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In this paper, we derive sharp lower bounds,
also known as quantum speed limits, for the
time it takes to transform a quantum system
into a state such that an observable assumes its
lowest average value. We assume that the sys-
tem is initially in an incoherent state relative to
the observable and that the state evolves accord-
ing to a von Neumann equation with a Hamil-
tonian whose bandwidth is uniformly bounded.
The transformation time depends intricately on
the observable’s and the initial state’s eigenvalue
spectrum and the relative constellation of the
associated eigenspaces. The problem of finding
quantum speed limits consequently divides into
different cases requiring different strategies. We
derive quantum speed limits in a large number of
cases, and we simultaneously develop a method
to break down complex cases into manageable
ones. The derivations involve both combinato-
rial and differential geometric techniques. We
also study multipartite systems and show that al-
lowing correlations between the parts can speed
up the transformation time. In a final section,
we use the quantum speed limits to obtain up-
per bounds on the power with which energy can
be extracted from quantum batteries.

1 Introduction
A quantum speed limit (QSL) is a lower bound for the
time it takes to transform a quantum state in a certain
way under some given conditions. Many QSLs have been
derived for both open and closed systems; see [1, 2] and
the references therein. Several of them are valid under
very general conditions and can therefore be applied to
virtually any system [3, 4, 5, 6, 7]. Extensive applicabil-
ity is indeed a strength of a QSL but also means that the
QSL can give a rather weak time-bound in specific cases.

In this paper, we take a different approach to deriv-
ing QSLs for a family of quantum systems broad enough
to include many systems of both practical and theo-
retical interest but narrow enough for the QSLs to be
Ole Andersson: ole.andersson@fysik.su.se

very sharp. Specifically, we consider a general finite-
dimensional system prepared in a state that commutes
with a definite but otherwise unspecified observable. For
such a system, we examine how long it takes to unitar-
ily transform the state into one where the observable’s
expectation value is minimal. We allow the Hamilto-
nian governing the transformation to be time-dependent,
but we assume that its energy bandwidth is uniformly
bounded. Such an assumption is in many cases physi-
cally justified [8, 9, 10, 11, 12, 13, 14, 15, 16, 17].

We borrow terminology from thermodynamics and
call a state where the expectation value of the observable
is minimal passive [18, 19, 20]. A passivization process is
then any unitary process that leaves the system in a pas-
sive state. We define the passivization time of the system
to be the shortest time in which a passivization process
that meets the bounded bandwidth condition can drive
the system into a passive state. And by a QSL we hence-
forth mean a lower bound on the passivization time.

After a short preliminary section, we derive a gen-
eral QSL for systems that conform to the description
above. We also describe conditions that ensure that the
QSL agrees with the passivization time. In connection
with this, we study collective passivization processes of
ensembles of identical systems. In such, we allow corre-
lations to develop during the process. We show that al-
lowing correlations reduces the passivization time of the
individual system, and we extend the QSL to a lower
bound on the collective passivization time.

For many systems, the general QSL is not tight.
This is because the passivization time depends in a
rather intricate way on the eigenvalue spectra and the
eigenspaces of the observable and the initial state. We
calculate the passivization time explicitly for completely
non-degenerate systems. We also develop a method to
derive QSLs for systems where the observable or the
state has a degenerate spectrum. The method, which is
particularly effective for low-dimensional systems, gen-
erates tight QSLs under additional conditions (precisely
described in the paper).

Quantum batteries are systems of potentially great
practical importance to which we can apply the results
in the current paper. We demonstrate this by deriving
sharp estimates for the power with which energy can
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be extracted from a quantum battery. Here, we follow
[21, 22, 23, 24] and define a quantum battery as a closed
quantum system whose energy content can be adjusted
through cyclic unitary processes.

Recent discoveries suggest that collective effects, such
as entanglement, can improve the performance of quan-
tum batteries [22, 25]. For example, allowing correla-
tions to develop between the batteries in an ensemble
seems to increase the power with which energy can be
extracted from each of the batteries [23, 24, 25]. We use
the QSLs for collective passivation processes to derive
estimates for the power of collective energy extraction
processes. Similar results but for different constraints
can be found in [23, 24, 25].

The outline of the paper is as follows. In Section
2 we set up the problem, introduce terminology, and
prove some preliminary results. In Section 3 we derive
a general QSL and discuss circumstances under which
it is tight. In this section we also consider multipartite
systems. Section 4 deals with the case when both the
observable and the initial state have a non-degenerate
spectrum. Section 5 begins with a general discussion on
the characteristics of time-optimal Hamiltonians. Then
we develop a method to deal with systems for which the
observable or the initial state has a degenerate spectrum.
In Section 6 we use the results from previous sections to
derive upper bounds on the power of quantum batteries.
The paper concludes with a summary and an outlook.

2 Preliminaries
Let A be an observable of an n-dimensional quantum sys-
tem prepared in a state ρi. In this paper, we examine
how long it takes before the system enters a state where
the expectation value of A is minimal. We assume that
the system evolves according to a von Neumann equa-
tion ρ̇(t) = −i[H(t), ρ(t)] with a Hamiltonian satisfying
the inequality

tr
(
H(t)2) ≤ ω2. (1)

The quantity on the left is the bandwidth of the Hamil-
tonian, and the quantity ω on the right is some fixed
positive number. We will refer to the inequality (1) as
the bounded bandwidth condition.

The eigenvalue spectrum of a quantum state that
evolves according to a von Neumann equation is pre-
served. We write S(ρi) for the space of all states that
have the same spectrum as ρi. Also, we write H for
the Hilbert space of the system and denote the group
of unitary operators on H by U(H). The unitary group
acts on states according to U · ρ = UρU†. This action
preserves and is transitive on S(ρi). Since ρi is assumed
to evolve unitarily, S(ρi) can be considered the entire
state-space of the system. For simplicity, “state” will

from now on refer to a member of S(ρi) and thus be an
abbreviation for “state isospectral to ρi.”

The expectation value function of A on S(ρi),

EA(ρ) = tr(ρA), (2)

is real-valued and continuous. Since S(ρi) is compact
and connected, the image of EA is a closed and bounded
interval. We borrow terminology from thermodynamics
and call the states at which EA assumes its minimum
value passive and the states at which EA assumes its
maximum value maximally active.1 Then, a more ap-
propriate formulation of the main question addressed in
this paper is: What is the shortest time in which ρi can
be transformed into a passive state using a Hamiltonian
that satisfies the bounded bandwidth condition?
Remark 1. All results in this paper have a counterpart
with an analogous proof for a maximally active final state.

2.1 Extremal and incoherent states
We call a state incoherent if it commutes with A.2
An incoherent state is thus a state that preserves A’s
eigenspaces. SinceH is the direct sum of the eigenspaces
of A, the incoherent states decompose into direct sums
of operators acting on the eigenspaces. We arrange the
different eigenvalues of A in increasing order and write
Ak for the eigenspace belonging to eigenvalue number k.
A state ρ is then incoherent if, and only if, ρ = ⊕kρk
where ρk is an operator on Ak. The operator ρk is the
kth component of ρ.

Proposition 1. Passive and maximally active states
are incoherent.

The proposition is known since before [21]. But for the
reader’s convenience, we have included a proof in Ap-
pendix A. In this paper, we assume the following:

The initial state ρi is incoherent.

The group of unitary operators commuting with A
acts transitively on the passive states. This means on
the one hand that if ρ is a passive state and U is a unitary
that commutes with A, then UρU† is a passive state, and
on the other hand that every passive state is of the form
UρU† for some unitary U commuting with A. Since the
unitaries commuting with A decompose into direct sums
of unitaries operating on the eigenspaces of A, all passive
states have isospectral components. We conclude that a
state is passive if, and only if, it is incoherent and has
components isospectral with those of a passive state.

1In thermodynamics an active state is any state which is not
passive. The states that maximizes the expectation value of some
observable (typically a Hamiltonian) are called maximally active.

2This definition differs slightly from the usual one because A is
not required to have a non-degenerate spectrum.
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2.2 Time-optimal Hamiltonians
We define the passivization time τpas as the shortest time
in which ρi can be transformed into a passive state us-
ing a Hamiltonian that satisfies the bounded bandwidth
condition. Below we determine τpas in several impor-
tant cases. We also give examples of Hamiltonians that
realize such an optimal transformation. We say that a
Hamiltonian is time-optimal if it satisfies (1) and trans-
forms ρi into a passive state in the time τpas. According
to the next proposition, time-optimal Hamiltonians sat-
urate the inequality (1) at all times.

Proposition 2. Time-optimal Hamiltonians saturate
the bounded bandwidth condition.

For a proof, see [15] or Appendix B.
The time-evolution operator associated with a Hamil-

tonian can be considered as a curve in U(H). We
equip U(H) with the bi-invariant Riemannian metric g
that agrees with the Hilbert-Schmidt inner product on
the Lie algebra of U(H). By Proposition 2, the time-
evolution operator U(t) associated with a time-optimal
Hamiltonian H(t) then has a constant speed ω:

g
(
U̇(t), U̇(t)

)
= tr

(
H(t)2) = ω2. (3)

Let P(ρi) be the set of unitary operators that trans-
form the initial state into a passive state:

P(ρi) = {U ∈ U(H) : UρiU† is a passive state}. (4)

Proposition 5 below says that P(ρi) is a submanifold
of U(H). The next proposition, proven in Appendix C,
transforms the problem of determining the passivization
time into a geometric problem. We write 1 for the iden-
tity operator on H.

Proposition 3. The time-evolution operator of a time-
optimal Hamiltonian is a shortest curve from 1 to P(ρi).

The shortest curves connecting 1 and P(ρi) are pre-
geodesics (that is, they are geodesics if parameterized
such that they have a constant speed [26]). Every
geodesic of g emanating from 1 agrees with a one-
parameter subgroup of U(H) on its domain of definition.
Conversely, every one-parameter subgroup of U(H) is
a geodesic of g; see [27]. Thus, a curve of unitaries
U(t) such that U(0) = 1 is a geodesic if, and only if,
U(t) = e−itH for some Hermitian operator H. Proposi-
tion 4 is a direct consequence of Propositions 2 and 3.

Proposition 4. Time-optimal Hamiltonians are time-
independent.

The geodesic distance between two unitary operators
is the minimum of the lengths of all smooth curves con-
necting the two operators. One can express the geodesic

distance between two unitaries U and V in terms of the
principal logarithm and the Hilbert-Schmidt norm:

dist(U, V ) = ‖Log(U†V )‖ =
√
− tr

(
Log(U†V )2

)
. (5)

See Appendices D and E for details. It follows that

dist
(
1,P(ρi)

)
= min

{
dist(1, U) : U ∈ P(ρi)

}
= min

{
‖LogU‖ : U ∈ P(ρi)

}
.

(6)

The first identity is the definition of the distance be-
tween 1 and P(ρi). Equation (6) and Propositions 2
and 3 together imply that

τpas = 1
ω

min
{
‖LogU‖ : U ∈ P(ρi)

}
. (7)

Unfortunately, the minimum on the right is in general
difficult to determine. But we will find explicit expres-
sions for τpas in several important cases.

2.3 Passivizing unitaries and isotropy groups
As was mentioned above, the unitary group acts on
states by left conjugation. We write U(H)ρi for the
isotropy group of the initial state:

U(H)ρi = {U ∈ U(H) : UρiU† = ρi}. (8)

The unitary group also acts on observables by right con-
jugation, U · B = U†BU , and we write U(H)A for the
isotropy group of the observable A:

U(H)A = {U ∈ U(H) : U†AU = A}. (9)

Proposition 5. The set P(ρi) is a submanifold of U(H).
Moreover, if P is any unitary in P(ρi), then

P(ρi) = {UPV : U ∈ U(H)A, V ∈ U(H)ρi}. (10)

The proof is postponed to Appendix F. Proposition 5
implies that if P is any passivizing unitary, then

dist(1,P(ρi)) = min
U,V
‖Log(UPV )‖. (11)

The minimum is over the Us in U(H)A and V s in U(H)ρi .
Since ρi is incoherent, A and ρi are simultaneously di-

agonalizable. We fix a common orthonormal eigenbasis
|1〉, |2〉, . . . , |n〉 of A and ρi, and we write a1, a2, . . . , an
and p1, p2, . . . , pn for the associated eigenvalues. We fur-
thermore assume that the ordering of the vectors in the
basis, hereafter referred to as the computational basis, is
such that a1 ≤ a2 ≤ · · · ≤ an. This ordering is consis-
tent with the prior ordering of the different eigenvalues
of A in Section 2.1.
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3 A quantum speed limit
In this section, we derive a QSL for the time it takes to
passivize an incoherent state using a Hamiltonian that
satisfies the bounded bandwidth condition. To this end,
let δk be the number of eigenvalues that the kth com-
ponent of ρi does not have in common with the kth
component of a passive state, and let δ be the sum of
all the δks. We call δ the discrepancy of the initial state,
and we define the QSL τqsl as

τqsl = π
√
δ

2ω . (12)

Proposition 6. The QSL τqsl bounds the passivization
time from below.

Proof. Let H be a time-optimal Hamiltonian. For each
computational basis vector |k〉 define |k(t)〉 = e−itH |k〉
and regard |k(t)〉 as a curve on the unit sphere in H.
The speed of |k(t)〉 equals 〈k|H2|k〉1/2, and Proposition
2 says that the squares of these speeds sum to ω2. Since
the system evolves into a passive state in the time τpas,
at least δ of the basis vectors evolve, in this time, into
eigenvectors of A with a different eigenvalue and, thus,
into orthogonal states. The spherical distance between
any pair of orthogonal states is π/2. Hence,

ω2τ2
pas =

n∑
k=1
〈k|H2|k〉τ2

pas ≥
π2δ

4 . (13)

This proves that τpas ≥ τqsl.

A natural question is when the passivization time is
equal to τqsl. Below we will see that such is the case
if the initial state can be ‘permuted’ to a passive state
with a permutation whose cycles have a length of at most
2. We will also see examples of systems for which the
passivization time is greater than τqsl.

3.1 Systems for which the passivization time
equals the quantum speed limit
For a not necessarily unique permutation σ of the set
{1, 2, . . . , n}, the state ρσ =

∑
k pσ(k)|k〉〈k| is passive.

We call such a permutation passivizing. Define the per-
mutation operator associated with σ as

Pσ =
n∑
k=1
|k〉〈σ(k)|. (14)

The operator Pσ is unitary and ρσ = PσρiP
†
σ .

Any permutation of {1, 2, . . . , n} can be uniquely de-
composed into disjoint cycles [28]. Each cycle is itself a
permutation of a subset of {1, 2, . . . , n}. We denote the

Figure 1: A graphical representation of (k1 k2 . . . kl). The
number of elements in the cycle is the length of the cycle. A
trivial cycle has length 1 and a transposition has length 2.

cycle which permutes the subset {k1, k2, . . . , kl} accord-
ing to k1 → k2 → · · · → kl → k1 by (k1 k2 . . . kl); see
Figure 1. The number of elements l is the length of the
cycle. A cycle of length 1 will be called trivial, and a
cycle of length 2 will be called a transposition. A permu-
tation whose square leaves every element of {1, 2, . . . , n}
invariant is called an involution. Being an involution is
equivalent to having cycles of length at most 2.

Proposition 7. If ρi can be passivized by an involution,
then the passivization time equals τqsl.

Proof. Let σ be a passivizing involution. Reduce σ by
replacing each transposition (k1 k2) of σ for which ak1 =
ak2 or pk1 = pk2 holds by a pair of trivial cycles (k1)(k2).
The reduced σ is also passivizing.

Let c1, c2, . . . , cm be the transpositions of the reduced
σ. Write cj = (kj1 k

j
2), with kj1 < kj2, and re-index the

transpositions so that every cj for which pkj1 < pkj2
holds

has a lower index than all those cjs for which pkj1 > pkj2
holds. The Hamiltonian

H = ω√
2m

m∑
j=1

(
|kj2〉〈k

j
1|+ |k

j
1〉〈k

j
2|
)

(15)

satisfies the bounded bandwidth condition and im-
plements the passivizing unitary −iPσ in the time
π
√

2m/2ω. We will show that δ ≥ 2m. The opposite
inequality follows from Proposition 6.

For each j, let Pj be the unitary operator which inter-
changes |kj1〉 and |k

j
2〉 and leaves all the other computa-

tional basis vectors invariant. Set ρ0 = ρi and inductively
define ρj = Pjρj−1P

†
j . The sequence of ρjs starts at ρi

and ends at the passive state ρσ. Moreover,

EA(ρj) = EA(ρj−1) + (akj2 − akj1)(pkj1 − pkj2). (16)

The second term on the right is positive if pkj1 > pkj2
and negative if pkj1 < pkj2

. The former situation is, how-
ever, excluded by the selected order of the transpositions.
Otherwise, the final state is not passive. Hence, the
sequence of expectation values EA(ρj) is monotonically

Accepted in Quantum 2021-05-08, click title to verify. Published under CC-BY 4.0. 4



decreasing. This, in turn, means that each pkj1 belongs
to the spectrum of different components of ρi and ρσ,
and similarly for pkj2 . We conclude that δ ≥ 2m.

In the proof of Proposition 7, we chose to implement
−iPσ rather than Pσ because the latter does not belong
to the passivizing unitaries closest to the identity. Ex-
plicitly, the distance from 1 to Pσ equals π

√
m, which

is
√

2 times greater than the distance from 1 to P(ρi).
Example 1. Suppose that A has only two, possibly degen-
erate, eigenvalues. The incoherent states then have two
components. Let m be the number of eigenvalues that
the first component of ρi does not have in common with
a passive state. Then the number of eigenvalues that
the second component does not have in common with a
passive state is also m, and δ = 2m. Match the ‘errant’
eigenvalues in pairs such that each pair contains one
eigenvalue from the first component and one eigenvalue
from the second component of ρi. The indices of the
eigenvalues in each pair define a transposition. Let σ be
the product of the so obtained transpositions times the
trivial cycles whose elements are the indices of the un-
paired eigenvalues. The permutation σ is an involution,
and the passivization time thus equals τqsl.

The next example is interesting from a thermody-
namic perspective. We shall return to this fact in Sec-
tion 6.

Example 2. If ρi is maximally active, the sequence of
eigenvalues of ρi is non-decreasing. The state with the
reversed spectrum, ρp =

∑
k pn−k+1|k〉〈k|, is passive,

and the discrepancy of ρi equals δ = 2m where m is
the greatest integer such that pm < pn−m+1 and am <
an−m+1.3 Defining σ as

σ = (1 n)(2 n−1) · · · ( δ2 n−
δ
2 +1)( δ2 +1) · · · (n− δ

2 ), (17)

then σ is passivizing and ρp = PσρiP
†
σ . The Hamiltonian

H = ω√
δ

δ/2∑
k=1

(
|n− k + 1〉〈k|+ |k〉〈n− k + 1|

)
(18)

is time-optimal and implements −iPσ in the time τqsl.

3.2 Assisted passivization
A passivization catalyst is an auxiliary quantum system
used to reduce the passivization time of a system. The
catalyst is allowed to transform with the system. But
as the system develops into a passive state, the catalyst
must return to its original, uncorrelated state. As we

3We assume that neither A nor ρi is proportional to 1 for then
ρi is already passive.

will see, allowing correlations between the two in the
meantime can reduce the passivization time.

To derive a bandwidth bound of the composite system
that allows for a fair comparison between the transfor-
mation time of a catalyzed and that of an uncatalyzed
passivizing transformation, consider a system in a state
ρi which is coupled to, but uncorrelated with, a catalyst
in a state ρc. Assume that the system and the cata-
lyst in the time τ evolve in parallel to ρp ⊗ ρc, with
ρp being passive, according to a von Neumann equation
with Hamiltonian Hsc(t) = Hs(t) +Hc(t). Furthermore,
assume that the bandwidth of Hs(t) is bounded from
above by ω2. Then τ is greater than or equal to the
system’s passivization time τpas. And only if Hs(t) is
time-optimal and Hc(t) is suitably adjusted, τ can be
equal to τpas. In that case, the bandwidth of Hsc(t) is
ncω

2 + n tr(Hc(t)2), where nc and n is the dimension of
the catalyst and the system, respectively. Here we have
used that time-optimal Hamiltonians are traceless; see
Section 5.1. We thus formulate the bounded bandwidth
condition for assisted transformations as

tr
(
Hsc(t)2) ≤ ncω2. (19)

We define the assisted passivization time τapas as the
shortest time in which a system can be transformed into
a passive state in a catalyzed process governed by a
Hamiltonian satisfying (19). Moreover, for a system in a
state with discrepancy δ, we define the assisted QSL as

τaqsl = π

2ω

√
δ

nc
. (20)

The next two propositions say that the assisted pas-
sivization time is at least τaqsl but not greater than
τpas/

√
nc.

Proposition 8. The assisted passivization time is not
greater than τpas/

√
nc.

Proof. Let Hs be a time-optimal Hamiltonian for the sys-
tem, transforming ρi into ρp in the time τpas, and let |ψ〉
be the pure state of an nc-dimensional catalyst. Define
a Hamiltonian for the combined system and catalyst as
Hsc = √ncHs ⊗ |ψ〉〈ψ|. The Hamiltonian Hsc has band-
width ncω2 and transforms ρi ⊗ |ψ〉〈ψ| into ρp ⊗ |ψ〉〈ψ|
in the time τpas/

√
nc.

Proposition 9. The assisted QSL τaqsl lower bounds
the assisted passivization time.

Proof. Let ρi and ρp be the initial and a passive state
of the system, respectively, and let ρc be the state of an
nc-dimensional catalyst. Since ρi and ρp are incoherent
relative to A, the product states ρi ⊗ ρc and ρp ⊗ ρc
are incoherent relative to A ⊗ 1. Moreover, the kth
components of ρi ⊗ ρc and ρp ⊗ ρc are ρi;k ⊗ ρc and
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ρp;k ⊗ ρc, respectively, where ρi;k and ρp;k are the kth
components of ρi and ρp.
Let δk be the discrepancy between ρi;k and ρp;k and

let δck be the discrepancy between ρi;k ⊗ ρc and ρp;k ⊗ ρc.
Then δck ≥ δk. To see this, let pi1 , pi2 , . . . , piδk be the
eigenvalues of ρi;k that are not present in the spectrum of
ρp;k. Each of these eigenvalues is either strictly greater
than or strictly smaller than all of ρp;k’s eigenvalues.
Otherwise, ρp would not be passive. Organize the differ-
ing eigenvalues of ρi;k so that the first l ones are greater
than and the last δk − l ones are smaller than all the
eigenvalues of ρp;k. Furthermore, let q1 be the greatest
and q2 be the smallest non-zero eigenvalue of ρc. (If ρc is
a pure state, then set q1 = q2 = 1.) Neither of the eigen-
values pi1q1, pi2q1, . . . , pilq1, pil+1q2, pil+2q2, . . . , piδk q2 of
ρi;k⊗ρc is then present in the spectrum of ρp;k⊗ρc. These
are δk in number and, hence, δck ≥ δk.
Let Hsc(t) be a Hamiltonian that satisfies (19) and

which, among such Hamiltonians, transforms ρi⊗ρc into
ρp ⊗ ρc in the shortest time. (Without loss of generality,
we can assume that this time equals τapas since ρp is
unspecified.) Using arguments identical to the ones used
in the uncatalyzed case, one can show that tr(Hsc(t)2) =
ncω

2 for all t and that Hsc(t) is time-independent.
Write δc for the sum of all the δcks. Let |k l〉 be the

product of the kth vector in the computational basis for
the system and the lth vector in an eigenbasis of ρc. The
trajectory formed when |k l〉 is affected by Hsc has the
constant speed 〈k l|H2

sc|k l〉1/2. Furthermore, for at least
δc such vectors, the trajectory has a length greater than
or equal to π/2. Consequently,

ω2ncτ
2
apas ≥

ns∑
k=1

nc∑
l=1
〈k l|H2

sc|k l〉τ2
apas ≥

π2δc

4 . (21)

The proposition follows from the inequality δc ≥ δ.

By Propositions 8 and 9, τapas = τaqsl if τpas = τqsl.
Such is the case, for example, if the initial state can be
passivized by an involution.
Example 3. A system in a maximally active state can be
passivized in the time τqsl and be assisted passivized in
the time τqsl/

√
nc using an nc-dimensional catalyst.

3.3 Collective passivization
Assume that A has a non-degenerate spectrum. Then
there is but one passive state ρp. In this section, we
consider N copies of the system prepared in the product
state ρ⊗Ni = ρi⊗ρi⊗· · ·⊗ρi, and we ask if it is possible
to transform ρ⊗Ni into ρ⊗Np = ρp⊗ρp⊗· · ·⊗ρp in a time
shorter than the single copy passivization time τpas using
a Hamiltonian that satisfies the bandwidth condition

tr
(
H(t)2) ≤ ω2NnN−1. (22)

The right-hand side equals the bandwidth of an N -fold
sum of local time-optimal Hamiltonians satisfying (1).
We will see that, as in the case of assisted passivization,
allowing correlations between the systems can reduce
the passivization time to a value smaller than τpas.4

Remark 2. Here we consider transformations of ρ⊗Ni into
a specific final state, namely ρ⊗Np , rather than “some
passive state.” The state ρ⊗Np need not be passive for
either N ·A = A+A+ · · ·+A or A⊗N = A⊗A⊗· · ·⊗A;
see [22] and Example 7.

The computational basis determines a canonical ba-
sis in the N -fold tensor product of H. We write
|k1k2 . . . kN 〉 for |k1〉 ⊗ |k2〉 ⊗ · · · ⊗ |kN 〉. Then

ρ⊗Ni =
∑

pk1 · · · pkN |k1 . . . kN 〉〈k1 . . . kN |, (23)

ρ⊗Np =
∑

pσ(k1)· · · pσ(kN )|k1 . . . kN 〉〈k1 . . . kN |, (24)

where σ is any permutation that passivizes ρi.
The sums in Equations (23) and (24) are over all the

sequences k1, k2, . . . , kN one can form from the integers
1, 2, . . . , n. Let δN be the number of such sequences for
which pk1pk2 · · · pkN and pσ(k1)pσ(k2)· · · pσ(kN ) are differ-
ent. Also, define the collective passivization time τcpas as
the minimum time it takes to transform ρ⊗Ni into ρ⊗Np
using a Hamiltonian that satisfies (22). Then

τcpas ≥
π

2ω

√
δN

NnN−1 . (25)

The proof is similar to that of Proposition 6: A Hamilto-
nian that meets the condition (22) and transforms ρ⊗Ni
into ρ⊗Np in the time τcpas is time-independent. Let H
be such a Hamiltonian. Then H transforms each prod-
uct basis vector |k1k2 . . . kN 〉 into an eigenvector of ρ⊗Np .
Furthermore, if pk1pk2 · · · pkN and pσ(k1)pσ(k2) · · · pσ(kN )
are different, the length of the trajectory of this vector
is at least π/2. Since the trajectory has the constant
speed 〈k1k2 . . . kN |H2|k1k2 . . . kN 〉1/2,

ω2NnN−1τ2
cpas ≥ tr

(
H2)τ2

cpas ≥
π2δN

4 . (26)

The expression on the right-hand side of (25) is the
collective QSL, which we denote by τcqsl. The collec-
tive passivization time equals τcqsl if σ is an involution.
Because if such is the case, the Hamiltonian

H = π

2τcqsl

∑(
|k1 . . . kN 〉〈σ(k1) . . . σ(kN )|

+ |k1 . . . kN 〉〈σ(k1) . . . σ(kN )|
)
,

(27)

4This is true also when all the states that are unitarily equivalent
to ρ⊗N

i are separable [29, 30].
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Figure 2: A plot of τpas/τcpas for an ensemble of N mixed qubits.
The trend of the plot tells us that the collective passivization time
decreases with N , but the plot also has a noticeable fluctuating
appearance indicating a non-monotonic dependence on N ; if N
is even, the collective passivization time is smaller for N qubits
than for N + 1 qubits but larger than for N + 2 qubits.

where the sum is over all sequences k1, k2, . . . , kN for
which pk1pk2 · · · pkN and pσ(k1)pσ(k2)· · · pσ(kN ) are differ-
ent, satisfies (22) and transforms ρ⊗Ni into ρ⊗Np in the
time τcqsl.

Next, we will calculate the fraction between the sin-
gle system passivization time and the collective N -fold
passivization time for systems prepared in maximally ac-
tive qubits or qutrits. The fraction can be considered as
a measure of the advantage of a collective passivization
[24]. For mixed qubits, the fraction depends explicitly
on the parity of N , and to simplify the notation we will
make use of the parity function

℘(k) = 1
2
(
1 + (−1)k

)
=
{

0 if k is odd,
1 if k is even.

(28)

Example 4. Suppose that ρi is a maximally active qubit
state. If ρi is pure, then δN = 2 and

τpas

τcpas
=
√
N2N−1. (29)

If ρi mixed, then δN = 2N − ℘(N)
(
N
N/2
)
and

τpas

τcpas
=
√

N2N

2N − ℘(N)
(
N
N/2
) . (30)

The formula for δN follows immediately from the obser-
vation that pk1pN−k2 = pk2p

N−k
1 if, and only if, 2k = N .

It is apparent that allowing correlations between the
qubits during the evolution reduces the passivization
time. In Figure 2, we have plotted τpas/τcpas against N
for a mixed ρi. The trend says that the more qubits are
involved, the smaller the collective passivization time.

Figure 3: A plot of τpas/τcpas for an ensemble of N full rank
qutrits. Unlike the case for mixed qubits, the collective passiviza-
tion time decreases monotonically with N .

However, as the plot also indicates, the decrease in col-
lective passivization time is not monotonic in N . Adding
a qubit to an ensemble with an even number of qubits in-
creases the passivization time while adding a qubit to an
ensemble with an odd number of qubits reduces the pas-
sivization time. Another interesting observation is that
the asymptotic behavior of τpas/τcpas is very different for
a pure and a mixed ρi.
Example 5. Suppose that ρi is a maximally active qutrit
state. If p1 = 0, then δN = 2(2N − 1) and

τpas

τcpas
=

√
N3N−1

2N − 1 . (31)

If ρi has full rank, then δN = 3N −
∑bN/2c
k=0

(
N
k,k

)
and

τpas

τcpas
=

√√√√ 2N3N−1

3N −
∑bN/2c
k=0

(
N
k,k

) . (32)

The upper limit bN/2c is the greatest integer less than
or equal to N/2, and

(
N
k,k

)
is the trinomial coefficient

N !/k!k!(N − 2k)!. Figure 3 shows a plot of τpas/τcpas
against N for a full rank ρi. In this case, the collective
passivization time is monotonic in N .

For non-maximally active qutrit states, δN will de-
pend on the spectrum. This is also the case for higher
dimensional systems, even for maximally active initial
states. We finish this section with two examples concern-
ing the passivity of ρ⊗Np . To distinguish the multipartite
system’s passivization time from that of the single-part
system we call the former the global passivization time.

Example 6. If ρi is a maximally active qubit, then ρ⊗Ni
is maximally active and ρ⊗Np is passive for both N · A
and A⊗N . Furthermore, the collective passivization time
is equal to the global passivization time.
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Example 7. Suppose that ρi is a maximally active qutrit
state whose spectrum is such that

p2
1 < p1p2 < p2

2 < p1p3 < p2p3 < p2
3. (33)

Furthermore, suppose that the spectrum of A is such that

2a1 < a1 + a2 < 2a2 < a1 + a3 < a2 + a3 < 2a3, (34)
a2

1 < a1a2 < a2
2 < a1a3 < a2a3 < a2

3. (35)

Then ρ⊗2
i is a maximally active state for both 2 ·A and

A⊗2. However, ρ⊗2
p is not a passive state for either 2 ·A

or A⊗2. The discrepancy of ρ⊗2
i is 8 and, hence, the

global passivization time is π/ω
√

3. Also, δ2 = 6 and
τcqsl = π/2ω. The collective passivization time is thus
smaller than the global passivization time.

4 The non-degenerated case
Suppose that A and ρi have non-degenerate eigenvalue
spectra. Let ρp be the unique passive state and let σ be
the unique permutation such that ρp =

∑
k pσ(k)|k〉〈k|.

In this case, the lengths of the cycles of σ determine the
passivization time.

Proposition 10. Suppose that σ decomposes into m
cycles of lengths l1, l2, . . . , lm. Then

τpas = π√
3ω

√√√√n−
m∑
j=1

1
lj
. (36)

The proposition covers, for example, the case when
the observable A is non-degenerate, the initial state is
prepared by measuring A, and the outcomes of the mea-
surement are obtained with different frequencies.
Example 8. Proposition 10 suggests that there are sys-
tems for which the passivization time is greater than
τqsl. Consider, for example, a qutrit system for which
a1 < a2 < a3 and p2 < p1 < p3 hold. The passive state
is ρp = p3|1〉〈1|+p1|2〉〈2|+p2|3〉〈3|, and the permutation
that transforms ρi to ρp is the 3-cycle (1, 3, 2). According
to Proposition 10, τpas = π

√
8/3ω, but τqsl = π

√
3/2ω.

Thus τpas > τqsl. A time-optimal Hamiltonian that trans-
forms ρi to ρp is

H = iω√
6
(
(|2〉 − |3〉)〈1|+ (|3〉 − |1〉)〈2|+ (|1〉 − |2〉)〈3|

)
.

(37)

Proof of Proposition 10. Let c1, c2, . . . , cm be the cycles
of σ and let Hj be the linear span of those vectors in
the computational basis whose labels are permuted by
cj . The Hjs are mutually orthogonal and span H. Also,
the Hjs are invariant for Pσ and the isotropy groups of
A and ρi. Let Pcj be the restriction of Pσ to Hj .

Every unitary U that commutes with A and every
unitary V that commutes with ρi decomposes as U =
⊕jUj and V = ⊕jVj , respectively, with Uj and Vj being
operators of Hj . Moreover,

‖Log(UPσV )‖2 =
m∑
j=1
‖Log(UjPcjVj)‖2. (38)

According to (7) and Proposition 5, we can determine
the passivization time by minimizing the terms on the
right-hand side of (38).

The non-degeneracy of A and ρi implies that Uj and Vj
are diagonal relative to the computational basis vectors
that span Hj . Write cj = (k1, k2, . . . , klj ) and let eiαr
be the eigenvalue of Uj , and eiβr be the eigenvalue of
Vj , associated with |kr〉. The minimal polynomial of
UjPcjVj is xlj − eiθj where θj =

∑
r(αr + βr) mod 2π.

Hence the eigenvalues of UjPcjVj are λr = ei(θj+2πr)/lj ,
where r runs from 0 to lj − 1. It follows that

min
Uj ,Vj

‖Log(UjPcjVj)‖2 = min
θj

1
l2j

lj−1∑
r=0

(θj + 2πr)2

= min
θj

1
lj

(
θ2
j + 2π(lj − 1)θj + 2π2

3 (2l2j − 3lj + 1)
)

=
π2(l2j − 1)

3lj
.

(39)

The minimum is attained for θj = π(1− lj), which also
meets the requirement that all the phases (θj + 2πr)/lj
belong to the principal branch. We conclude that

τpas = π

ω

√√√√ m∑
j=1

l2j − 1
3lj

= π√
3ω

√√√√n−
m∑
j=1

1
lj
. (40)

This proves Proposition 10.

The proof shows that U = ⊕jeiπ(1−lj)/ljPcj is among
the passivizing unitary operators closest to the identity.
A time-optimal Hamiltonian that implements U is

H = ω

√
3

n−
∑m
k=1

1
lk

m⊕
j=1

(
i

π
LogPcj+

℘(lj)
lj

1j

)
. (41)

The operator 1j is the identity operator on Hj and ℘ is
the parity function defined in (28).

5 On degenerated cases
In this section, we describe some general properties of
time-optimal transformations. We also discuss circum-
stances under which these properties are sufficient to
determine a degenerate system’s passivization time.
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5.1 Incompatibility and parallelism of time-
optimal Hamiltonians
In all the cases considered so far, the specified time-
optimal Hamiltonians are traceless, and the passivizing
unitaries lying closest to the identity are special uni-
tary, that is, have determinant equal to 1. As we will
see, these observations are consequences of time-optimal
Hamiltonians generating shortest curves between 1 and
the manifold of passivizing unitaries P(ρi).

We say that a Hamiltonian is completely incompatible
with A if ΠHΠ = 0 for all the eigenspace projectors
Π of A. Moreover, using terminology from the theory
of fiber bundles [31, 32, 33], we say that H is parallel
transporting if ΠHΠ = 0 for every eigenspace projector
Π of ρi. Both of these properties separately imply that
H is traceless and, hence, the time-evolution operator
associated with H is special unitary.

Proposition 11. Time-optimal Hamiltonians are par-
allel transporting and completely incompatible with A.

Proof. According to Proposition 3, time-optimal Hamil-
tonians generate shortest curves between 1 and P(ρi).
Such a shortest curve has to meet P(ρi) perpendicularly
[26]. Let H be a time-optimal Hamiltonian and let U be
the passivizing unitary generated in the time τpas. The
velocity vector at U of the time-evolution operator of H
is −iHU . Let B1 and B2 be any Hermitian operators
commuting with A and ρi, respectively. By Proposition
5, −iB1U and −iUB2 are tangent vectors of P(ρi) at U .
These vectors are perpendicular to −iHU and, hence,

tr(HB1) = g(−iHU,−iB1U) = 0, (42)
tr(HB2) = g(−iHU,−iUB2) = 0. (43)

Since B1 and B2 are arbitrary, the former identity implies
that H is completely incompatible with A, and the latter
implies that H is parallel transporting.

5.2 Upper bounds on the passivization time from
passivizing permutations
When A or ρi has a degenerate spectrum, the expression
on the right-hand side of (36) need not be equal to the
passivization time. However, the expression always is
an upper bound for the passivization time. To see this,
let σ = c1c2 · · · cm be a passivizing permutation. For
any sequence of real numbers θ1, θ2, . . . , θm, the operator
⊕jeiθjPcj is a passivizing unitary. Therefore, by (7),

τpas ≤
1
ω

√√√√ m∑
j=1
‖Log(eiθjPcj )‖2. (44)

Let lj be the length of cj . The eigenvalues of eiθjPcj are
the ljth roots of unity multiplied by eiθj . Consequently,

min
θj
‖Log(eiθjPcj )‖2 = min

θj

lj−1∑
k=0

(
θj + 2πk

lj

)2

=
π2(l2j − 1)

3lj
.

(45)

It follows that

τpas ≤
π√
3ω

√√√√n−
m∑
k=1

1
lk
. (46)

Example 9. Consider an 8-dimensional system for which
the spectra of A and ρi satisfy

a1 < a2 < a3 < a4 < a5 < a6 = a7 < a8, (47)
p3 > p1 = p2 > p5 > p4 > p8 > p6 > p7. (48)

In this case there are four passivizing permutations:

(1 2 3)(4 5)(6 7 8), (49)
(1 3)(2)(4 5)(6 7 8), (50)
(1 2 3)(4 5)(6)(7 8), (51)
(1 3)(2)(4 5)(6)(7 8). (52)

If we insert the lengths of the cycles of the first per-
mutation into the right-hand side of (46), we find that
τpas ≤ π

√
41/ω

√
18. And if we insert the lengths of the

second or the third permutation’s cycles, we find that
τpas ≤ π

√
17/3ω. Finally, if we insert the lengths of the

fourth permutation’s cycles, we find that τpas ≤ π
√

6/2ω.
The second and the third permutation can be obtained

from the first by a division of the first and the last cycle,
respectively. The division leads to a reduction of the
upper bound in (46). Similarly, the fourth permutation
can be obtained by dividing both the first and the last
cycle of the first permutation, which leads to an even
greater improvement of the upper bound. (In fact, the
upper bound π

√
6/2ω equals τqsl and, hence, τpas.) A

division of the first and last cycle of the first permutation
is possible because of the identities p1 = p2 and a6 = a7.

Example 9 shows that degeneracies in the spectrum of
A or ρi sometimes make it possible to divide a cycle of a
passivizing permutation into two cycles without chang-
ing the fact that the permutation is passivizing. Such a
division always leads to a lowering of the upper bound in
(46).5 To see this suppose that c = (k1 k2 . . . kl) is a cy-
cle of a passivizing permutation σ and suppose that for

5The authors do not know whether from an arbitrary passivizing
permutation one can always reach the passivization time by means
of cycle division.
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Figure 4: A cycle (k1 k2 . . . kl) of a passivizing permutation
can be divided into two shorter cycles (k1 . . . ki kj+1 . . . kl) and
(ki+1 . . . kj) if aki = akj or pki = pkj . The resulting permuta-
tion is also passivizing.

some i < j we have that aki = akj or pki = pkj . Then c
can be replaced by (k1 . . . ki kj+1 . . . kl)(ki+1 . . . kj), see
Figure 4, and σ be redefined accordingly. The resulting
permutation is also passivizing. If the lengths of the two
new cycles are l′j and l′′j , respectively, then

(l′j)2 − 1
l′j

+
(l′′j )2 − 1

l′′j
<
l2j − 1
lj

. (53)

The cycle division thus lowers the upper bound in (46).

5.3 Invariant subspaces of passivizing unitaries
If, as in Example 9, after repeated cycle division we
end up with a passivizing involution, then we know
from Proposition 7 that τpas = τqsl. But if in Ex-
ample 9 we replace the identity p1 = p2 in (48) with
p1 > p2, then there are only two passivizing permuta-
tions, namely those in (49) and (51), neither of which
are involutions. The inequality in (46) guarantees that
in this case, τpas is not greater than π

√
17/3ω. However,

none of the previous propositions certifies that the pas-
sivization time equals π

√
17/3ω. In this section and the

next we will develop a method that can be used to prove
that this actually is the case. The strategy is to break
down the problem of determining τpas into a number of
lower-dimensional problems which can be solved using
results from the theory of generalized flag manifolds.

Let σ be a passivizing permutation. Consider a decom-
position of σ into sub-permutations, σ = σ1σ2 · · ·σm,
where each sub-permutation σj is a cycle or a product
of cycles of σ. Define Hj as the linear span of the com-
putational basis vectors whose labels are permuted by
σj , and write Pσj for the restriction of Pσ to Hj .

Proposition 12. If each eigenspace of A and each
eigenspace of ρi is contained in an Hj, then the Hjs
are invariant for the passivizing unitaries. Furthermore,
the passivizing unitaries lying closest to 1 can be gener-
ated by time-optimal Hamiltonians that preserve the Hjs.

Proof. The permutation operator Pσ preserves the Hjs.
And so do the operators in the isotropy groups of A and
ρi. Proposition 5 then tells us that all the passivizing
unitaries preserve the Hjs.

Let U be any passivizing unitary operator at the min-
imum distance d from 1. Since the Hjs are mutually
orthogonal and span H, U decomposes as a direct sum
U = ⊕jUj with Uj acting on Hj . Define H as

H = − iω
d

LogU = − iω
d

m⊕
j=1

LogUj . (54)

The Hamiltonian H generates a shortest geodesic from
1 to U and, hence, from 1 to P(ρi). Furthermore, H
satisfies the bounded bandwidth condition:

tr
(
H2) = ω2

d2 ‖LogU‖2 = ω2. (55)

Thus, H is a time-optimal Hamiltonian. By construction,
H preserves the spaces Hj .

In the remainder of this section, we assume that the
isotropy groups of A and ρi preserve the spaces Hj.

We define U(Hj)A as the group of unitary operators
on Hj that preserve those eigenspaces of A which are
contained in Hj . Similarly, we define U(Hj)ρi as the
group of unitary operators on Hj that preserve those
eigenspaces of ρi which are contained in Hj . Then

dist(1,P(ρi)) =

√√√√ m∑
j=1

min
Uj ,Vj

‖Log(UjPσjVj)‖2, (56)

where the minima are taken over all the Ujs and Vjs
in U(Hj)A and U(Hj)ρi , respectively. The summands
on the right-hand side of (56) are generally difficult to
calculate. But the problem simplifies somewhat if one
of the isotropy groups contains the other. Because then
we only need to minimize over the larger of the two: If
U(Hj)A contains U(Hj)ρi , then

min
Uj ,Vj

‖Log(UjPσjVj)‖ = min
Uj
‖Log(PσjUj)‖, (57)

and if U(Hj)ρi contains U(Hj)A, then

min
Uj ,Vj

‖Log(UjPσjVj)‖ = min
Vj
‖Log(PσjVj)‖. (58)

The right-hand sides of (57) and (58) are geodesic dis-
tances in certain homogeneous spaces called generalized
flag manifolds. Well-known examples of such are pro-
jective Hilbert spaces and Grassmann manifolds. In the
next section, we describe how to calculate the distances
on the right of (57) under certain circumstances. No-
tice that the isotropy group of ρi is contained in that of
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A if each eigenspace of ρi is included in an eigenspace
of A. This is the case, for example, if ρi has a non-
degenerate spectrum. The case when U(Hj)A is a sub-
group of U(Hj)ρi can be treated similarly. Appendix G
contains a brief review of generalized flag manifolds.

5.4 Geodesic distance in generalized flag mani-
folds
Let 1j be the identity operator on Hj . Regard U(Hj)
as a manifold on which U(Hj)A acts from the right
by operator pre-composition. If we equip U(Hj) with
the bi-invariant Riemannian metric that agrees with the
Hilbert-Schmidt inner product on the Lie algebra of
U(Hj), then the right-hand side of (57) is the geodesic
distance between the cosets of 1j and Pσj in the geome-
try determined by the projected metric on the quotient
manifold U(Hj)/U(Hj)A:

dist
(
[1j ], [Pσj ]

)
= min
Uj∈U(Hj)A

‖Log(PσjUj)‖. (59)

The quotient manifold U(Hj)/U(Hj)A is an example of
a generalized flag manifold; see Appendix G. Next, we
show how to calculate (59) under special circumstances.

5.4.1 The Grassmann and Fubini-Study distances

That the isotropy group of A preserves Hj is equivalent
to Hj being a direct sum of eigenspaces of A. If Hj is
a sum of two eigenspaces of A, then U(Hj)/U(Hj)A is
a Grassmann manifold, and (59) is the Grassmann dis-
tance between [1j ] and [Pσj ]; see [34] and Appendix G.

Suppose thatHj = Ak⊕Ak′ . Let nk be the dimension
of Ak and let Πk be the orthogonal projection of Hj
onto Ak. Furthermore, let s1, s2, . . . , snk be the singular
values of Π†kPσjΠk. Then, by (118) in Appendix G,

dist
(
[1j ], [Pσj ]

)
=

√√√√2
nk∑
i=1

(
arccos

√
si
)2
. (60)

Since Pσj is a permutation operator, each singular value
is either 0 or 1. The number of 0s equals the number of
computational basis vectors in Ak that Pσj maps into
Ak′ . Let δj be twice this number. Formula (60) yields

dist
(
[1j ], [Pσj ]

)
=
π
√
δj

2 . (61)

If one of A’s eigenspaces is 1-dimensional, the Grass-
mann manifold U(Hj)/U(Hj)A is a projective Hilbert
space. In this case, the Grassmann distance function
in (60) goes by the name “the Fubini-Study distance.”
If |k〉 is the computational basis vector that spans the
1-dimensional eigenspace of A, then

dist
(
[1j ], [Pσj ]

)
=
√

2 arccos 〈k|σ(k)〉. (62)

Since 〈k|σ(k)〉 = 0 or 〈k|σ(k)〉 = 1, depending on
whether σ leaves k invariant or not,

dist
(
[1j ], [Pσj ]

)
=
{

0 if σ(k) = k,
π√
2 if σ(k) 6= k.

(63)

Remark 3. The reader might wonder if the assumption
that the isotropy group of A contains the isotropy group
of ρi is essential for the validity of (61). After all, in
Example 1, we determined the passivization time for a
system with a bivalent A without making assumptions
about the structure of U(H)ρi , and the resemblance
between (61) and the quantum speed limit (12) is striking.
The problem is that if U(Hj)A does not contain U(Hj)ρi ,
then (61) does not produce a reliable contribution to the
distance in (56), in the sense that the right-hand side
of (56) is independent of the passivizing permutation.
Consider, for example, a qubit system prepared in the
maximally mixed state and with a non-degenerated A.
The permutations σ = (1, 2) and σ′ = (1)(2) are both
passivizing. However, the distance from [1] to [Pσ] in
U(H)/U(H)A equals π/

√
2, while the distance from [1]

to [Pσ′ ] is 0. Since ρi is passive, it is the latter distance
which equals dist(1,P(ρi)).

5.4.2 The flag distance

If all the eigenspaces of A in Hj are 1-dimensional, then
U(Hj)/U(Hj)A is a flag manifold [27]. In this case

dist
(
[1j ], [Pσj ]

)
=

√√√√π2

3

m∑
j=1

l2j − 1
lj

, (64)

with l1, l2, . . . , lm being the lengths of the cycles of σj .
The proof is the same as that of Proposition 10.

5.4.3 The generalized flag distance

If Hj is a sum of more than two eigenspaces of A
and not all of these eigenspaces are 1-dimensional, then
U(Hj)/U(Hj)A is a generalized flag manifold [27]. This
manifold can be equipped with a metric such that for
any pair of unitary operators U and V on Hj ,

dist
(
[U ], [V ]

)
= min
Uj∈U(Hj)A

‖Log(U†V Uj)‖ (65)

is the geodesic distance between the cosets of U and V ;
see Appendix G. As far as the authors know, there is no
closed formula for the geodesic distance (65). However,
an algorithm for numerically calculating (65) is proposed
in the recent paper [35].
Example 10. Consider the 8-dimensional system in Ex-
ample 9 but replace (48) with the assumption

p3 > p1 > p2 > p5 > p4 > p8 > p6 > p7. (66)
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Then there are only two passivizing permutations:

(1 2 3)(4 5)(6 7 8), (67)
(1 2 3)(4 5)(6)(7 8). (68)

Let σ be the permutation in Equation (68) and divide σ
into three sub-permutations: σ1 = (1, 2, 3), σ2 = (4, 5),
and σ3 = (6)(7, 8). The corresponding subspaces of H
are the linear spans6

H1 = sp{|1〉, |2〉, |3〉}, (69)
H2 = sp{|4〉, |5〉}, (70)
H3 = sp{|6〉, |7〉, |8〉}. (71)

The isotropy group of A contains the isotropy group of
ρi, and the the spaces in (69)− (71) are direct sums of
eigenspaces of A:

H1 = sp{|1〉} ⊕ sp{|2〉} ⊕ sp{|3〉}, (72)
H2 = sp{|4〉} ⊕ sp{|5〉}, (73)
H3 = sp{|6〉, |7〉} ⊕ sp{|8〉}. (74)

Thus, we are in a situation to which Proposition 12
applies. According to (64) and (63), dist([11], [Pσ1 ]) =
π
√

8/3 and dist([12], [Pσ2 ]) = dist([13], [Pσ3 ]) = π/
√

2.
By Equations (56) and (57),

dist(1,P(ρi)) =
√

8π2

9 + π2

2 + π2

2 = π
√

17
3 . (75)

This confirms the claim regarding the passivization time
in the first paragraph of Section 5.3.
Example 11. Consider a 14-dimensional system for which
the spectrum of A is such that

a1 <a2 = · · ·= a5 <a6 = a7 < · · ·<a12 = · · ·= a14. (76)

Suppose that the isotropy group of A contains the
isotropy group of ρi, and suppose that σ = σ1σ2σ3, with

σ1 = (6 7 10), (77)
σ2 = (2 12 3 14)(4 13)(5), (78)
σ3 = (1 8 9 11), (79)

is a passivizing permutation. The spaces

H1 = sp{|6〉, |7〉, |10〉}, (80)
H2 = sp{|2〉, |3〉, |4〉, |5〉, |12〉, |13〉, |14〉}, (81)
H3 = sp{|1〉, |8〉, |9〉, |11〉}, (82)

are invariant for all the passivizing unitaries, and they
can be decomposed into eigenspaces of A as follows

H1 = sp{|6〉, |7〉} ⊕ sp{|10〉}, (83)
H2 = sp{|2〉, |3〉, |4〉, |5〉} ⊕ sp{|12〉, |13〉, |14〉}, (84)
H2 = sp{|1〉} ⊕ sp{|8〉} ⊕ sp{|9〉} ⊕ sp{|11〉}. (85)

6The linear span, or “sp”, of a set of vectors is the space
consisting of all the linear combinations of the vectors in the set.

The decompositions tell us that U(H1)/U(H1)A is a
projective Hilbert space, that U(H2)/U(H2)A is a Grass-
mann manifold, and that U(H3)/U(H3)A is a flag mani-
fold. By (63), (61), and (64),

dist
(
[11], [Pσ1 ]

)
= π√

2
, (86)

dist
(
[12], [Pσ2 ]

)
= π
√

3√
2
, (87)

dist
(
[13], [Pσ3 ]

)
= π
√

5
2 . (88)

Hence, by (56),

dist
(
1,P(ρi)

)
=
√
π2

2 + 3π2

2 + 5π2

4 = π
√

13
2 . (89)

Above, we have treated the case when each eigenspace
of ρi in Hj is a subspace of an eigenspace of A. As
mentioned at the end of Section 5.3, the case when each
eigenspace of A in Hj is contained in an eigenspace of
ρi can be treated in the same way. Also, the hybrid case
when each eigenspace of ρi is a subspace of an eigenspace
of A or is a sum of eigenspaces of A can be handled
similarly. Then the generalized flag manifold is given by
the quotient of U(Hj) and the group generated by the
union of U(Hj)A and U(Hj)ρi .

6 On the power of energy extraction
from quantum batteries
In this final section, we use results from previous sections
to derive bounds on the power with which energy can be
reversibly extracted from a quantum battery. We follow
[21, 22, 23, 24] and define a quantum battery as a closed
n-dimensional quantum system that can release energy
through a controllable process, causing the battery state
to change according to a von Neumann equation of the
form ρ̇(t) = −i[H + V (t), ρ(t)]. Here, H is the battery’s
internal Hamiltonian, and V (t) is a time-dependent po-
tential. We limit our considerations to cyclic processes
and, thus, assume that the potential vanishes outside
a finite time interval [0, τ ], the final time τ being the
duration of the process. Also, to connect with previous
sections, we assume that the initial state of the battery
is incoherent relative to H and that the available re-
sources are limited in such a way that the bandwidth of
the potential cannot exceed a given value:

tr
(
V (t)2) ≤ ω2. (90)

The internal Hamiltonian H here plays the role of the
observable A, and minimality of EH characterizes the
passivity of states. We prefer to denote the eigenvalues
of H by εk rather than ak, but apart from that we follow
the standard set in Section 2.3.
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6.1 Ergotropy and the power of complete dis-
charge processes
The maximal amount of (average) energy that can be
cyclically extracted from a battery state ρi is called the
ergotropy of the battery [21]. The ergotropy equals the
difference in energy of ρi and that of a passive state:

W (ρi) = EH(ρi)− EH(ρp). (91)

Since all the passive states have the same energy content,
the ergotropy only depends on the initial state and the
internal Hamiltonian. In terms of the internal energies
and the eigenvalues of ρi, the ergotropy reads

W (ρi) =
n∑
k=1

εk
(
pk − pσ(k)

)
. (92)

Here σ is any passivizing permutation.
No energy can be extracted through a cyclic unitary

process from a battery in a passive state [21]. There-
fore we call an energy extraction process that leaves the
battery in a passive state a complete discharging of the
battery. The (average) power of a complete discharging
of duration τ isW (ρi)/τ . We define τpas as the passiviza-
tion time of the battery determined by the bandwidth
condition (1) with the same right-hand side as in (90).
Note that this definition of the passivization time does
not take any characteristics of the internal Hamiltonian
H into account, even though H affects the battery’s dy-
namics. If the bandwidth of the internal Hamiltonian
greatly exceeds ω2, then no Hamiltonian of the form
H + V (t) is even close to being time-optimal. Neverthe-
less, according to the next proposition, the duration of
a complete discharging is at least τpas. Thus, the power
of such a process is bounded from above by W (ρi)/τpas.

Proposition 13. The duration of a complete discharge
process is greater than the passivization time.

Proof. Let V (t) be a potential that satisfies (90) and
completely discharges the battery in the time τ . We
regard the potential as a perturbation and go over to the
interaction picture. In the interaction picture, the state of
the battery evolves according to ρ̇I(t) = −i[VI(t), ρI(t)]
with VI(t) = eitHV (t)e−itH . The bandwidth of VI(t) is
upper bounded by ω2 since tr(VI(t)2) = tr(V (t)2), and
the final state is passive since the passive states commute
with H. From this follows that τ ≥ τpas.

The next two examples are direct consequences of
Proposition 13, Example 2, and Proposition 10.

Example 12. Consider a fully charged battery. That is,
consider a battery in a maximally active state ρi. Let

P be the power of a complete discharge process with a
potential whose bandwidth is bounded by ω2. Then

P ≤ ω

π

√
2
m

n∑
k=1

εk
(
pk − pn−k+1

)
, (93)

where m is the greatest integer for which pm < pn−m+1
and εm < εn−m+1 hold.

Example 13. Suppose that the internal Hamiltonian and
the initial state of a battery are non-degenerate. Let P
be the power of a complete discharging of the battery
with a potential whose bandwidth is bounded by ω2.
Then

P ≤ ω

π

√
3

n−
∑m
k=1

1
lk

W (ρi). (94)

Here l1, l2, . . . , lm are the lengths of the cycles of the
unique permutation σ that passivizes the initial state.

Since we require that the discharge processes are
cyclic, their duration can never be as small as the pas-
sivization time. However, there are discharge processes
whose duration comes arbitrarily close to the passiviza-
tion time.

Proposition 14. The passivization time is a tight bound
on the duration of complete discharge processes.

Proof. Let ε > 0 be arbitrary and let u(t) be a smooth
function which equals 0 for t ≤ 0 and τpas for t ≥ τpas + ε
and whose derivative u′(t) takes values between 0 and 1
for all t. Let VI be a time-optimal Hamiltonian and define
a potential as V (t) = u′(t)e−itHVIeitH . The potential
vanishes outside [0, τpas + ε] and satisfies the bounded
bandwidth condition (90): tr(V (t)2) = u′(t)2ω2 ≤ ω2.
Furthermore, the solution ρ(t) to the von Neumann equa-
tion with Hamiltonian H + V (t) that extends from ρi
is passive at t = τpas + ε. Explicitly, ρ(τpas + ε) =
e−iτpasVIρie

iτpasVI , which is passive by assumption.

6.2 Assisted discharging
In an assisted discharging, a catalyst is used in the dis-
charge process. The catalyst is ultimately unchanged
but may interact and become correlated with the bat-
tery during the discharge process. According to Propo-
sition 9, the power P with which a fully charged battery
can be discharged with the help of an nc-dimensional
catalyst is bounded from above as

P ≤ 2ω
π

√
nc
δ
W (ρi). (95)

Here δ is the discrepancy of the fully charged battery.
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6.3 Collective discharging.
We define a battery ensemble to be a system built up
of several identical batteries. In a collective complete
discharge process, the states of all the batteries are col-
lectively transformed into uncorrelated passive states.

Let P] be the supremum of all powers of collec-
tive complete discharge processes directed by global po-
tentials whose bandwidth is bounded from above by
ω2NnN−1, and let P‖ be the supremum of all pow-
ers of parallel complete discharge processes directed by
local potentials fulfilling (90). The fraction P]/P‖ is
a measure of the advantage of using a collective com-
plete discharge process over a parallel complete dis-
charge process; see [24]. According to Proposition 13
and (25), P] ≤ W (ρ⊗Ni )/τcqsl, and by Proposition 14,
P‖ = W (ρ⊗Ni )/τpas. The advantage is thus upper
bounded by the fraction of the single battery passiviza-
tion time and the collective quantum speed limit:

P]
P‖
≤ τpas

τcqsl
= 2ωτpas

π

√
NnN−1

δN
. (96)

Example 14. If the batteries of the ensemble are pre-
pared in mixed and maximally active qubit states, then,
by Example 4, the power P with which energy can be
extracted in a complete discharge process governed by a
potential satisfying (22) is bounded as

P ≤
√

2ω(ε2 − ε1)(p2 − p1)
π

√
2N − ℘(N)

(
N
N/2
)

N2N . (97)

Furthermore, the advantage of a collective discharging is

P]
P‖

=
√

N2N

2N − ℘(N)
(
N
N/2
) . (98)

If the batteries are identically prepared maximally active
full rank qutrits, then, by Example 5, the power with
which energy can be extracted in a complete discharge
process is upper bounded according to

P ≤ 2ω(ε3 − ε1)(p3 − p1)
π
√

3

√√√√ N3N

3N −
∑bN/2c
k=0

(
N
k,k

) . (99)

In this case, the advantage of a collective discharging is

P]
P‖

=

√√√√ 2N3N−1

3N −
∑bN/2c
k=0

(
N
k,k

) . (100)

We saw in Example 7 that the product of two passive
qutrit states need not be globally passive. In the next
example, we compare the power of an optimal collec-
tive passivization process with the power of an optimal
global passivization process for such a qutrit battery.

Example 15. Suppose that H is non-degenerate with
energies satisfying

2ε1 < ε1 + ε2 < 2ε2 < ε1 + ε3 < ε2 + ε3 < 2ε3, (101)

and suppose that ρi is a maximally active qutrit state
with a spectrum that satisfies

p2
1 < p1p2 < p2

2 < p1p3 < p2p3 < p2
3. (102)

Each battery has a unique passive state ρp. The product
ρ⊗2
p , however, is not a passive state; see Example 7. The

energy one extracts from ρ⊗2
i in a collective passivization

process is less than the energy one extracts in a global
passivization process. To be precise, the difference in
energy content of ρ⊗2

p and that of a globally passive state
is (ε1 + ε3 − 2ε2)(p1p3 − p2

2). There are collective pas-
sivization processes with a duration arbitrarily close to
π/2ω and global passivization processes with a duration
arbitrarily close to (but not less than) π/ω

√
3. Thus, the

difference in ‘optimal power’ of a collective passivization
process and a global passivization process is

2ω
π

(2−
√

3)(ε3 − ε1)(p3 − p1)

− ω
√

3
π

(ε1 + ε3 − 2ε2)(p1p3 − p2
2).

(103)

Due to (101) and (102), the expression in (103) is positive.
Hence, an optimal collective passivization process is more
‘powerful’ than a global passivization process.

6.4 Energy and power fluctuations of discharge
processes
We finish this paper with some observations concerning
energy fluctuations of discharge processes. We consider
a battery prepared in a state of definite energy through
a stochastic preparation procedure. Such a statistical
state can be modeled by a density operator that is inco-
herent relative to the internal Hamiltonian. The average
energy extracted from such a battery in a complete dis-
charge process, which leaves the battery in a passive
statistical state, is equal to the ergotropy.

To derive an expression for the variation in transferred
energy in a complete discharge process, let ρi be the
prepared statistical state, let H be the internal Hamil-
tonian, and let E1, E2, . . . , Er be the different, possibly
degenerate, eigenvalues of H. Also, let Πk be the or-
thogonal projection onto the eigenspace corresponding
to Ek. The variation in transferred energy is

∆2W (ρi) =
r∑

k,l=1
(Ek − El)2p(l, k)−W (ρi)2, (104)

where p(l, k) is the probability that a battery starts in a
state with energy Ek and ends up in a state with energy
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El in a complete discharge process. If U is the unitary
implemented by the discharge process, then

p(l, k) = tr(ΠlUΠkρiΠkU
†). (105)

If we insert this expression into (104) and simplify, we
obtain the following expression for the variation

∆2W (ρi) = ∆2H(ρi) + ∆2H(ρp)
+ 2EH(ρi)EH(ρp)− 2 tr

(
U†HUHρi

)
.

(106)

Here ∆2H(ρ) = EH2(ρ) − E2
H(ρ), and ρp = UρiU

†

is the final statistical state of the battery. Since U
does not commute with H, unless ρi is passive, the last
term is process-dependent (while the other terms are
not). Thus, the variation in the amount of energy ex-
tracted from a battery may differ for different complete
discharge processes. We nuance this statement with a
proposition and an example:

Proposition 15. If the unitaries in the isotropy group
of the initial state commute with H, then all complete
discharge processes have the same variation in the trans-
ferred energy.

Proof. Let P be any passivizing unitary and let σ be
any passivizing permutation. By Proposition (5), P can
be decomposed as P = UPσV , where U commutes with
H and V commutes with ρi. By assumption, V also
commutes with H. A straightforward calculation yields

tr
(
P †HPHρi

)
= tr

(
P †σHPσHρi

)
. (107)

This shows that the value of the final term in (106)
is independent of P and, hence, that the variation in
transferred energy is process-independent.

According to Proposition 15, all complete discharge
processes of a battery in a non-degenerate statistical
state have the same variation in the energy transfer. The
following example shows that this need not be the case
if the state has a degenerate spectrum.
Example 16. Consider a qutrit battery whose internal
Hamiltonian is non-degenerate with spectrum ε1 = 0 <
ε2 < ε3, and whose initial statistical state is degenerate
with spectrum p1 = p2 < p3. Relative to the computa-
tional basis, a general passivizing unitary has the matrix

U =

 0 0 eiα√
aeiβ

√
1− aei(β+θ) 0√

1− aeiγ −
√
aei(γ+θ) 0

 , (108)

where α, β, γ, and θ are arbitrary and 0 ≤ a ≤ 1.
The variation in transferred energy is independent of
the phases:

∆2W (ρi) = p1ε
2
3(9p1 + 5)− 2p1a(ε3 − ε2). (109)

Also, ∆2W (ρi) is maximal for a = 0 and minimal for
a = 1. We find time-optimal processes among those that
implement a U for which a = 0. But none of the processes
that implement a U for which a = 1 is time-optimal.

Example 16 shows that there may be a trade-off be-
tween being time-optimal and having small fluctuations
in transferred energy for complete discharge processes.
Further investigation is required.

7 Summary and outlook
In this paper, we have considered, and to some extent
answered, the following question: Suppose that a finite-
dimensional quantum system is prepared in a state that
is incoherent relative to an observable. In how short a
time can the state be transformed into a passive state for
the observable provided that the Hamiltonian responsi-
ble for the transformation has bounded bandwidth?

We began by deriving a general QSL for the transfor-
mation time, which we also expanded to a lower time-
bound for collective passivization processes. We then
showed that for some systems, such as systems prepared
in maximally active states, the QSL is equal to the pas-
sivization time, that is, the least possible time in which
the system can be transformed into a passive state un-
der the specified conditions. But we also showed that
for some systems, the QSL is not tight. We calculated
the passivization time explicitly for systems such that
the observable and the initial state are non-degenerate.
Then we developed a method to determine the passiviza-
tion time for degenerate systems. The method presup-
poses that the eigenspaces of the observable and the
state are in a particular relative constellation, which
means that the method does not apply to all conceiv-
able systems that match the description above - other
approaches are required.

The problem discussed in this paper is an example
of a brachistochrone problem [8, 9, 10, 12, 15, 17]. For
constrained closed quantum systems, such problems are
typically reformulated as one or more time-local rela-
tions for the Hamiltonian using the calculus of varia-
tions [8, 9, 15, 17]. However, such relations are generally
of little help in determining the shortest possible trans-
formation time. For example, in the case dealt with
here, calculus of variations would generate the results in
Propositions 4 and 11. From there, there is still a long
way to go.

In the last section, we applied the results from previ-
ous sections to quantum batteries. Specifically, we de-
rived upper bounds on the power with which energy can
be extracted from a quantum battery through a cyclic
unitary process. Here we only considered complete dis-
charge processes, that is, processes that leave the bat-
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tery in a passive state relative to the battery’s internal
Hamiltonian. From such a state, no more energy can be
extracted through a cyclic unitary process.

Recently, the interest in quantum batteries has grown
considerably, not least because of their predicted prac-
tical significance [36]. Here we have assumed that the
battery is initially in an incoherent state relative to the
internal Hamiltonian. The next step is to extend the re-
sults to quantum batteries in coherent states. The recent
paper [37] is possibly the first step in such a direction.
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A Proof of Proposition 1
Let ρ be a passive or a maximally active state. Since the passive and the maximally active states are extremal for
EA, the differential of EA vanishes at ρ. Any tangent vector of S(ρi) at ρ can be represented as −i[B, ρ], where B
is some Hermitian operator. Conversely, any such B represents a tangent vector of S(ρi) at ρ. We have that

tr
(
B(−i[ρ,A])

)
= tr

(
A(−i[B, ρ])

)
= dEA

(
− i[B, ρ]

)
= 0. (110)

Since this holds for every Hermitian B, [ρ,A] = 0.

B Proof of Proposition 2
Suppose that H(t) is a time-optimal Hamiltonian. Let f(t) be a continuous and everywhere positive function such
that tr(H(t)2) ≤ f(t) ≤ ω2. For 0 ≤ t ≤ τpas, define

τ(t) = 1
ω

∫ t

0
ds
√
f(s). (111)

Since f is continuous and positive, τ(t) is differentiable and monotonically increasing. Thus τ(t) is invertible and
has a differentiable inverse t(τ). The domain of t(τ) is the interval [0, τ(τpas)]. At any τ in this interval,

dt
dτ (τ) = ω√

f(t(τ))
. (112)

Define %(τ) = ρ(t(τ)) and set K(τ) = dt
dτ (τ)H(t(τ)). The curve of states %(τ) emanates from ρi, arrives at ρ(τpas)

at the time τ(τpas), and is generated by K(τ):
d%
dτ (τ) = −i[H(t(τ)), ρ(t(τ))] dt

dτ (τ) = −i[K(τ), %(τ)]. (113)

K(τ) satisfies the bounded bandwidth condition:

tr
(
K(τ)2) = ω2

f(t(τ)) tr
(
H(t(τ))2) ≤ ω2. (114)

1 If tr(H(t)2) < ω2 for some t, we can choose f to be strictly less than ω2 in a neighborhood of that t. But then

τ(τpas) = 1
ω

∫ τpas

0
ds
√
f(s) < τpas. (115)

This contradicts the assumption that τpas lower bounds the transformation time. Hence tr(H(t)2) = ω2 for all t.

C Proof of Proposition 3
According to Proposition 2, we need to show that no smooth curve U(t) that extends from 1 to P(ρi) has a length
shorter than ωτpas. Reparameterize U(t) to have constant speed ω and let τ be the time when U(t) arrives at P(ρi).
The Hamiltonian H(t) = −iU̇(t)U(t)† generates U(t) and satisfies the condition (1). But then, by the definition of
the passivization time, τ ≥ τpas. The length of U(t), which is ωτ , is therefore not less than ωτpas.

D The principal logarithm
The principal logarithm assigns a skew-Hermitian operator to each unitary operator on H. It is defined as follows.
Let U be a unitary operator on H and let eiθ1 , eiθ2 , . . . , eiθn be the eigenvalues of U with corresponding eigenvectors
|ψ1〉, |ψ2〉, . . . , |ψn〉. Choose the phases θj in the principal branch (−π, π]. Then

LogU =
n∑
k=1

iθk|ψk〉〈ψk|. (116)

The principal logarithm satisfies eLogU = U . But for a skew-Hermitian operator S, Log(eS) = S if, and only if, the
imaginary parts of the eigenvalues of S belong to the principal branch.
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E Derivation of Equation 5
Since the metric is bi-invariant, so is the geodesic distance. Therefore, it suffices to show that dist(1, U) = ‖LogU‖
or, which is equivalent, that e−itLogU is a shortest geodesic from 1 to U . Let eiθ1 , eiθ2 , . . . , eiθn be the eigenvalues of
U and select the phases of these in the principal branch (−π, π]. Also, let e−itH be any geodesic from 1 to U such
that U = e−iH . Write ε1, ε2, . . . , εn for the eigenvalues of H. Possibly after a re-indexing, e−iεj = eiθj and, hence,
εj = −θj mod 2π. This implies that θ2

j ≤ ε2j . The length of e−itH equals ‖H‖, and the length of e−itLogU equals
‖LogU‖. The inequality

‖LogU‖2 =
n∑
j=1

θ2
j ≤

n∑
j=1

ε2j = ‖H‖2 (117)

shows that e−itLogU is not longer than e−itH .

F Proof of Proposition 5
That UPV belongs to P(ρi) for each U in U(H)A and each V in U(H)ρi follows from U(H)A leaving the set of
passive states invariant. Conversely, that every passivizing unitary has the form UPV for some U in U(H)A and
V in U(H)ρi follows from U(H)A acting transitively on the set of passive states. Indeed, if W is any passivizing
unitary, then WρiW

† = UPρiP
†U† for some U in U(H)A due to the transitivity of the action of U(H)A. But then

P †U†Wρi = ρiP
†U†W which shows that W = UPV for some V in U(H)ρi .

That P(ρi) is a submanifold of U(H) follows from P(ρi) being the orbit of P under the action (U, V ) ·W = UWV †

of U(H)A × U(H)ρi on U(H): Since the product of the isotropy groups is compact, the action is proper and, hence,
the orbits are submanifolds of U(H).

G Flag manifolds
Let U(n) be the group of unitary n × n matrices and let n1, n2, . . . , nl be any sequence of positive integers that
add up to n. Write U(n1, n2, . . . , nl) for the subgroup of U(n) consisting of the block-diagonal matrices whose
blocks have dimensions n1 × n1, n2 × n2, . . . , nl × nl. Let U(n1, n2, . . . , nl) act from the right on U(n) by matrix
multiplication. The quotient manifold U(n)/U(n1, n2, . . . , nl) is called a generalized flag manifold [27]. Grassmann
manifolds U(n)/U(n1, n2) and the projective Hilbert space U(n)/U(1, n− 1) are special cases. A flag manifold is a
generalized flag manifold for which all the njs equal 1.

We write [U ] for the coset of a unitary matrix U . The coset is the element of the generalized flag manifold which
is represented by U . The quotient projection p(U) = [U ] is a principal fiber bundle with fiber U(n1, n2, . . . , nl); see
[31]. We equip U(n) with the bi-invariant metric g that at the Lie algebra is given by g(X,Y ) = − tr(XY ), and
we equip U(n) with the connection form whose kernel at a U is the orthogonal complement of the tangent space of
the fiber p−1([U ]) at U . Then there is a unique metric on U(n)/U(n1, n2, . . . , nl) which turns p into a Riemannian
submersion [38].

The geodesic distance between [U ] and [V ] equals the length of the shortest curve in U(n) connecting the fibers
p−1([U ]) and p−1([V ]). For Grassmann manifolds, there is a formula for the geodesic distance: Let s1, s2, . . . , sn be
the singular values of U†V . Then

dist
(
[U ], [V ]

)
=

√√√√2
n∑
i=1

(
arccos

√
si
)2
, (118)

see [34]. For generalized flag manifolds beyond Grassmann manifolds, no formula for the geodesic distance is known.
However, an algorithm for numerically calculating the geodesic distance has been proposed recently [35].
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