)

where the MSE is defined by

MSE(θ̂) = Eθ

[(
θ̂ − θ

)2
]
, (5)

and F (θ;X) is the Fisher information:

F (θ;X) = Eθ

[(
∂

∂θ
log p(x | θ)

)2]
. (6)

Intuitively, the Fisher information quantifies how much information carries a sample about
the unknown parameter. The ultimate aim in classical parameter estimation is to find the
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estimator that achieves the Cramér-Rao bound. If the statistical model {p(x | θ) | θ ∈ Θ}
for a random variable X is regular the maximum likelihood estimator produced by a
sequence of N independent and identically distributed of X can attain the Cramér-Rao
bound asymptotically for large N [11, 20].
In the quantum case, we must first describe the process of measuring the system. This is
better achieved by using the concept of Positive Operator-Valued Measures (POVMs). A
POVM with outcomes on a set X is a family of bounded positive operators

M = {M(B);B is a Borel set in X}

acting over the Hilbert space of the system H such that M(X ) = I. When the state of the
system is given by the density operator ρθ, a POVMM specifies the conditional probability
of obtaining the event B by Born’s rule

P (B | θ) = Tr [M(B)ρθ] . (7)

Thus, in quantum parameter estimation, the Fisher information, given by Eq. (6), is a
function of the POVMs and, henceforth, we will denote it as F (θ;M). This implies that,
according to Eq. (4), maximising F (θ;M) over the set of POVMs gives the lowest CRB.
This results into the so-called Quantum Fisher Information (QFI), which we will denote
as FQ(θ), and its lowest bound is so-called the Quantum Cramér-Rao Bound (QCRB)
[15, 16, 18].
For the particular case of a scalar parameter estimation, the QFI has the following form
[5, 15, 16]

FQ(θ) = Tr
[
ρθL(θ)2

]
, (8)

where L(θ) is the symmetric logarithmic derivative, also called quantum score, defined by
Eq. (2). When the system is in a pure state ρθ = |ψθ〉 〈ψθ|, the quantum score is easy to
calculate [29], obtaining L(θ) = 2∂ρθ∂θ , so that the QFI becomes:

FQ(θ) = 4 Tr

[(
∂

∂θ
(|ψθ〉 〈ψθ|)

)2
|ψθ〉 〈ψθ|

]
. (9)

Notice that the set of POVMs {Mθ(j)} constructed as the projections of the quantum
score L(θ) do depend on the parameter θ one is trying to infer [5]. A natural way around
this is to introduce adaptive schemes to estimate θ. One approach relies on adaptive
quantum estimation schemes based on locally optimal POVMs that could, in principle,
asymptotically construct the optimal POVM without knowing the parameter beforehand
[2, 13, 19, 25]. Nevertheless, a set of precise mild regularity conditions for each statistical
model involved in the method are required. For instance, in the adaptive quantum state
estimation (AQSE) method [13, 25], it is necessary to assume regular statistical models
for every measurement to guarantee a consistent and efficient estimator. However, for es-
timation problems on which the quantum parameter is periodic, as it is the case for phase
estimation, the likelihood functions produced by locally optimal POVMs are not identifi-
able [3, 7]. Consequently, there is no mathematical reason that ensures the saturation of
the CRB. The second approach searches specific initial conditions, for which the optimal
POVM does not depend on the unknown value of θ [7, 33]. Hence, in principle, performing
an extensive independent sequence of this POVM, along with the maximum likelihood esti-
mator, it is possible to achieve the quantum Cramér-Rao bound. Nonetheless, for periodic
parameter estimation, this method often produces non-identifiable likelihood functions,
and as a consequence, the CRB is not attained.
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We will show now that, for the case of quantum phase estimation, we can solve the prob-
lem of non-identifiable likelihood functions by using the formalism of covariant estimation,
which considers the symmetries of the system and can saturate the QCRB under specific
initial conditions [16].

2.1 Covariant estimation
The following discussion is based on [16]. In quantum parameter estimation, each ρθ ∈ S
obtains its parametric dependency through a physical transformation Uθ. Usually, the set
of {Uθ}θ∈Θ forms a group, which induces an action over S. When the family S is invariant
under the conjugation of Uθ, for any θ ∈ Θ, we say that the problem of estimation involves
a symmetry. The problem of quantum parameter estimation involving symmetries is called
covariant. In the following, we summarise the approach of covariant estimation.
Let G be a locally compact Lie group acting transitively over the parametric set Θ. Thus
for any base point θ0 ∈ Θ, we have

Θ = θ0 ·G ∼= G/K , (10)

where K is the stabilizer subgroup of θ0. According to Wigner’s theorem [34], the Hilbert
space H of the system has a unitary G-representation U = {Ug}g∈G. Hence, the probe
states can be transformed by the conjugation

ρ 7→ UgρU
†
g , (11)

where Ug is an element of the G-unitary representation of H. Specifically, we say that we
have a quantum covariant estimation problem whenever{

UgρθU
†
g | θ ∈ Θ

}
= S ∀g ∈ G . (12)

In this framework, a POVM M on the system H taking values in Θ is called covariant
with respect the G-unitary representation {Ug}, if for every event B and g ∈ G, it satisfies
that

M(Bg−1) = U †gM(B)Ug, (13)

where Bg−1 = {θ | θ = gθ′, θ′ ∈ B}. Note that this condition is equivalent to

P (B | ρ) = P
(
gB | UgρU †g

)
. (14)

We will denote asM (Θ) the set of POVMs with outcomes in Θ. Similarly, we will denote
as asM (Θ, U) the set of the covariant POVMs with respect the G-unitary representation.
The class of covariant POVMs takes advantage of group symmetries. Specifically, when
the outcomes of the measurement are considered as the estimates, and the cost function
c(θ̂, θ) under consideration is G-invariant, that is c(θ̂, θ) = c(gθ̂, θ) ∀g ∈ G, one has that

Egθ,M
[
c(θ̂, gθ)

]
=
∫

Θ
c(θ̂, gθ)Tr

[
M(dθ̂)ρgθ

]
=
∫

Θ
c(gθ̂′, gθ)Tr

[
M(dθ̂′)ρθ

]
= Eθ,M

[
c(θ̂, θ)

]
, ∀M ∈M (Θ, U) and θ̂′ := g−1θ̂.

(15)

As a result, we can find optimal measurements on M (Θ, U) in the Bayesian approach,
by taking the average of c(θ, θ̂) over a prior probability measure. The following theorem
ensures this assertion.
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Theorem 1 ([18]). When Θ is compact,

min
M∈M(Θ)

∫
Θ
Eθ,M

[
c(θ̂, θ)

]
µ(dθ) = min

M∈M(Θ,U)

∫
Θ
Eθ,M

[
c(θ̂, θ)

]
µΘ(dθ). (16)

where µΘ is the Haar measure over Θ.

The previous result restricts the search for optimal measurements to the classM (Θ, U).
This fact is particular useful as, according to the following theorem, the covariant POVMs
can be characterised as follows.

Theorem 2 ([16]). Let P0 be a Hermitian positive operator on H, commuting with the
operators {Ug}g∈K and satisfying∫

Θ
Ug(θ)P0U

†
g(θ)µΘ(dθ) = I, (17)

where g(θ) ∈ G is any representative element of the equivalence class θ ∈ Θ. Then, a
POVM M(dθ) with outcomes in Θ ∼= G/K is covariant if and only if has the form

M(dθ) = Ug(θ)P0U
†
g(θ)µΘ(dθ). (18)

A particular case, which is relevant for quantum phase estimation, is when the stabil-
ity group is the trivial one, that is when K = {e} with e the identity element. Here, we
have that Θ ∼= G, that is, the parametric space Θ is on one-to-one correspondence to the
elements of the group G. This implies, in turn, that Eθ,M

[
c(θ̂, θ)

]
is constant for all θ ∈ Θ

and, as consequence of theorem (1), the optimization of the expectation of the invariant
cost function can be restricted to the set of covariant POVMs. Notice that for quantum
phase estimation, there is a little caveat: here the one-parameter symmetry group G iso-
morphic to Θ = [0, 2π) but this is not a compact set. In practice, we can consider it to be
compact, assuming that the unknown parameter is an interior point of Θ. Thus, we can
analyze the CRB for any covariant POVM.
We proceed to discuss in more detail how these ideas apply to quantum phase estimation
for qubit states.

3 Phase estimation strategies in a qubit
Let S = {ρθ; θ ∈ Θ = [0, 2π)} be a parametric family of density operators, on a 2-dimensional
Hilbert space H. In this case, each state ρθ ∈ S represents the state of a qubit. Here, the
states ρθ obtain their parametric dependency applying an arbitrary unitary transformation
Uθ over a probe state ρ on H, that is

ρθ = UθρU
†
θ . (19)

An arbitrary unitary transformation (up to a global phase) on a 2-dimensional Hilbert
space can be written using the generators of the Lie algebra su(2) and has the following
form [23, 26]

Uθ = e−iθ~n·
~σ
2 , (20)

where ~n = nxx̂ + nyŷ + nz ẑ ∈ R3 is a unit vector and ~σ = σ1x̂ + σ2ŷ + σ3ẑ, with σi, for
i = 1, 2, 3, the Pauli matrices. The estimation problem in this case consists in finding the
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best strategy to estimate the phase θ ∈ Θ of the exponential operator appearing in Eq.
(20).
To analyse the QCRB in this case it is better to work using the Bloch sphere representation
for a qubit state. The probe state can be written as

ρ = 1
2 (I + ~a · ~σ) , ‖~a‖ ≤ 1 , (21)

and the transformation Uθ can be seen as the rotation of the probe Bloch vector ~a by
the angle θ around the axis ~n. We will denote the transformed vector as ~a(θ), so the
transformed qubit state ρθ is solely determined by ~a(θ). One can show that, for this
problem, the quantum score takes the following form [7]:

L(θ) = (~n× ~a(θ)) · ~σ , (22)

where
~a(θ) = cos(θ)~a+ (sin(θ)(~n× ~a)) +

(
2(~n · ~a) sin2

(
θ

2

))
~n . (23)

This implies that, according to Eq. (8), the quantum Fisher information becomes

FQ = ‖~a‖2 − (~a · ~n)2 . (24)

Thus, if the probe qubit is a pure state (i.e., ‖~a‖ = 1) and the Bloch vector ~a is orthogonal
to the rotation axis ~n, then Eq. (24) achieves their maximal value Fmax

Q = 1. We will refer
to this as the optimal initial conditions. Let us proceed to discuss the different estimation
strategies for the phase θ.

3.1 Locally Optimal POVMs
From the expression of the quantum score, given by Eq. (22), it is straightforward obtain
that its projection operators are given by:

Mg(0) = 1
2

(
I + (~n× ~a(g))
‖~n× ~a(g)‖ · ~σ

)
, Mg(1) = 1

2

(
I − (~n× ~a(g))
‖~n× ~a(g)‖ · ~σ

)
, g ∈ Θ .

(25)
Hence, the family of POVMs isMg = {Mg(0),Mg(1)}, with outcomes in the set X = {0, 1},
yield the following classical Fisher information

F (θ; g) = FQ cos2(θ − g)
1− FQ sin2(θ − g)

. (26)

From Eq. (26) it is fairly obvious to realize that F (θ, g) = FQ(θ) whenever g = θ for any
θ ∈ Θ. That is, the POVM Mθ = {Mθ(0),Mθ(1)} is locally optimal. Note, however, that
if ~a ⊥ ~n then

F (θ; g) = cos2(θ − g)
1− sin2(θ − g)

= 1 = Fmax
Q . (27)

In other words, when the probe state is prepared in the optimal initial conditions, the
POVM Mg is optimal, independent of θ ∈ Θ. Therefore, any POVM Mg is optimal.

At this point, one may think that a POVM Mg produces an optimal estimation strat-
egy in the sense that if we were to perform a sequence of N independent measurements
using the maximum likelihood estimator, it should be possible to saturate the QCRB in
the asymptotic regime. This is, however, false: the POVM M yields a non-identifiable
likelihood function, and thus the maximum likelihood estimator is not consistent. Indeed,
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when a sequence of N identically quantum systems with Hilbert space H is prepared in
the same state ρθ, the composite system is described by the N -tensor product H⊗ · · · ⊗ H︸ ︷︷ ︸

N -times
and its state is described by an N -fold tensor product state ρθ ⊗ · · · ⊗ ρθ︸ ︷︷ ︸

N− times

. Then, the like-

lihood function produced by the outcomes ~x = (x1, ..., xN ) ∈ XN from a sequence of N
independent POVMs M(g) is

L(θ | ~x; g) = Tr [(Mg(x1)⊗ · · · ⊗Mg(xN )) ρθ ⊗ · · · ⊗ ρθ] =
N∏
i=1

Tr [Mg(xi)ρθ] =
N∏
i=1

p(xi | θ; g)

= p(0 | θ; g)mp(1 | θ; g)N−m ,
(28)

where m is the number of 0’s in ~x, and

p (x | θ; g) =
{
Tr [Mg(1)ρθ] = 1

2
[
1 + sin (θ − g)

√
FQ
]
, x = 1 ,

Tr [Mg(0)ρθ] = 1
2
[
1− sin (θ − g)

√
FQ
]
, x = 0 .

(29)

By looking for the MLE of θ, denoted θ̂MLE, we obtain:

θ̂MLE = arg maxθ∈ΘL(θ | ~x; g) = arcsin

(
1√
FQ

[
1− 2m

N

])
+ g , (30)

which returns two values in Θ = [0, 2π), indicating the the likelihood is non-identifiable.
Thus, the Fisher information alone is not enough to characterize the error of this estimation
strategy. The previous discussion also can be found in [7].

Now we consider the case of POVMs with k ≥ 3 outcomes. Any element of a POVM
M = {M(i)} with outcomes in a set X = {1, 2, ..., k} can be written asM(i) = f

(i)
0 I+ ~f (i) ·

~σ, where
∑k
i=1 f

(i)
0 = 1 and

∑k
i=1

~f (i) = ~0. When a qubit is in a state ρθ, the probability
of measuring the outcome i is

p(i | θ) = Tr [ρθM(i)] = f
(i)
0 + ~a(θ) · ~f (i). (31)

A necessary and sufficient condition for identifiability is that, for any parameters
θ1, θ2 ∈ Θ, the set of equations p(i | θ1) = p(i | θ2), i = 1, ..., k admits only one solu-
tion in the parametric space Θ [21].

The problem of identifiability could be avoided by considering POVMs with several
outcomes because it is easier to satisfy the requirements for identifiability given above.
However, a POVM that produces an identifiable likelihood is not necessarily optimal.
Outside the optimal initial conditions, there is no measurement M that does not depend
on θ and that saturates the QCRB [1]. In [7] it is shown a family of identifiable POVMs
with more than 2 outcomes, however, except for the optimal initial condition, this family is
not locally optimal. The results in [1, 7] do not forbid the existence of an identifiable and
locally optimal POVM with more than 2 outcomes, but we could not find one. Note also
that for a small number of measurements, the locally optimal POVM does not necessarily
saturate the QCRB. Nevertheless it is possible to built a POVM that, for one measurement,
produces an identifiable model that minimizes the mean square error. We will review
now how to build this POVM by using the covariant approach [16]. Once we show how
this POVM is built, we proceed with our proposal to achieve the QCRB for qubit phase
estimation.
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3.2 Covariant phase estimation for qubits
The following discussion is based on [17], where M∗ is deduced for any shift parameter.

As we have previously mentioned, phase estimation estimation is covariant with trivial
stabilizer group since the group G = [0, 2π) equipped with addition modulo 2π acts over it-
self. Then, Θ is isomorphic to G. Moreover, U = {Uθ}θ∈[0,2π) is a G-unitary representation
of H. Using Eq. (18) the covariant POVM M to estimate θ has the form

M(d θ̂) = e−iθ̂~n·
~σ
2 Poe

iθ̂~n·~σ2
dθ̂

2π , (32)

where Po is a positive operator satisfying Eq. (17).
The generator of the unitary representation is the operator J := ~n · ~σ2 , which has a spectral
decomposition

J = 1
2

∣∣∣12〉〈1
2

∣∣∣− 1
2

∣∣∣−1
2

〉〈
−1

2

∣∣∣ , (33)

where have used that
∣∣∣±1

2

〉〈
±1

2

∣∣∣ = 1
2 (I ± ~n · ~σ). In the basis

{∣∣∣12〉 , ∣∣∣−1
2

〉}
, one can express

M(d θ̂) as

M(d θ̂) = dθ̂

2π
∑

m,n∈{− 1
2 ,

1
2}
eiθ̂(n−m)pnm |m〉 〈n| , (34)

where pmn = 〈m|Po|n〉. Thus, any covariant POVM is characterized by the real numbers
0 ≤ pnm ≤ 1. Then, by Eq. (7)

P (θ̂ ∈ B|θ) =
∫
B

dθ̂

2π
∑

m,n∈{− 1
2 ,

1
2}
ei(n−m)(θ̂−θ)pmn 〈n| ρ |m〉 . (35)

Note that the measure (35) is a 2π-periodic probability distribution, so it is natural to
consider the moments of the random variable eiφ instead. The first moment for a circular
distribution p(φ) is defined as

E
[
eiφ
]

=
∫ 2π

0
eiφp(φ)dφ , (36)

so from here we can estimate the phase as φ = Arg
(
E
[
eiφ
])
.

To quantify the correct dispersion of the estimates we use the Holevo variance [16]

V H
M (θ̂) = µ−2 − 1 , (37)

where M ∈ M (Θ, U) and µ =
∣∣∣E [eiθ̂]∣∣∣. If one has a biased estimator, then µ =

E
[
cos(θ̂ − θ)

]
[3]. A circular estimator θ̂ is unbiased if eiθ̂ ∝ E

[
eiθ̂
]
. For narrowly peaked

and symmetric distributions around θ, V H
M (θ̂) ∼ MSEM (θ̂). As a result, Holevo’s variance

is lower bounded by

V H
M (θ̂) ≥ 1

FQ(θ) .

As the quantum Fisher information reaches its largest values for the families of pure
states, let us restrict our attention only to pure quantum probes. Moreover, when the probe
is a pure state, one can find the covariant POVM that minimizes the Holevo variance using
the spectrum of J for any shift parameter [16, 17]. Here, we adapt the proof of [16] to the
problem of phase estimation.
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Theorem 3. Let ρθ = UθρU
†
θ , with ρ = |ψ〉 〈ψ| and

M∗(dθ̂) = dθ̂

2π
∑

m,n∈Spec(J)
eiθ̂(n−m) PmρPn√

Tr[Pmρ]Tr[Pnρ]
, (38)

where Pm = |m〉 〈m| is the associated projector to the eigenvalue m of J . Then, for any
M ∈M (Θ, U),

V H
M (θ̂) ≥ V H

M∗(θ̂) . (39)

Proof. In Dirac notation, ρ = |ψ〉 〈ψ| so that Eq. (38) takes the following form

M∗(dθ̂) = dθ̂

2π
∑

m,n∈Spec(J)
eiθ̂(n−m)p∗mn |m〉 〈n| , (40)

with p∗mn = 〈m|ψ〉
|〈m|ψ〉|

〈ψ|n〉
|〈ψ|n〉| . On other hand, from Eq. (34), we have

EM,θ[eikθ̂] =
∑
m,n:

|m−n|=k

pmn 〈ψ|m〉 〈n|ψ〉 e−i(n−m)θ. (41)

Since |pmn| ≤ 1,

EM,θ[eikθ̂] ≤
∑
m,n:

|m−n|=k

〈ψ|m〉 〈n|ψ〉 e−i(n−m)θ ≤
∑
m,n:

|m−n|=k

| 〈ψ|m〉 || 〈n|ψ〉 |e−i(n−m)θ.
(42)

where the equality is achieved if and only if pmn = p∗mn. Setting k = 1 yields the assertion
�.

Besides, if 〈m|ψ〉 is a constant for all m ∈ Spec(J), the measurement M∗ has infor-
mation about θ equal to the quantum Fisher information [17]. For qubits, the previous
condition is equivalent to have an initial condition ~a · ~n = 0.

In this context, we now prove that the measurement M∗ maximizes the Fisher infor-
mation over the set of covariant POVMs.

Theorem 4. Let ρθ = e−iθ~n·
~σ
2 ρe−iθ~n·

~σ
2 , with

ρ = |ψ〉 〈ψ| = 1
2 [I + ~a · n̂] , ‖~a‖ = 1.

Then, for any M ∈M (Θ, U),

F (θ;M) ≤ F (θ;M∗) , (43)

where M∗(dθ̂) is defined according to Eq. (38).

Proof. Writing explicitly Eq. (35) we obtain

p(dθ̂) = dθ̂

2π
[
1 + 2Re

(
e−(θ̂−θ) · C

)]
, (44)

where C = p 1
2−

1
2

〈
−1

2 |ψ
〉〈
ψ|12

〉
is a complex number with module |C| and phase ϕ. Thus,

p(dθ̂) = dθ̂

2π
[
1 + 2|C| cos

(
(θ̂ − θ) + ϕ

)]
. (45)
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Therefore the Fisher information,

F (M) = 1
2π

∫
Θ
dθ̂

4|C|2 sin2
(
(θ̂ − θ) + ϕ

)
1 + 2|C| cos

(
(θ̂ − θ) + ϕ

) = 4|C|2

2π

∫
Θ
dx

sin2 (x)
1 + 2|C| cos (x) . (46)

The value of the expression given by Eq. (46) increases monotonically as |C| increases.
As |

〈
±1

2 |ψ
〉
| =

√
1
2 (1± (~a · ~n)), then |C| = | ≤ 1

2
√
FQ, and the maximum value for F (M)

is attained by M∗ �.

To find an explicit epxression of p(dθ̂|θ), we first notice that∣∣∣±1
2

〉〈
±1

2 |ψ
〉〈
ψ| ∓ 1

2

〉〈
∓1

2

∣∣∣ = 1
4 [2(~a · ~σ) + i(~a× ~n) · ~σ − (~n · ~σ)(~n · ~a)] , (47)

so that Eq. (38) can be rewritten as follows

M∗(dθ̂) = dθ̂

2π

[
I + 1√

FQ

[
(~a · ~σ − (~n · ~σ)(~n · ~a)) cos(θ̂)− sin(θ̂)(~a× n̂) · ~σ

]]
. (48)

Then, the measurement M∗ yields the probability density function

p(dθ̂ | θ) = dθ̂

2π
[
1 +

√
FQ cos(θ̂ − θ)

]
. (49)

As M? is a POVM with an infinity number of outcomes, it is reasonable to get an identi-
fiable statistical model independent of θ. To illustrate this fact, we perform a numerical
simulation, generating random numbers with distribution (49). A particular likelihood
function produced by (49) is shown in Fig. 1.

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

θ

L(
θ
|x
)

Figure 1: Plot of the likelihood function corresponding to the probability density Eq. (49) for the
measure M? and N = 64 probes. We have considered the value of the actual parameter to be θ = 2
and used initial conditions ~a ·~n = 0. For clarity we have rescaled the figure so that the maximum equals
to one.

Moreover, according to Eq. (49), the Fisher information given M∗ reads:

F (θ;M∗) = 1
2π

∫ 2π

0

FQ sin2(θ̂ − θ)
1 +

√
FQ cos(θ̂ − θ)

dθ̂ = 1−
√

1− FQ . (50)
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When ~a · ~n = 0, FQ = 1 and therefore F (θ;M∗) = Fmax
Q = 1. This is not surprising since,

under this optimal initial condition, |
〈

1
2 |ψ

〉
| = |

〈
−1

2 |ψ
〉
|. Consequently, assuming this

optimal setup, if the maximum likelihood is used for N independent copies of the system,
one can attain the QCRB asymptotically for large N . Nevertheless, under the optimal
initial condition, there are other covariant POVMs that can attain the QCRB. To see this,
let us characterize all covariant measurements for quantum phase estimation of qubits.

Every positive bounded operator Po can be expressed in the Bloch representation, that
is, Po = d0 + ~d · ~σ, where (d0, ~d) are real. When evaluating Eq. (17), it turns out that Po
forms a valid covariant POVM if d0 = 1 and ~d is orthogonal to ~n. Therefore any covariant
POVM has the form

M(dθ̂) = dθ̂

2π
[
I + ~d · ~σ cos(θ̂)− sin(θ̂)(~d× n̂) · ~σ

]
. (51)

When a qubit is in the state ρθ, the outcomes for the POVMM(dθ̂) follows the probability
density

p(dθ̂|θ) = dθ̂

2π
[
1 +

(
~a · ~d

)
cos(θ̂ − θ)− ~a · (~d× ~n) sin(θ̂ − θ)

]
. (52)

From this result, one can calculate the Fisher information associated with the covariant
POVM M . In particular, the case ~d = ±(~n × ~a) is of interest, since the classical Fisher
information reads

F
(
θ; M |~d=±(~n×~a)

)
= 1

2π

∫ 2π

0

F 2
Q cos2(θ̂ − θ)

1± FQ sin(θ̂ − θ)
dθ̂ . (53)

As far as we are aware of, equations (51)-(53) are new results. Note that, in general,
F (θ,M∗) ≥ F

(
θ; M |~d=±(~n×~a)

)
, but for the particular case ~a·~n = 0, the POVM M |~d=±(~n×~a)

is able to reach the maximum of the Fisher information, Fmax
Q = 1. Hence, the POVM

given by Eq. (51) is equivalent to the measurement M∗.

Let us briefly summarise the results we have found thus far. Firstly, we have shown that
estimation strategies based on locally optimal POVM with two outcomes cannot achieve
the QCRB since the corresponding likelihood is non-identifiable. POVMs with more than
two outcomes may be identifiable but we could not find the POVMs that are locally optimal
(globally optimal POVMs do not exist [1]). Secondly, we have seen that for continuous and
periodic outcomes the covariant POVM solves the identifiability problem and minimizes
the MSE for one measurement, however, it can only achieve the QCRB (in the limit of a
large number of measurements) with optimal initial conditions ~a · ~n = 0. Hence, to the
best of our knowledge, it does not exist a set of independent and identical measurements
that achieve the QCRB.

It turns out that, under the optimal set of initial conditions, the covariant POVM
M∗ has been previously investigated and it is usually called canonical phase measurement
[3, 17, 22] which, according to Eq. (40), takes the following form:

M can
∗ (dθ̂) := dθ̂

2π
∑

m,n∈Spec(J)
eiθ̂(n−m) |m〉 〈n| . (54)

Although the optimal covariant POVM is hard to realize experimentally, it can be well
approximated by POVMs with large number of elements or adaptive measurements [7, 22,
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30]. In particular, the canonical phase measurement can be implemented using adaptive
measurements with quantum feedback [22], and the POVM M∗ can be well approximated
using a POVM with k ≥ 8 that discretizes Eq. (49).

3.3 Entangled measurement
It is actually possible to achieve the QCRB for a probe not orthogonal to the rotation axis
if we relax the condition of identical and independent set of measures. Let us indeed see
it is possible to attain the QCRB for entangled measurements for any initial condition.
Following [17], we estimate θ ∈ [0, 2π) for the family of states ρ⊗Nθ in the Hilbert space
H⊗N with ρθ = UθρU

†
θ and ρ being a probe pure qubit. Note that ρ⊗Nθ can be written as

ρ⊗Nθ = e−iθJ
(N)
ρ⊗NeiθJ

(N) , where

J (N) =
(
n̂ · ~σ2

)
⊗ · · · ⊗ I + · · ·+ I ⊗ · · · ⊗

(
n̂ · ~σ2

)
, (55)

that is, the family of states ρ⊗Nθ in H⊗N is covariant with respect to the unitary repre-
sentation e−iθJ(N) . Therefore, as in the case of one probe, the POVM that minimizes the
Holevo variance is expressed in terms of the spectrum of J (N). Therefore, the measurement
M

(N)
∗ that minimizes the Holevo variance has the expression

M
(N)
∗ (dθ̂) = dθ̂

2π


∑
λ,λ′∈

Spec(J(N))

eiθ̂(λ
′−λ) Pλρ

⊗NPλ′√
Tr [Pλρ⊗N ]Tr [Pλ′ρ⊗N ]

 , (56)

where, Pλ is the projection operator of J (N) associated to the eigenvalue λ.
The difference here, in contrast to the single measurement case, is that here the spectrum
of J (N) is degenerate. Thus

P∗ =
∫

Θ
M(dθ̂) 6= I,

and therefore M (n)
∗ is not a resolution of identity. However, this is not a real problem

because it can be extended to a POVM by adding I − P∗ in the orthogonal complement
to the subspace H∗ := P∗(H⊗N ). So, the optimal POVM is

M
(N)
∗ := P∗ ⊕ I − P∗.

In particular, if N = 1, M (N)
∗ = M∗.

As stated in [17], M (N)
∗ can achieve the QCRB for any probe state in the asymptotic limit.

Besides, the scaling of the error is proportional to the square in the number of probes
(Heisenberg scaling). Unfortunately, M (N)

∗ is an entangled measurement. Hence, if one
wants to construct an entangled POVM, it is necessary to have N copies of the probe and
perform quantum operations over all of them, making the implementation of this type of
POVMs an experimental challenge.

3.4 Adaptive state quantum estimation (AQSE)
As we mentioned in the introduction, unlike its classical counterpart, quantum parameter
estimation yields estimators which depend on the parameter one wants to estimate. A way
to tackle this problem is using an adaptive quantum estimations scheme [13, 25, 35]. It
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works as follows: suppose one has a set of optimal POVMs {Mg}g∈Θ. One begins with an
arbitrary initial guess g0. Then one applies the optimal measurement at g0,Mg0 . Assuming
the data x1 is observed, one applies the MLE to the likelihood function L1(θ | x1; g0) =
p(x1 | θ; g0) to obtain an estimate θ̂1(x1) = g1. This process is then repeated iterative.
For n ≥ 2, one applies the POVM Mgn−1 , with gn−1 = θ̂n−1(x1, ..., xn−1)), obtaining
the outcome xn. Here θ̂n−1 is the estimation from the previous step using the outcomes
x1, ..., xn−1. The likelihood function for the nth step is

Ln(θ | x1, ..., xn−1; gn−1) =
n∏
i=1

p(xi | θ; gi−1) , (57)

where xi is the data observed at step i. Applying the MLE one obtains the nth guess
gn = θ̂n (x1, ..., xn). Even though this method relaxes the condition of identical measure-
ments, this does not guarantee that the resulting classical statistical model is regular thus
impacting its performance [8].
To illustrate this let us revisit the problem of non-identifiability for the POVM Mg previ-
ously discussed. To fix ideas we take θ = 2 and consider N = 64 measurements. In panel
A of Fig 2 we show the result of the likelihood function for g = 1.5 using Eq. (29). The
likelihood is indeed non-identifiable and presents two global maxima in the interval [0, 2π).
Panel B in the same figure shows the results of using AQSE starting with the initial value
g0 = 1.5. In this case we can see that there is only one global maxima but at the incorrect
value of θ. This is the result of having an original non-identifiable model, whose wrong
maximum has been enhanced due the particular random trajectory in the parameter space
generated by AQSE. Thus, even though AQSE is able to lift a possible degeneracy of the
global maxima there is no a priori way to control on how to enhance the correct maximum.
With a modest amount of foresight, it seems fairly natural to expect that if we knew
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Figure 2: Plot of the likelihood functions for the two-outcome POVM Mg given by Eq. (25) and
considering θ = 2 and N = 64 probes. Panel (A) shows the likelihood function given by formula (28).
Here we have considered g = 1.5 and the number of ones was 32 out of the possible N = 64. For clarity
the figure has been rescaled so that the maxima equal to unity. Panel (B) shows the log-likelihood
function for the AQSE scheme given by Eq. (57) using 64 adaptive steps. The existence of trajectories
in the parameter space enhancing the incorrect maximum explains why the AQSE does not reach the
QCRB. In both cases, the initial condition has been taken to be ~a · ~n = 0.5.

in which interval the parameter lies and restricted the likelihood over that interval -so
as to ensure that the restricted likelihood is identifiable- then the adaptive scheme will
converge to the QCRB fast. To analyse this we have compared the behaviour of AQSE
in two different scenarios: unrestricted and restricted likelihoods. In both cases we have
taken θ = π. For the unrestricted scheme the parameter space is Θ = [0, 2π), while for the
restricted one we take θ ∈ Θ = [π2 ,

3π
2 ), so that the likelihood is identifiable. In Fig. 3 we
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show the result of these two cases for two extremal initial conditions ~a · ~n = 0.5 (panel A)
and ~a · ~n = 0 (panel B), corresponding to the lowest and largest value of FQ, respectively.
In both cases the numerical method was done using a bootstrap simulations with 10000
repetitions.
From these results we can observe that in the unrestricted case the lack of identifiability
directly affects the scaling of the Holevo variance as a function of the number of adaptive
steps. Furthermore, numerical results show that AQSE does not saturate the QCRB. On
the other hand, in the restricted case, we find that the MLE saturates the QCRB around
128 measurements for both initial conditions. Thus we conclude that a possible deficient
performance of AQSE is due to the non-identifiability for θ in the likelihood functions.
Finally, in Fig. 3, we have also compared the performance of AQSE with the optimal
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Figure 3: Result of Holevo’s variance as a function of the number of probes for different estimation
strategies and for two different initial conditions: ~a · ~n = 0.5, corresponding to the smallest quantum
Fisher information (shown in panel A) and ~a · ~n = 0 (shown in panel B). In all cases we used 10000
sequences for each number of probes. As we can see the restricted AQSE performs much better than the
AQSE. We have also included the strategy based on the optimal covariant POVM M∗ as a benchmark.
Notice that for both initial conditions the AQSE does not reach the QCRB, while for optimal initial
condition the sequence of covariant POVMs is able to attain the QCRB (see panel B).

covariant inference. In this case, the sequence of M∗ measurements has a better scaling
for a small number of measurements (less than 4). Then, we can also conclude that the
optimal covariant measurement is the best independent strategy in a regime of small N .
This is expected because the covariant measurement is built to minimize the MSE for one
measurement.
In the next section, we propose an estimation scheme that uses the covariant estimation
and the AQSE method to avoid the problem of non-identifiable likelihood functions and
thus is able to saturate the QCRB for any initial condition.

4 Adaptive estimation scheme with confidence intervals
From the previous discussion it seems clear that, conditioned of knowing in which interval
the actual phase lies in and restricting the likelihood to that interval so it becomes identifi-
able, the AQSE method converges efficiently to the QCRB. With this in mind, we propose
the following two-step scheme which allows us to initially guess the interval, thus making
the iterative scheme a regular problem.
Our scheme consists of two main steps. In the first step one uses a sequence of independent
optimal covariant measurements to produce a confidence interval (CI) using the maximum
likelihood estimate θ̂MLE. The CI gives a range of plausible values where the unknown
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parameter most likely lies in. In the second step, one applies the AQSE method restricted
to the confidence interval. Furthermore, one is able to update the center of the CI by the
MLE of each previous step. The idea of using CIs to improve the error in estimations is
exemplified, in a different context, in [4].

Let us assume that we have N copies of the state system ρ, so that each measurement
is performed consecutively over each copy. Let us denote the result of each measurement
as xi. In the first part of our scheme we apply N1 covariant measurements M1 given by
Eq. (40), that is

M1 := M∗(dxk) , (58)

and then we construct the MLE

θ̂MLE = arg maxθ∈Θ

N1∏
i=1

p (dxi | θ) = arg maxθ∈Θ

N1∏
i=1

dxi
2π

(
1 +

√
FQ cos(xi − θ)

)
(59)

to obtain the estimation θ̂MLE (x1, ..., xN1). The CI is then given by [9]:

CI(θ̂MLE(~x)) =
(
θ̂MLE(~x)− c · F−

1
2 , θ̂MLE(~x) + c · F−

1
2
)
, (60)

where c is the appropriate critical value in the standard normal distribution (e.g. 1.96 for
95% of confidence or 2.58 for 99% of confidence) and F is the Fisher information of M∗
given by Eq. (50). To determine the minimum sample size N1 in order to get a confidence
interval of size 2E, we use the CRB to write the lower bound

N1 ≥
c2

FE2 . (61)

In the second step of our scheme we then use the remainder of the copies, that is N2 =
N −N1, to perform measurements using the POVM

M2 := Mθ̂MLE(x1,...,xk) . (62)

All in all, our two-step method is given by:

θ̂MLE = arg maxθ∈Θ

N1∏
i=1

p(dxi | θ)
N2∏

k=N1

p(xk+1 | θ; θ̂MLE(x1, ..., xk)) , (63)

with Θ = CI
(
θ̂MLE (x1, ..., xk)

)
. Eq. (63) is the main result of this work.

Before discussing some numerical results of our newly introduced method it is important
to discuss the possible sources of errors associated to it. Suppose that we set a confidence
level 0 ≤ Cl ≤ 1 for a given marginal error E. Then we can write that

V H
(
θ̂MLE

)
= Cl∆1 + (1− Cl) ∆2 , (64)

where the two types of errors ∆1 and ∆2 correspond to the error associated to the AQSE
method when the CI correctly includes the value of the actual parameters, and when it
does not, respectively. Let us call the latter intervals bad CIs. Further, let us take E < π

2 ,
so that likelihood functions used in the AQSE method are identifiable. Thus, the error ∆1
when the CI includes the value of the parameter is lowered bounded by

∆1 ≥
1

FQN2 +N1F (θ;M∗)
. (65)
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To characterize ∆2, first we note that there are two types of bad CIs. To see this, let θA
be the parameter’s value and θB = θA + π. Then, the likelihood function produced by
AQSE has two local maxima, one around θA, and the other around θB. The first type of
bad CIs corresponds to those that include the second maximum around θB. If one applies
AQSE restricted to these CIs then θMLE tends to θB. The second type of bad CIs appear
when the interval does not include θB. In this case, the maximum likelihood estimation
produced by AQSE can tend to the point in the interval closest to either θA or to θB.
When the estimation is closest to θA, by updating the interval’s center with the posterior
estimates, one can, in principle, obtain a confidence interval that captures the parameter’s
value. This explain why we obtain better results updating the center of the confidence
interval.

To obtain a bad interval of type one, it is necessary that most of the data obtained
from the covariant inference be numbers close to θB (the likelihood function has a global
maximum around θB). From Eq. (49), for a covariant sample of size N , it follows that the
probability of obtaining a likelihood function with the global maximum around θB is[∫ θB+ε

θB−ε
p
(
dθ̂ | θ

)]N
=
[∫ θB+ε

θB−ε

dθ̂

2π
(
1 +

√
FQ cos(θ̂ − θ)

)]N
. (66)

Thus, for sufficiently large N , the above probability can be neglected. In this way, for a
confidence level close to 1, and a sufficient small marginal error E, one expects that the
number of bad confidence intervals disappear as the number of adaptive steps increases.
To illustrate this fact, in Table 1, we show the number of bad intervals as a function of the
adaptive steps in the AQSE part produced by a bootstrap simulation of 10000 repetitions.
Here we have chosen a marginal error of π4 , with a confidence level of 0.99. In this case, we
need to perform 11 and 22 covariant measurements for the initial conditions ~a · ~n = 0 and
~a · ~n = 0.5, respectively, to get the desired CI. For these values, the number of type one
bad confidence intervals is negligible. Setting ε = E in (66), the probabilities of obtaining
them are 2.3× 10−10 and 2.3× 10−18 for these two initial conditions, respectively.
Note that, the distribution for the estimates can be approximated as a mixture of 3 normal

AQSE Steps # bad CIs (~a · ~n = 0) # bad CIs (~a · ~n = 0.5)
0 111 125
4 50 56
8 19 20
16 8 1
32 6 1
48 2 0

Table 1: Number of bad confidence intervals as a function of adaptive steps for the AQSE part where
the real value of θ was π.

distributions, N (θ, 1
FQN2+N1F (θ;M∗)), N (θ+E, 1

F (θ,M∗,M)), and N (θ−E, 1
F (θ,M∗,M)), where

M is the sequence of AQSE and E is the marginal error. This implies that the lower bound
for the Holevo variance, when the center of the CI is not updated, is given by

V H
(
θ̂MLE

)
≥ 1
FQN2 +N1F (θ;M∗)

+ (1− Cl)E2 . (67)

The second term on the right-hand side of Eq. (67) dominates when N2 → ∞. This has
a very simple interpretation: if the parameter is outside the confidence interval, making
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more steps in the AQSE method does not diminish the error. Unfortunately, we are not
able to provide a lower bound to the Holevo variance in the case for which the center of
the CI is also updated. Nevertheless, as we will see, by setting a confidence level close to
1, a sufficiently small marginal error E, and by updating the center of the CIs, the Holevo
variance approximates the QCRB in a small number of steps.
To assess the performance of our method we have performed a Monte Carlo simulations
by setting E = π

4 and Cl = .99. Moreover, we have compared our numerical results with
the ideal case (Cl = 1) and an estimation strategy for which the center of the CIs is not
updated. The results are summarised in Figures 4 and 5 for initial conditions ~a ·~n = 0 and
~a · ~n = 0.5.
In Fig. 4 we have considered the initial condition ~a · ~n = 0, so that F (θ;M∗) = 1, and
fixed N1 = 11. The vertical dashed line at N1 = 11 separates the point between covariant
and AQSE inferences. Notice that in the covariant part, for N ≤ 11, both strategies
corresponding to either updating or not the CIs centers yields the same result. However, for
N > 11, if the center of the CI is not updated, so that according to Eq. (67) it second term
dominates, the estimation error grows quickly as the number of measurements increases.
If, however, the center of the CIs is updated then the estimation error tends to the QCRB.
Similarly in Fig. 5, for which we have chosen N1 = 22, ~a ·~n = 0.5 and F (θ;M∗) = 0.75, we
can observe the same qualitative behaviour, showing that our estimation strategy tends to
the QCRB as the number of steps increases for any set of initial conditions.
We conclude by showing in Fig. 6 the performance of all the methods we have discussed
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Figure 4: Plot showing Holevo’s variance as a number of probes for our scheme. The optimal strategy
(orange rhomboid markers), in which we update the centers of the CIs, tends to the QCRB as the
number of probes increases. The latter bound corresponds to take a confidence level of 100%. We
also show the alternative strategy for which the centers of the CIs are not updated (yellow pentagon
markers). This result is lowered bounded by the solid black line, whose formula is given by Eq. (67).
We have chosen the initial condition ~a · ~n = 0. Here the vertical blue line at N = 11 marks the point
separating the covariant inference performance from the AQSE inference to our two-step scheme.

throughout this work considering the initial conditions ~a · ~n = 0.5 and ~a · ~n = 0, which
correspond to the smallest and largest quantum Fisher information, respectively. Obviously
the optimal performance for the different estimation strategies is independent of θ, since the
Holevo variance is invariant under translation modulo 2π over the parametric space. For all
the strategies, the behavior is qualitatively the same for any initial condition. As expected,
the entangled strategy is the best one and reaches the QCRB. The second best strategy
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Figure 5: Plot showing Holevo’s variance as a function of the number of probes N for our two-step
adaptive scheme. The optimal strategy (orange rhomboid markers), in which we update the centers of
the CIs, tends to the QCRB as the number of probes increases. This result is lowered bounded by the
dashed black line, which is the QCRB corrected using Eq. (67) for a confidence level of 100%. We
also show the alternative strategy for which the centers of the CIs are not updated (yellow pentagon
markers). This result is lowered bounded by the solid black line, whose formula is given by Eq. (67).
In this case, we have chosen the initial condition ~a · ~n = 0.5. Here the vertical blue line at N = 22
marks the point separating the covariant inference performance from the AQSE inference to our two-
step scheme. Finally, the horizontal dashed red line corresponds to the Cramér-Rao bound when only
covariant measurements are used instead.

is the restricted ASQE, but this is unrealistic as it assumes that one knows beforehand
an interval where the MLE is regular and includes the parameter. Our method, which we
emphasize is the more realistic both mathematically and experimentally, is the third best
strategy, as it reduces the error of the estimates improving the performance of AQSE and
approximating the estimate to the QCRB.
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Figure 6: Holevo variance vs the number of probes for different strategies of estimation. In order to
calculate the Holevo variance for the schemes based on the maximum likelihood estimator. A sequence
of 10000 measurements were simulated in each point. The curve for the entangled measurement
was analytically calculated. The curve for the proposed scheme shows the performance with a 99%-
confidence intervals. The restricted AQSE method assume that the parametric space is an interval of
length π that includes the real value of θ. The best strategy is the entangled measurement, followed
by the restricted AQSE. These two strategies are unrealistic to implement. The third best strategy is
our proposal. The y-axis is in log scale.
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5 Summary and Conclusions
In this work we have thoroughly examined several strategies for quantum phase estimation.
Their common denominator relies on maximizing likelihood density functions which are
generally non-identifiable and/or non-optimal. This implies that the QCRB cannot be
attained. We have developed a two-step strategy that circumvents this problem. Our
method relies first on covariant measurements to identify a confidence interval within which
the actual parameter is most likely to be, and then to apply an adaptive technique restricted
to that interval. When compared with the current existing methods, ours is mathematically
more robust, as it reaches the QCRB for any initial condition, and experimentally is
more realistic, since neither an entangled measurement nor a priori information of the
parameter’s value are needed. Finally, we believe that our scheme can be generalized to
any system so long as one can use a set of measurements to construct confidence intervals.

However, based on the results presented here and the current body of work, a number
of questions remain open. First of all, it is not clear to us whether there exists a better
strategy for which the subset of covariant measurements is intertwined with the subset of
adaptive ones so as to identify the CI much faster. Secondly, the generalization to this
work to multiparameter estimation does not seem straightforward, since although it is
indeed possible to construct the covariant POVMs [16] for this case, little is known about
non-identifiability for multiparameter likelihood functions. These, and other issues, will
be addressed in forthcoming works.
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A Code implementation
Our numerical results have been implemented using R language. An R library with the
various methods discussed here can be publicly found in the repository [32]. To reproduce
the numerical points for covariant strategy, AQSE and restricted-AQSE presented in Fig.
6, use the function:

Hvar_Scheme(theta_real, par_space, n_boost, num_prob, n,a, strategy),

set the value of θ, theta_real from 0 to 2π, set par_space as the vector c(0, 2*pi),
set the size of bootstrap n_boost=1000, vary the desired number of probes num_prob,
set the initial unitary vectors for the probe and the axis of rotation n a, and vary the
index strategy from 1 to 3. The index 1 represents the estimation strategy for indepen-
dent covariant POVMs, 2 represents the AQSE strategy, 3 represents the restricted-AQSE
strategy. To reproduce the points for our proposed estimation scheme use the function

ECI_Hvar(theta_real, par_space, n_boost, num_prob, n,a, C_lev, Margin_Err),

where you have to set the confidence level C_lev and marginal error Margin_Err to the
desired values. Finally, to calculate the curve for the entangled estimation strategy use the
function
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Ent_Hvar(theta_real, par_space, n,a, num_prob).
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