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In this paper, we propose a general scheme to analyze the gradient vanishing phe-
nomenon, also known as the barren plateau phenomenon, in training quantum neural
networks with the ZX-calculus. More precisely, we extend the barren plateaus theorem
from unitary 2-design circuits to any parameterized quantum circuits under certain
reasonable assumptions. The main technical contribution of this paper is representing
certain integrations as ZX-diagrams and computing them with the ZX-calculus. The
method is used to analyze four concrete quantum neural networks with different struc-
tures. It is shown that, for the hardware efficient ansatz and the MPS-inspired ansatz,
there exist barren plateaus, while for the QCNN ansatz and the tree tensor network
ansatz, there exists no barren plateau.

1 Introduction

In recent years, hybrid quantum-classical algorithms are widely used in quantum chemistry [1-4],
combinatorial optimization [5, 6], and quantum machine learning [7—12]. In these hybrid quantum-
classical algorithms, the goal is usually training parameterized quantum circuits (PQCs) with
classical optimizers. The PQC will be applied to an initial state and then the state will be measured
on a quantum device. The classical optimizer will update the parameters of the PQC according to
the measurement results. As the PQC can be run on noisy intermediate-scale quantum (NISQ [13])
devices, these algorithms are regarded as near-term practical quantum algorithms with potential
quantum advantages.

There exist many methods to train PQCs. Some of these are gradient-based [14-17] and
some are not [17, 18]. In quantum machine learning, gradient-based methods are widely used.
When using gradient-based methods to train PQCs, one may suffer from the barren plateau (BP)
phenomenon which was first studied in [19]. The BP phenomenon is that the gradient of parameters
of the PQC will vanish exponentially in terms of the system size. It was proved that if the PQCs
form unitary 2-designs, then the BP phenomenon exists [19]. This result has been extended to
the case when the PQCs form approximately 2-designs in [20]. The BP phenomenon in PQCs of
various structures has been proposed. For PQCs with a brick-like structure, if the PQC has locally
2-design, then the existence of BPs depends on the depth of the circuit and the cost-function [21].
Let n be the number of qubits of the PQC. For poly(n)-depth PQCs with a brick-like form, there
always exist BPs. For log(n)-depth PQCs with a brick-like form, if the cost-function is global, there
exist BPs. Otherwise, there exists no BP when the cost-function is local. Too much entanglement
will induce BPs [22, 23]. The BP phenomenon in dissipative quantum neural networks has been
studied in [24]. And the noise from quantum hardware also causes BPs, which are called noise-
induced BPs [25]. Several methods to avoid BPs have been proposed [20, 23, 26, 27].
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The above results about the BP phenomenon are obtained under certain assumptions of unitary
2-design and it is still difficult to analyze the BP phenomenon for PQCs besides those containing
t-design parts. In this paper, we develop a general scheme to analyze whether there exist BP
phenomena when training a concrete PQC. We focus on BP phenomena induced by the structure
of PQCs and noise-induced BPs are not considered in this paper. The most important tool used
in this paper is the ZX-calculus, a graphical language for describing and reasoning about quantum
processes. The ZX-calculus was developed by Coecke and Duncan in [28, 29], which has various
applications including quantum circuit synthesis [30-33], measurement-based quantum comput-
ing [34, 35], quantum error correction [36, 37], condensed matter physics [38], quantum machine
learning [39], and quantum natural language processing [40]. In the ZX-calculus, the objects under
consideration are ZX-diagrams, which consist of two kinds of tensors: Z-spiders and X-spiders.
A ZX-diagram can be rewritten with ZX-calculus rules. Moreover, every quantum circuit can be
converted into a ZX-diagram.

—

Let § = (61,...,0m) be a set of parameters. To analyze the gradient of a PQC U(f) with
respect to a Hamiltonian H, we need to estimate the following expectation and the variance

o[o] wl2)

where (H) is defined in Eq. (3). It will be shown that the expectation in Eq. (1) is always zero.
The PQC is said to have barren plateaus if the variance in Eq. (1) vanishes exponentially in terms
of the size of the PQC. The PQC is said to have no barren plateau or trainable if the variance in
Eq. (1) vanishes polynomially in terms of the size of the PQC.

To estimate the expectation and variance in Eq. (1), we first represent them as ZX-diagrams.
Since the expectation and the variance are integrations, the main technical contribution of this
paper is representing these integrations as ZX-diagrams and computing them with the ZX-calculus
when the PQC satisfies Assumption 1. More precisely, with the rewriting rules in the ZX-calculus,
we prove that Eq. (1) is equal to the contraction of a tensor network with a similar structure as
the PQC. Hence, the existence of BPs is totally characterized by the scaling property of the tensor
network.

We use these techniques to analyze whether there exist BP phenomena in the hardware-efficient
ansatz [2], the QCNN ansatz [41], the tree tensor network ansatz [42], and the MPS-inspired
ansatz [43]. We show that there exist BPs in hardware-efficient ansatz and MPS-inspired ansatz,
and there exists no BP in the QCNN ansatz and the tree tensor network ansatz.

This paper is organized as follows. A brief introduction to the PQC, the BP phenomenon, and
the ZX-calculus will be given in Section 2. We will prove the main result that characterizes Eq. (1)
in Section 3. And the analysis of four concrete PQCs is given in Section 4.

2 Preliminary

2.1 Hybrid quantum-classical algorithms
In a hybrid quantum-classical algorithm, there will be an ansatz, which is a PQC of the form

=

M
U(9) = H[Uj(ﬁj) Vil (2)

In (2), U;(0;),5 =1,..., M are parameterized gates, such as the rotational gates Rx, Ry, Rz; and
V; are non-parameterized gates, such as the Hadamard gate H and the CNOT gate. The PQC
will be applied to an initial state pg and then the state will be measured. The above procedure,
which is the quantum part of the algorithm, will be run on quantum processors. Meanwhile, there
will be a classical part that consists of classical processors to optimize the parameters of the PQC

—

in the quantum part. A cost-function L(#) will be estimated in the classical part based on the
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measurement results. Usually, the expectation
(H) = T (poU" (B)HU (8)) (3)

of a given Hamiltonian H will be regarded as the cost-function in many tasks.

Classical processor

L(9)

_.--------\

Update parameters

Figure 1: The hybrid quantum-classical algorithm

As demonstrated in Figure 1, the quantum part runs the PQC and obtains the measurement
results and the classical part estimates the cost-function and updates the parameters. After several
iterations, the cost-function may converge and be optimized. Then the training will be stopped.
This is the main idea of the hybrid quantum-classical algorithm.

2.2 Barren plateau phenomenon

When the parameterized gates are of the form
Uj(ﬁj) = e_i%Hj,

where H; satisfies HJ2 = I, the gradient % can be estimated by the parameter shifting rule
J
without changing the structure of the PQC [14]. Once we obtain the gradient, we can use gradient-

based optimization methods, such as gradient descent, to optimize the parameters.

Ideally, if the gradient does not vanish too fast as the size of the PQC grows, then the gradient
could be estimated efficiently and the PQC could be trained easily. However, the BP phenomenon
tells us that in many cases, the gradient vanishes exponentially as the system size grows up. When
this happens, the PQC is difficult to be trained. The first rigorous proof of the BP phenomenon
is shown below.

—

Theorem 1 ([19]). Consider a PQC U(0) =V (O, ...,0,41)U(0;)W(0;-1,...,61) and a Hamil-
tonian H. The expectation of gradient is 0 if V and W are 1-design. And the variance of gradient

Var {a@(jg)} vanishes exponentially in terms of the number of qubits if V' or W is 2-design.

Hence, when designing the ansatz PQC for a hybrid quantum-classical algorithm, we should
analyze whether there exist BP phenomena in it to ensure that it is trainable.

2.3 The ZX-calculus

We provide a brief introduction to the ZX-calculus. For more details, please refer to [44, 45].

In the ZX-calculus, quantum states and their transformations are represented as ZX-diagrams
which consist of two kinds of tensors: Z-spiders and X-spiders. A Z-spider is denoted as a green
node, and an X-spider is denoted as a red node. They can be written explicitly in the Dirac
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notation as follows.

{3
o)

For a spider, the edges on the left-hand side are called input and the edges on the right-hand side
are called output. The angle 6 is called the phase of the spider. For simplicity, we will omit the
phase when it is zero. Spiders can be connected with wires. Hence, ZX-diagrams can be regarded
as tensor networks generated with Z-spiders and X-spiders. For example, we can use ZX-diagrams
to represent the following quantum states and quantum gates.

O— = 0) + 1) = V2 |4) T N
o— =|+)+[-) = v2[0) I
s g
- 1
- i s
Here we introduce a new notation, the yellow box, to represent the Hadamard gate

50 )

Since the gates set {Rz, Rx, H,CNOT} is universal for quantum computing, in principle, one can
convert every quantum circuit to a ZX-diagram with the equations in Eq. (5).

0...0)(0...0]+e?[1...1)(1...1] (4)
N N—— N ——

n m n m

‘+...+><+...+|+ei9‘7...7><7...7|
—_—— —— —_—— ——

n m n m

Moreover, the ZX-calculus is a powerful tool for reasoning. There are several rewriting rules in
the ZX-calculus with which one can rewrite a ZX-diagram to another equivalent form. Figure 2
gives some basic rewriting rules' in the ZX-calculus. Here, two ZX-diagrams A, B are said to be
equivalent if and only if there exists a non-zero constant ¢ € C, such that [A] = ¢ - [B], where [A]
is the matrix corresponding to the ZX-diagram A.

“ "

Figure 2: Some basic rewriting rules in the ZX-calculus. Here, means 0 or more (figure from [30]).

Note that the ZX-calculus is universal. It means that any linear transformations can be rep-
resented as ZX-diagrams. Moreover, the rules in Figure 2 are complete for the stabilizer quantum
mechanics where phases can only be multiples of 7 [46, 47]. That is, if two ZX-diagrams are
equivalent, then there exists a set of rewriting rules in Figure 2 that rewrites one into another.

L(f) is for the “fusion” rule; (h) is for the “Hadamard color changing” rule; (41) and (i2) are “identity” rules;
(7v) is for the “m-copy” rule; (¢) is for the “copy” rule; (b) is for the “bi-algebra” rule.
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There are also completeness results for the Clifford+T quantum mechanics, where phases can be
multiples of 7, and for arbitrary ZX-diagrams [48-52].

In this paper, we will focus on a canonical form of the ZX-diagram, the graph-like ZX-diagram
which is defined in [30].

Definition 1 ([30]). A ZX-diagram is called graph-like if
1. All spiders are Z-spiders.

Z-spiders are only connected via Hadamard edges.

There exist no parallel Hadamard edges or self-loops.

e e

Every input or output is connected to a Z-spider and every Z-spider is connected to at most
one input or output.

Two spiders being connected via a Hadamard edge means that they are connected with a
Hadamard box. Alternatively, we will also use the dashed blue edge to represent a Hadamard
edge.

All X-spiders can be rewritten to Z-spiders by using the rule (h) in Figure 2. Connected Hadamard
boxes can be canceled with the rule (i2) and normal edges can be canceled with the rule (f).
Furthermore, parallel Hadamard edges and self-loops can be canceled with rules? in Figure 3.
Hence, every ZX-diagram is equivalent to a graph-like ZX-diagram [30].

Be=cuka NGy /P\() ﬁ o\

Figure 3: Rules for canceling parallel edges and self-loops [30].

3 Analyzing the BP phenomenon with the ZX-calculus

In this section, we will show how to analyze the BP phenomenon with the ZX-calculus. More
precisely, we will show how to estimate the expectation and the variance of the gradient of the
cost function of a PQC with respect to a Hamiltonian with the ZX-calculus. The main technique
we used is to compute integration over unitarians with the ZX-calculus.

Scalars are ignored in the rules in Section 2.3. However, to consider the BP phenomenon, the
scalar is necessary. Hence, by using the definition of the Z-spider and the X-spider in Eq. 4, we
can obtain the precise rules with scalars in Figure 4.

In this paper, we consider PQCs under the following assumptions.
Assumption 1. The PQC U(g) satisfies
1. Each gate in U is one of {Rx, Rz, H CNOT}.

2. The parameters in 6= (01,...,0m) are independent uniform random variables in the interval
[—7, 7).

2(hop§) is for the “Hopf” rule; (sl) is for the “self-loop canceling” rule; (hsl) is for the “Hadamard self-loop
canceling” rule.
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Figure 4: Rewriting rules with scalars.

We remark that in the case that a quantum circuit contains gates not satisfying Assumption 1,
if one can represent these gates as composition of gates which satisfy Assumption 1, then the results
of this paper still hold. For example, we will first represent Ry using Rz and Ry in Section 4.2.

3.1 Representing gradients as ZX-diagrams

—

Consider a PQC U(6) of n-qubits and a Hamiltonian H. We assume that the input state is pure.
Without loss of generality, we can also assume that we apply this PQC to an initial state |0). Then
the expectation of H can be expressed as

—

(H) = (0| UT(0)HU (4) |0) . (6)

—

As shown in Section 2.3, we can convert the PQC U(f) to a parameterized graph-like ZX-

—

diagram Gy () with Eq. (5). Suppose that

= —

U(9) = c-[Gu(0)]

for a constant ¢, then (H) can also be expressed as a ZX-diagram as demonstrated in the following

—

equation. Here, U(6) is under the Assumption 1.

We remark that in the general case, the input state can be a mixed state p. Because the
ZX-calculus is universal, we can represent p as a ZX-diagram D,. Then by replacing the X-spiders
representing zero states on the left- and right-hand sides in Eq. (7) with D,, we can still obtain a
ZX-diagram representing the expectation (H) = Tr(pU'HU). And results in this paper still hold
in this case.

If we expand the spider by the definition of the Z-spider, we can prove that the gradient 3(3(75)

can be represented as a ZX-diagram.
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Theorem 2. The gradient can be represented as the following equation.
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Proof. We expand the corresponding Z-spiders according to the definition. There will be four
terms on the left-hand side. Two of these terms are constants, and thus they will become 0 after
taking the derivative. According to the definition of the X-spider, we can obtain the ZX-diagram
on the right-hand side. The complete proof is given in Appendix B. O

This theorem also gives a graphical proof of the parameter-shift rule in [14]. We will demonstrate
it with the following example. Consider the following ansatz. We first can convert it to an
equivalent ZX-diagram.

10)—{ Rx(61) Rz(05) |- e

0)—{ Rx(02) FH{ Rz 00}~ V2 @) L G-

And the expectation (H) of a Hamiltonian H can be represented as the following ZX-diagram.

0) x (61 3
o e e
|041%X02 2(04) Ry

Then by Theorem 2, we can obtain the gradient directly.

0@ () (1) J5 @@
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Then we can use the definition of the X-spider to obtain the parameter-shift rule as shown below.

H ‘ v
7 . f—""3 7
L) (= =) (]

_ x}igi 7

% Fo-llo-® %

ok e UL N
v 91*?{;}{: iV j, @9 v

5 @@ -9 7 v @@ 8 U5
(£) 4 {\}5 @D E eI I :\}5}

% Foltom % & Golla-a &
= %(<H>91,+_<H>91,7)

Here (H), . means replacing the parameter f; with 65 + Z in the ansatz.

To analyze the BP phenomenon, we need to compute the expectation

B = [0 2

)= (6 < [

for j =1,...,m. Here p(f) is the probability of the parameters .

and the variance

9 (H) 9 (H)

_ 0 (H)
90; )= (’ 90;

00,

e a7 (2 242)"

By Assumption 1, Eq. (8) and Eq. (9) can be written as

9 (H

.db,,
( 89

89

o (540

and
Var( 88<9 =

80

91
forj=1,...,m

We will compute the expectation and variance of the gradients in the next two sections.

3.2 The expectation of gradients

(8)

(9)

(10)

(11)

In this section, we will compute the expectation in Eq. (10). As shown in Theorem 2, the integration

1 [ 9(H)
2w O 69j

deka

for k=1,...,m, is also an integration of a ZX-diagram over its parameter 0. With the following

lemma, the integration can be represented as a ZX-diagram again.

Lemma 1. The following equation holds.
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1

o /. mda =m

Proof. Expand the Z-spiders according to its definition. There will be four terms on the left-hand
side. By using

1 " P
— da =0
o _Tre « ,

only two terms left. We will use the definition of the Z-spider again to obtain the ZX-diagram on
the right-hand side. The complete proof is given in Appendix C.

O
With this lemma, we give a graphical proof of the following theorem, which is also proved
in [20].

Theorem 3. Under Assumption 1, the integration

1 [ 9H) .
%/9]. 50, dg; = 0.

Proof. Using the relation in Lemma 1 on the ZX-diagram in Theorem 2, we have

00— -O— O - O0—0
e \ ,:' '\‘ /! N
on 1 o <H> O—Cfi - -+ v e o O -D—@
7 \
Z = | 22240, = ¥ Y
5 ; LN 5 H| N FY
c 2 06 A AY A A A AN /o ALl
. LAY Y 1\ Y
2] J AN \ 7 / \ \ /! VAN
. N B S i N PN o\ L AR .
\ MY I N Y MY I K
O—O-2 - N e O— 05 . S e D—0
\\ \‘ ’l '/ \\ \‘ ’l '/
\\\ l/ \\\ l/
"\ 1/ m "\
%

As a corollary, the expectation of the gradient in Eq. (10) is zero.
Corollary 1. Under Assumption 1, the expectation
0 (H)

1 9 (H) .
B S v/ = =1,...
i) = G /9 1 /0 g 0 =0, forj =1,
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3.3 The variance of gradients

In this section, we will compute the variance in Eq. (9).

o(H)

Because the gradient <55~ is a real number and the expectation is 0, by Eq. (9), the variance
J

[ V)

is the expectation of (8(;5)) , which can be represented as follows by Theorem 2.
J

A | 7 ®
vy \ 7 o, .
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J NS \ \
S -3 R R \-
% 7
N/ 94 AN N
N N , A A N \/
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AN ! AL TN A !
\ \ LAY 7\ \ Y
FARN [ / W N B / VAR
\ c / g L% Y / !
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p \‘ 'l \\\ \‘ 'l //
\ F Ny S
2 G, + () g, — D
n H it 3 @ i 3
4 o(H) 12
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7 7
T T
e N\, e N\
g Il \\ '\ s I’ ‘\ N,
- / \ - - / \ -
O—Q— P - O— Q- P 0—0
oL ! 5 “ / \ oA / \ N ]
\ ! \ % \ A ! \ \
\ [/ ol ) \ A . ,
Y I \ W Y / \e \
. - A / kS \A . e A ! \ S
;N\ A i 7\
\ A A /
S - D vl e e 4o
: A Fa 7
\! \ FAY /
\ A fN s
O0—O—* b O— 0O L 0—0

Similar to Lemma 1, we can prove the following lemma.

Lemma 2. The following equation holds.

Proof. We expand all Z-spiders and there will be 16 terms on the left-hand side. Again, using the
relation | g

— @da =0
o) e'“da ,
6 terms was left. We can use the definition of the Z-spider again to obtain the right-hand side.
The complete proof is given in Appendix D. O

There exist three terms after integration. Hence, computing the variance of gradients is much
more complicated than computing the expectation. We denote the three ZX-diagrams in Lemma, 2

as
T1:><, ng>@<, T; = . (13)

And we introduce a new notation

V[}zl,...,am’ a; € {Tl,T27T3},
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to represent the following ZX-diagram.
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And by the following equations,
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Then, by the definition of V7" “™, we obtain

Var (8<H>) _ @ . Z V[}lla"wa]’fl7T2,aj+lu~~~»am-

0., 4n
99 ar€{T1,T2, T}, k#j

Hence, to compute the variance, we need to sum over 3! terms of the tensor

Val7---7aj—17T27l1j+17-~7am
U .

It seems inaccessible when m is large. But in many cases, we have simple ways to compute this
sum.

Recall that we have converted quantum circuits to graph-like ZX-diagrams. Hence, spiders
are connected with Hadamard edges. Let us consider two spiders W}, W}, corresponding to the
parameters 60,0 in Gy. Suppose that W; and W), are connected with a Hadamard edge. Then
by the following lemma, the Hadamard edge can be removed after integration over 6; and 0.

Accepted in {Yuantum 2021-05-28, click title to verify. Published under CC-BY 4.0. 12



Lemma 3. The following equation holds.

1 NG~
2/ / 6,405 = X wrcimr sy Mayan
(2m) 05 Ok """"" \ ********** \ 3 2

Here Ma%ak is the element on the a;-th row and ay-th column in the following 3 x 3 matriz

1
M=-11 1 -1
1 -1 1

Proof. By Lemma 2, there will be 9 terms on the left-hand side. We can use rewriting rules in

Figure 4 on each term to remove Hadamard edges to obtain the form on the right-hand side. The
complete proof is given in Appendix E. O

Applying this lemma to the variance recursively, we can remove all the Hadamard edges con-
necting two parameterized spiders. And the big tensor

Val,...,aj_l,T2,¢1j+1,...,am
U
will be broken into smaller tensors that are connected with M. It is a new tensor network whose
structure is similar to Gyy. To compute the variance, the only thing we need to do is contracting
this new tensor network. Figure 5 demonstrates the above procedure for the case that all spiders in

Gy are parameterized and are connected with Hadamard edges. The tensor fah ...a; 1s related to

Gy =

By lemma 3

J

Var(f)g;) ) _ Z V517~~-,ak,b17~~-vbz7~~-,T2,-~~761,---7cm

Ial,...,aj

where : : = the projection
{ copy tensor

Figure 5: Computing the variance with the tensor network
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the input state, while the tensor ﬁcl,_,,cm is related to the Hamiltonian H. And P; is a projection

that has only one non-zero entry. That is
Py(2,2,...,2) =1
Also, note that there is a scalar 2 for each internal copy tensor. This scalar comes from the following

equation.

= = =2 (15)

In Appendix A, a simple example is given to illustrate the techniques introduced in this paper.

In conclusion, computing the variance of gradients is reduced to contracting a tensor network
corresponding to the circuit. In the next section, we will use these techniques to analyze the BP
phenomenon for several for concrete PQCs.

4 Analyzing the BP phenomenon for four PQCs

In this section, we will analyze the BP phenomenon for four PQCs with the techniques introduced
in Section 3.

4.1 Hardware-efficient ansatz

Consider a hardware-efficient ansatz [2] PQC of the following form.

o - :
CAEABTARE:
o - -

o [} [z T R
|0> Rz t Rz Rz t Rz

XL

The first step is converting it to a graph-like ZX-diagram. Suppose the circuit is of n-qubits.
By the conversion rules in Eq. (5) and rewriting rules in Figure 4, we obtain a graph-like ZX-
diagram where most spiders are parameterized.

£0 e o0
5O

N
N4
S G ¥

&
JONONG)

£O
50

ONG)
Q
© O

x(L+1)

Here, the Z-spider with “...” represents a Z-spider with a parameter.
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Then we are going to represent the variance of gradients as a tensor network. By Lemma 3, we
can remove most Hadamard edges. Then the remaining part consists of

@__g}_@___. .

By similar techniques used in Lemma 3, we can prove the following lemma.

Lemma 4. The following equation holds.

(21)3/ CO0-GE 06 ¢ d61d02df3 = 3, 0 asetni ey Elurazas
T - 3 , @3 342,143 1’ Ehats

01.02.00COO- L+ - —(@)-0

Here ET,, a,,q5 s an element in the following 3 x 3 x 3 tensor

1 1 00 1 010 1 0 01
ETI[L,. | = 3 0 1 0|, ET2-]= 3 1 0 0), ET[3,-]= 3 0 0 O
0 0 1 0 0 0 100
Proof. Refer to Appendix F. O
Then we can construct a tensor network that is similar to Figure 5 as follows.
R Sy BT -y 573 M ||
R S | an
e @ s é D
xL
And if we want to compute the variance Var(w), we can just simply replace the copy tensor

90;
corresponding to ; in the above tensor network with the projection Ps.

By now we have represented the variance as a tensor network. And now we are going to analyze
the scaling property of this tensor network when the number of qubits n and the depth of the circuit
grow up.

If we denote

b DO

EM = 2 2 9
M- {27
then a layer can be represented as

—F 3}

EM

EM

EM

EM
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And the whole tensor network in Eq. (17) is

]
L]

LT LT : Hcl,...,cn

SIS
|
||

:
|
|
:

L+1
Hence, the variance will be
] T
TeiM! — — — M
TeqM! — - — — — M
Var (2422 T T LT|: |7 Hepeu| . (18)

Mt I — : \ : I — M

M

M1t .. .. 1
Ly corresponding to 6; Lo

We can prove that only two eigenvalues of the matrix LT are 1 and the norms of other eigenval-
ues are less than 1 (for the complete proof, please refer to Appendix G). Moreover, the eigenspace
corresponding to the eigenvalue 1 is generated with two vectors

D= I D=
=
3
-

1 1
By =span{v; 2 ® - ®v12,013Q - ®@uviz}, vig=|1],vi3=1]0 (19)
0 1

Hence, LT will converge to Pg,, the projection to the eigenspace Ej, exponentially, as d — oo.

If we replace LT11 and LT!? with the projection Pg,, then the Eq. (18) will become

3 M
e M!
SR . .
“mL“LﬁwVa‘"(aéé?): : Pp, — Pr D | Herveen | (20)
yef ] \ [M]
e M! \
[ corresponding to 6 |
This term is )
4- 4—nTr(H2), (21)

which is exponentially small. That is, the number of qubits n determines an exponential small
limitation of the variance in Eq. (21) when the number of layers L — oco. And the number of
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layers L determines how the variance will be close to the limitation. More precisely, the variance
Var (%) is exponentially (in L) close to the exponential small (in n) value Eq. (21). Thus,
there exist BPs in the hardware-efficient ansatz.

Theorem 5. The variance of gradients in the hardware-efficient ansatz defined in Eq. (16) vanishes
exponentially as the number of qubits n and the number of layers L grow up.

Note that the above analysis can be generalized to any hardware-efficient ansétze if the entangler
connects all of the qubits.

4.2 Tree tensor network ansatz

The tree tensor network is a special kind of tensor network with tree structures. The quantum
analog of the tree tensor network was developed in [42]. In [53], it was proved that the sum of the

variance .
> ver (%)
7j=1

will not vanish exponentially. In this section, we will prove that not only the sum of the variance
but also the variance of each parameter vanishes polynomially.

Consider the tree tensor network ansatz with n-qubit of the following form.

O—{ By |—O—{ x| —1—— (22)

@ * + Ry H Measure ‘

To analyze the BP phenomenon of this ansatz, we first use the gate decomposition

™

5)

Ry (6) = Rz () Rx () Rz

to convert the PQC to a ZX-diagram as follows.

Measure
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The X-spiders with phase “...” are spiders with parameters. And the ZX-diagram can be rewritten
to a graph-like ZX-diagram as follows.

30

©

(:)_.__

-G-GO GO
90—

BC MCHOS S SOROSLS SCEC)
-G-O——®

-G-O-O

-G-O-@
@0 |
3OO @0~ O-D G- OO e

By using the rewriting rule (lc) in [30], we can remove the spiders with phases £7.
3OO O—

©

-9-0-0—
OO0 D OB Moo

Now we are going to construct a tensor network from this graph-like ZX-diagram to represent

2
the variance. By Eq. (12), the building block of the variance 88%) is

@ ..... ? ? @
o B O (D= — OB -

Ry ?-...@. .. @....? ..... @ .. .

We can prove that (for the complete proof, please refer to Appendix G), after integration over the
parameters «, (3,7, the building block will become

A..4®m{}> 0
1 @D — B .
(2r)3 /aﬂw dadpdy = 32, cery 1,1, TPEN (23)
B
1 .

Here, Trrn is a 3 x 3 x 3 tensor defined as follows.

L (101 L[ 0 -1
TTTN[L',']:T6 01 0], TTTN[Z'W]:E 0 1 0
1 0 1

-1 0

o = O
=
~
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Hence, the variance of %—éﬂ can be obtained by replacing one of the copy tensors with the
J
projection Ps in the following tensor network.

(24)

~n

Now let us analyze the scaling property of this tensor network. Since the Hamiltonian H is a
1-qubit Hermitian operator, it can be expressed as

H = kol + k1 X + koY +k3Z, kj €R.

Then
} 1 0 1
H=2k2 0] +2k2 +k) | 1| +2k2( 0
1 0 -1
We denote
0 1 1
Vo = 1 3 ’U1,3 = 0 ) 111_73 = O
0 1 -1

Note that the building block of this tensor network is 8 - Trrrn. By the definition of Trry, we have

] _1{+} ) .
A Attt Am e @

With the above equations, we can compute the variance simply. For example, consider the following
variance.

- 449 14,

4 9 14 o l4 _
|l = 2k3v15 + 2(K + k})vs + 2K3u

It is a linear function of H. Hence, we can analyze each term of H individually.

Since Pyv; 3 = 0, the first term 2k2v; 3 in H will become 0.

Now let us consider the second term 2(k? + k2)vy. With Eq. (25), we can expand the variance
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as follows.

~n

4
4
4 4
] ) 2 2 —

(v1,3 + v2)

Nl=

%(vl,s + v2)

I
wl=
~n

4
4 4
2 2 @

v2

Expanding it recursively, the variance can be represented as a summation of terms of the following

form,

And by the definition of I, each of the term I(u;

I
~n

N
]

, where u; € {va,v1 3}. (26)

]

...,Up) > 0. Hence, we can obtain a lower
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bound,

1
501,3

V2

4
. 2 %(121,3 + v2)
2]
L2

.
2]
o2

V2

1| - 1]
| I >3 | I

<
)

Y
=
~n

J ) J M
w w w

[\~

1

V1,3

V1,3

(V]
E
N

V2

Similarly, we have a lower bound for the term vy 3.

For the general case of n-qubit, we can prove that it has a lower bound.

Theorem 6. For tree tensor network ansatz shown in (22), if
H = koI + le + kQY + ng7

then we have

o (H) k3 + k3 - k3 -
Var( 20 )2 3 I(ul,...,un)+ﬁl(wl,...,wn), (27)
for some uj,w; € {v13,v2,vy 3}. Here I(uy, ..., uy,) is defined in Eq. (26). And I is a 3" dimen-

stonal tensor which only depends on the input state. If the input state is p, then I is defined as
follows.

jalv--<7a7l

; %\ ;;\ 7 T T
[N \ 5, 4 oA i
! AN NS ) I

N N
" N
\ AN
AN

3N AN

\ / \,

N \,
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Proof. See Appendix G.2.

Note that (ug, ...

I(Ul,...

Q

JUp) €

1

poly(n)

uy,) only depends on the input state. If

Yor I(wy,...

,Wy) € Q

poly(n

))7

there exist no BP in the tree tensor network ansatz.

43 QCNN

QCNN was developed in [41]. It was proved that there exists no BP in the QCNN ansatz if the
subblocks form unitary 2-design [54]. In this section, we will use the ZX-calculus to analyze the
BP phenomenon in a QCNN ansatz without the assumption of unitary 2-design.

Consider a QCNN ansatz as follows.

e — (28)
Hie—— i) —
Rz (L HxHHz HxHHz (L

It can be represented as the following ZX-diagram.

-------------- O Ca

------ @@@@p@@@@@mm@—

-------------- @p@ O V2

------ @@@@V@@@@@@@@@@{%

.............. @J@@@O}%

------ @@@@p@@@@@@@@—f
: Vi
------ 0-0 DO @O @ OO~ O [N

b2

where the Z-spiders with “...” are parameterized. Note that this is a graph-like ZX-diagram
whose spiders are all parameterized. Hence, by using Lemma 3, the variance can be obtained by
replacing one of the copy tensors with the projection P, in the following tensor network.

2 2 2
1,3
4 4
2 2 2 2 2 %2 2 2 2 2
V1,3
2 2 4%2 2 2
V1,3 4 4
4 4
2 %2 2 2 2 %2 2 2 2 2 2 2 2 2
V1,3
I 2 2 4%2 2 2
V1,3 4
4 4
2 2 2 2 2 %2 2 2 2 2 2 2 4
V1,3
2 2 4 2 2 2
V1,3 4 4
4 4
2 %2 2 %2 2 2 2 2 2 2 7|
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Now we are going to analyze the scaling property of this tensor network. If we denote

2 2

TqoNN = 4 )

then we have the following equations
.

By using Eq. (29), we can expand the variance as a sum of terms of the following form.

~
—
<
fin
<
3
N
I
~n

, where u; € {v27U1,3,U1_,3}-

Each of these terms is non-negative. Hence, similar to the analysis of tree tensor network ansatz,
we can prove that the variance of gradients in the QCNN ansatz has a lower bound, since the
QCNN ansatz is of O(log(n))-depth.

Theorem 7. For the QCNN ansatz shown in (28), if
H=kol + k1 X + kY + k3Z,

then we have

0 (H) k3 + k3 - k3 -
Var( 50 )2 5 I(ul,...,un)+El(w1,...,wn), (30)

for some uj,w; € {v13,v2,vy 3}. Here I is a 3" dimensional tensor which only depends on the
input state p.

Proof. See Appendix G.3. O

Hence, if provided

- 1 ~ 1
Tlug,. . uy) € Q(——— O(—
(U’h y U ) € (poly(n)

then there exists no BP in the QCNN ansatz.
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4.4 MPS-inspired ansatz

The matrix product state (MPS) is a special structure of tensor networks, which is widely used
in quantum physics and machine learning [55, 56]. There are also PQCs with a similar structure
as MPS, and we call it MPS-inspired ansatz. It has been shown that MPS-inspired ansatz can be
implemented efficiently in quantum computers with a small number of qubits [43]. We will analyze
the BP phenomenon in MPS-inspired ansatz in this section.

Let us consider the following MPS-inspired ansatz

’
10) Rx H Rz | Rx H Rz |
10) R H Ra |—&—{ Rx H Rz |

O(H)\ .

and the Hamiltonian H = I ® I---® I ® X. We will prove that the variance Var (8—01) is

exponentially small. Here 6, is the parameter of the first Ry gate applying on the first qubit.

Firstly, we convert the PQC into a ZX-diagram as follows.
1
1
OO

o

)
(N

O OO

OO ©

O
©,

0RO

N6

£0

This is a graph-like ZX-diagram whose spiders are all parameterized. We can use Lemma 3 to
represent the variance as the following tensor network.

O O

V1,3

FN,
[\
E
[ 2\

=~
{\—Do—ol\J
N enD
[ 1N)

[ 1\
[ 2\V}

V1,3
V1,3
V2

2
2% 2

By using

2Muvy = (’UQ + 01_73) R 2M’01)3 = 11,3,

| =

and
:L{+}

Accepted in {Yuantum 2021-05-28, click title to verify. Published under CC-BY 4.0. 24



we can simplify the variance as

i °
2 2

1

1 . ”

Var(%j?) =1 = sz (32)

9 9 :

i °
2 2

It is exponential in the number of qubits n. Hence, there exist BPs in the MPS-inspired ansatz.

5 Discussion

We developed powerful techniques to analyze the BP phenomenon for quantum neural networks
training with the ZX-calculus. The quantum neural networks under consideration are PQCs under
certain reasonable assumptions and the cost function is the expectation (H) of the PQC with
respect to a given Hamiltonian H. The basic idea of the method is to represent the PQC, the cost
function (H), and the gradients ‘{jg—g? as ZX-diagrams. And then computing the expectation and
the variance of the gradient of (H) becomes computing the integration of certain ZX-diagrams.
We show that these integrations are sums of ZX-diagrams that can be computed explicitly in many
cases. As future works, it would be desirable to use the completeness of ZX-calculus to represent

these sums by ZX-diagrams, or more generally, diagrams in other complete graphical calculi.

In principle, these techniques can be used to any given ansatz under Assumption 1. We remark
that these techniques can be used to analyze the BP phenomenon for PQCs which contain t-design
sub-blocks, for example, the PQCs considered in [21, 54]. Because the t-design sub-blocks can
be replaced with concrete t-design PQCs and then the techniques proposed in this paper can be
applied. Techniques introduced in this paper can be used in more cases including circuits with
global cost functions and circuits of any depth. To analyze a PQC with a global cost function, one
can represent the global Hamiltonian as a ZX-diagram and then the method introduced in this
paper can be used. As shown in Section 4.1, the BP phenomenon for the hardware-efficient ansatz
has been analyzed when the depth is O(poly(n)). In conclusion, we extend the BP theorem from
unitary 2-design circuits to any parameterized quantum circuits under Assumption 1.

Using the techniques proposed in this paper, we analyzed four kinds of ansatze, including the
hardware-efficient ansatz, the tree tensor network ansatz, the QCNN ansatz, and the MPS-inspired
ansatz. It is shown that there exist BPs in the hardware-efficient-ansatz and the MPS-inspired
ansatz, while there exists no BP in the tree tensor network ansatz and the QCNN ansatz.
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A simple example

In this section, we will use a simple example considered in Section 3.1 to illustrate the techniques
proposed in this paper. Recall that the PQC considered is

OB RO Lo @o@ ()W) @@
0)—{Bx02) F{Raton |- @@ L @@

Accepted in {Yuantum 2021-05-28, click title to verify. Published under CC-BY 4.0. 28


https://doi.org/10.1038/s41534-018-0116-9
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1103/PhysRevResearch.1.023025
https://doi.org/10.1007/978-3-319-91376-6_6
https://doi.org/10.1088/1367-2630/16/9/093021
https://doi.org/10.4204/EPTCS.195.2
https://doi.org/10.1145/3209108.3209131
https://doi.org/10.1145/3209108.3209139
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.23638/LMCS-16(2:11)2020
https://doi.org/10.1080/14789940801912366
https://doi.org/10.1103/PhysRevX.8.031012
https://doi.org/10.1103/PhysRevX.8.031012

and the gradient with respect to 6; can be represented as

/ .

o(H) _ |
Wy Ee @ &

By Lemma 1, the expectation of this gradient is zero. The variance of the gradient is the following

integration.
()
-
D S

o'l

.

o

Var (%?) = 16(;)4 /9 /9 /9 /9 4 40,d05d05d0; .
2 (6s)

.

®

Now we choose the Hamiltonian H = X ® X. Then by Lemma 2 and Theorem 4, we have

16 - Var (%?) >

a1,a2,a3,a4€{T1, T2, T3}

= § : M, 05 - May,as°
az,az,a4€{T1,T2,T3}

QL @ P x@*
= Z ]\/[TQ,GS 'A[dz,as : AIGQ.M' : : . .
az,az,as €{T1,T2,T5} o o) .le‘. .le‘.
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We denote

Then the variance can be represented as the following tensor network.

9 (H) i
16 - Var < 90 ) = Z ]\4"1'*270‘3 . ]\4}127(13 . ]\4-0‘270‘4 . IT27a2 . Hag,a4 =
1 az,a3,a4€{T1,T2,T5}

By contracting this tensor network, we finally obtain

o)y _ 1 3
Var( 20, )‘16'4‘

B Proof of theorem 2

Theorem 2. The gradient can be represented as the following equation.

&)

J>

=

] =
o
[

&)

s

=

="

@

Proof. Consider the spiders corresponding to 6;. We expand the spiders as follows.

e ®n m ®m Qn i0; ®n m ®@m ®n
m{ } T { }m - |?zl9 <0!§9" ®7'|L0> <0Q|§)m +®en ‘1> ®n<1| ®m |0> (X)m(Ol ®n
: SN ¢ : +e7 0 0) O[T - T AT A )T IR

Taking the partial derivative of 6; on the two sides, we obtain

(ﬁ]?n{}n:wn{}nl = jeif; ‘1>®n<1‘®m.” |0>®n<0‘®m 7ie,¢97‘0>®n<0|®m”‘ |1>®n<1‘®m

= OO (UO™ - 0)E" (0] e i@+ |0)E(0F™ - [1)E" (1P

C Proof of lemma 1

Lemma 1. The following equation holds.
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1

2T mda =m

o

Proof. We expand the spiders as follows.
E i i E _ ‘0>®n<0‘®m.” ‘0>®m<0|®n+ €m|1>®n<1|®m“. |0>®m<0‘®n
m{ }nn{ e }m J,—eiia ‘0>®"<0|®Tn“' |1>®'m<1|®n+ |1>®n<1‘®m.“ ‘1>®7n<1‘®n.

/ ek da =0, k==+1,

o S

D Proof of lemma 2

Lemma 2. The following equation holds.

Proof. We expand each spider on the left-hand side of the equation as follows.

(07 Q= O )& (D2 (0" O )z, (00 OF™ D27 (1% e (D= Q7 (1o
(loy @n m&m QCn( ‘m) (I[))m O‘ng ~10)E™ (0 P@n) <‘0>XW (o0& m)(\\m (mxn) (m)@{,n o™ o)™ O\QX‘“)
(‘0>®n <0‘®m ‘0>®m (0‘567!)‘2 (ll)'}ana‘@m ‘O)ﬁam <0‘§¢r1)® “( \U)X"( "}Cm ‘1>’}C (1|®n)® 7”'(‘”501( ‘Xm ‘1 R’"(l\g“)g
m{i‘f}{%}" e o) (e o) e g0 o) T (e e 0o o)
- e (™5™ 0 (0™ ™ 0 (07 @7 7)o (19 o
" mM R (= 1 = (27) (0= e ) (0 O ) T (j0)° 0 ) )
L (OO0 O ) (D202 O e (00 DA e (0 (1) ®" (1 e
R e e T U1 e e Ui I 1 e e R e B (R TR DT
Since
2r
/ e*da =0, k=+1,+2,
0
we integrate over a on each side and obtain
Bf}{} (10 @™ 0™ ") (%" Q™™ 0o (02" @m0 0o
L]’ : : : : - (‘0>®n <D‘®m___‘0>®m <0‘®n) N (mzm <1‘6m_”‘0>®m <0‘®n) . ( ) 1\8”‘ . 1>®m (HXﬂ)
2r Ja v } (‘1>®n<l‘®m_““>®m <”®n)® } (M@n <0|®m“_“)@m“‘\?ﬁn)g ‘ (1>®7L<”®m . “>®m<l‘®n),
m{iﬁ}n-_‘_:n {Bf}m (mxn (me”'ll)w mobn) (‘0>®n <0|®m”_ mxm (1\&1) ( 5971 D‘xm . m)fl\m <0‘®n)

.}m

.}m
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E Proof of lemma 3

Lemma 3. The following equation holds.

Here My o, 15 the element on the aj-th row and ag-th column in the following 3 x 3 matrix

M =

1
il 1 -1
1

Proof. By Lemma 2, we have

"""""" d6;doy, =3

aj,are{T, T2, T3}

for aj, a5 € {Tl,TQ,Tg}.

For a; = aj, = T1, we have

For (aj,ar) ¢ {(T2,Ts), (T3, T2)}, the proof is almost the same as that of Eq. (33).

Now, let us consider the case when (a;,ar) = (T2,73). We can use the rules in Figure 4 as
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follows.

F Proof of lemma 4

Lemma 4. The following equation holds.

d0 d9 d9 = a1,09,0 ETalAag.a N

Here ETy, q5,a5 %5 an element in the following 3 x 3 x 3 tensor

L (1 00 )
ET[L,- =50 1 0], ET2-]=
00 1

010 0
. 10 0|, ETB,-]==]0
00 0 1
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Proof. By Lemma 2, it is sufficient to prove that

for ai,a2,a3 € {Tl,TQ,Tg}.

We first consider the case when a; = Ty. Since a; = T, we have
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Hence,

That is ET[1,1,]=% (1 0 0).
If ap = T5, then
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Hence,

That is ET[1,2,] =
If as = T3, then
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Hence.

That is ET[1,3,]=4£ (0 0 1).

By now, we have proved that
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Now, if as = T7, then we have

Hence,

ool
—
o
_
(=)
~

That is ET[1,1,:] =
If as = T, then
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Hence,

That is ET[1,2,] =
If as = Tg, then
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Hence.

That is ET[1,3,]=4£ (0 0 0).

By now, we have proved that

0
0) . (35)
0

Let us consider the case when a; = T3.

When a; = T3, we have
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According to the symmetry, we can use the result of the case when a; = T5. And we obtain

1 0 0 1
ET[3,-,:] = 3 0 0 0]. (36)
100
O
G Analysis of PQCs in section 4
G.1 Hardware-efficient ansatz
We will prove some properties of LT, which are used in the analysis in Section 4.1.
Theorem 8. Suppose that \1,...,A\sn are eigenvalues of LT. And
ALl > |A2] > - > | Azn].
Then we have
A =X =1, |)\j|<1f07"]>2
Proof. By definition of EM, we can compute that
3 1 1
i3 4
ST
1 1 4 18 g
EM = %1 % 0 (37)
-2 0
i 1
1 0 3
4 1
-1 9 1
3! 1
1 01

By computation, EM can be diagonalized. Four of its eigenvalues are 1 and other eigenvalues are
in the interval (—1,1). Moreover, the eigenspace of the eigenvalue 1 is

span {v; ® U1,2,01 ® V1,3,V1,2 ® V1,2,01,3 UI,S} ) (38)
where
1 1 1
v=10],v12=(1],v13=1{0
0 0 1

LT is an operator on the tensor product of n R3. We denote the operator EM on the i-th and
j-th R as EM; ;. Then the eigenspace of LT corresponding to the eigenvalue 1 is the intersection
of the eigenspaces corresponding to the eigenvalue 1 of

EM1,27 EM2,37 ) EMn—l,n; EMn,L
Hence, by Eq. (38), we have

E; =span{v12® - ®@v12,013® - @ui3}.
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G.2 Tree tensor network ansatz

In Section 4.2, we used Eq. (23). Here we will prove this equation.

Proof of Eq. (23). By Lemma 2, it suffices to prove that

That it

If b = Ty, then
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Hence,

That it

If b = T3, then

That it

1
Trpn[1.3.]= 1. (1 0 1).

By now, we have proved that

5=
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Now, let us consider the case when a = T5. When a = 15, we have

Hence,

That it

If b = T5, then
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Hence,

That it

If b = T3, then

That it

By now, we have proved that

1 1 0 -1
TrrN[2,-, ] = 6 0o 1 0]. (40)
-1 0 1
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Now, let us consider the case when a = T5. When a = T3, we have

Now, a is disconnected with b and c¢. And the parts of b and ¢ are the same as that of a = T7.
Hence, we have

1 01
Troen[3,,]=—=|(0 1 0]. (41)
1 01

O

Now we are going to prove that there is a lower bound for the variance of gradients in the tree
tensor network ansatz.

Theorem 6. For tree tensor network ansatz shown in (22), if
H = ko] + le + kQY + ng,

then we have

0(H k3 + k3 - k2 .
Var( e<99>) > 1;‘2 L F ) + 2 H(w . w), (27)
for some uj,w; € {v13,v2,vy 3}. Here I(uy,...,uy,) is defined in Eq. (26). And I is a 3" dimen-

sional tensor which only depends on the input state. If the input state is p, then I is defined as
follows.

Jatean  _

;. %\ ::\ ? Y 7
Ve \ \ s ..
\ B NS I /
N \,
\ \
A
5 N,
N VAN
N/ \,

Proof. We first prove that

I(u,...,up) >0, wuje€ {1)2,’[)13,’1){3},
where
0 1 1
Vo = 1 3 V1,3 = 0 ) 11173 = 0
0 1 -1
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Note that if u; is vy 3 or V13, then

IN(’ULQ,,...):

; ; 7:\‘\ 7
T 3 . /
Vee. \ NS Y i
\ ./
Y \
\ \,
\, 3
/
\ AN
SN
\ yd \,

By
T +T5 = >< E 00) (00| + |10) (10| + [01) (01| + [11) (11],
+
= (10) 0] + [1) ) (O[+[1) (1)) = ;
-1 = >:>—C< E |00) (00| — |10) (10| — |01) (01| + |11) (11]
= (0)( 1) (1)) = C: ;
- |0) (1] |1) (0]
5 = = _|_
|0) 1 1) (0| |-~
we can expand I (u1,...,upn) as a sum of squares. Thus, we have proved that
I(ug,...,u,) > 0.
Now let us consider the lower bound of Var (%). By the graph-like ZX-diagram just ob-
([
tained, we have H = H, which is defined as follows.
H;
Oy’
fjj: ,for j=1,2,3.
SSEIR6

Suppose that H = kol + k1 X + koY + k3Z. Then we can obtain
H = 2kgv13 + 2(kF + k3)va + 2k307 5. (42)
And by the definition of Trry, we can obtain Eq. (25). Hence, we can expand the variance as

Var(aégm>: ST ) Funy ),

u;j €{v2,v1,3,v7 3}
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where a(ug,...,u,) is a non-negative number. We will prove that there exists one choise of

(u1,...,up) such that
1

poly(n)

a(uy, ..., up) € Q ).

When we use Eq. (25) to expand the variance, the only case that will cause a coefficient < 1 is
the case when we use the second equation in Eq. (25). Hence, the coefficients a(uq,...,u,) only
depend on the number of times that we use the second equation. And it depends on the location
of 6. The worst case is that # is the parameter of the first gate applying to the first qubit. In this
case, we need to use the second equation in Eq. (25) for 2log(n) — 1 times. That means we have
a lower bound for the variance

0 (H) k3 + k3 - k3 -
Var( 50 )2 3 I(ul,...,un)+ﬁl(wl,...,wn),

for some uj, w; € {v13,v2,v; 3}

Note that I(uq,...,u,) only depends on the input state p. If

- 1 -

I(uy,...,uy) € Q(m) or I(wy,...,w,) € Q(poly(n) ),
then there exists no BP in the tree tensor network ansatz. O
G.3 QCNN
Theorem 7. For the QCNN ansatz shown in (28), if

H =kl + k1 X + kY + k3 Z,

then we have o () K2k K

Var( 50 )2 5 I(ul,...,un)+El(wl,...,wn), (30)

for some uj,w; € {01)3,?]2,@;3}. Here I is a 3" dimensional tensor which only depends on the
input state p.

, where a; € {1,2,3}.

Proof. The proof is similar to that of the tree tensor network ansatz (Theorem 6), so we will only
give a sketch of the proof. We also have

I(uy,...,un) >0, w; €{v13,v2,v; 3}

From the graph-like ZX-diagram, we have
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Hence, R
H = 2kjvy 3+ 2(k7 + k3)v2 + 2k30] 5.

We will analyze each term of H in the variance.

Using Eq. (29), the term 2k3v; 3 will become 0 by Pavy 3 = 0. The terms 2(k? + k3)ve and
2k§vi 5 will generate terms containing v, after expanding using Eq. (29). And each time after

generating terms containing vq, a coefficient > % will be multiplied to the variance. Hence, if we
want to bring vs to P, we need to generate terms containing v for [ times, where [ is a path from

the location of vy to the location of Ps.

By the structure of the QCNN ansatz, we have
[ > 3log(n).

It will generated a coefficient > m.

Hence we have

0 (H) k3 + k3 - k3 -
Var( 50 > o I(ul,...,un)+El(wl,...,wn),
for some uj,w; € {v13,v2,v; 3} O
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