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We describe the contextual subspace
variational quantum eigensolver (CS-
VQE), a hybrid quantum-classical algo-
rithm for approximating the ground state
energy of a Hamiltonian. The approxima-
tion to the ground state energy is obtained
as the sum of two contributions. The
first contribution comes from a noncon-
textual approximation to the Hamiltonian,
and is computed classically. The second
contribution is obtained by using the vari-
ational quantum eigensolver (VQE) tech-
nique to compute a contextual correction
on a quantum processor. In general the
VQE computation of the contextual cor-
rection uses fewer qubits and measure-
ments than the VQE computation of the
original problem. Varying the number
of qubits used for the contextual correc-
tion adjusts the quality of the approx-
imation. We simulate CS-VQE on ta-
pered Hamiltonians for small molecules,
and find that the number of qubits re-
quired to reach chemical accuracy can be
reduced by more than a factor of two. The
number of terms required to compute the
contextual correction can be reduced by
more than a factor of ten, without the use
of other measurement reduction schemes.
This indicates that CS-VQE is a promis-
ing approach for eigenvalue computations
on noisy intermediate-scale quantum de-
vices.

1 Introduction
The variational quantum eigensolver (VQE) is
the leading algorithm for quantum simulation on
noisy intermediate-scale quantum (NISQ) com-
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puters, due to the limited resources it requires
in both qubit count and coherence time [1–13].
VQE is a hybrid quantum-classical algorithm in
which the expectation value of the Hamiltonian,
or other observable, is computed for an ansatz
state generated by a parameterized quantum cir-
cuit. Optimization of the ansatz parameters is
performed iteratively using an optimization algo-
rithm running on a classical computer. VQE al-
gorithms require a large number of measurements
to be performed, and give approximate results
due to limitations of the ansatz that can be pre-
pared and noise on the quantum device. As a
result, the largest experiments to date either do
not reach chemical accuracy [6], do not include
all Hamiltonian terms [10], or simulate restricted
models such as Hartree-Fock [13].

We address these limitations of VQE by pro-
viding an approximate simulation method for the
full Hamiltonian that can be adjusted to use any
amount of available quantum resources. We show
that in many cases our method reduces the re-
sources required to reach chemical accuracy. The
method is based on the concept of a noncontex-
tual Hamiltonian, in which definite values can be
assigned to all Pauli terms simultaneously with-
out contradiction [14]. In [15], we gave a clas-
sical algorithm for computing the ground state
energies of noncontextual Hamiltonians based on
a quasi-quantized model [16, 17]. This raises
the question of whether a truly hybrid algorithm
can be developed for simulating general Hamil-
tonians, in which the noncontextual parts of the
Hamiltonians are computed classically and con-
textual quantum corrections are computed using
VQE. The method described in this paper is such
an algorithm.

The contextual quantum correction is ob-
tained by performing VQE restricted to quan-
tum states that are consistent with the noncon-
textual ground state. We refer to the space of
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such quantum states as the contextual subspace.
The contextual subspace represents the degrees of
freedom that remain after the noncontextual de-
grees of freedom have been fixed. The resulting
quantum computations only involve Hamiltonian
terms in the complement of the noncontextual
Hamiltonian. We also show how to adjust the
noncontextual part of the Hamiltonian, in order
to move more of the computation onto the quan-
tum computer, while preserving the structure of
the quasi-quantized model. The technique for
accomplishing this is related to “subspace-search
VQE” [18], in which excited energies are found by
restricting the search space to be orthogonal to
the (previously approximated) ground state. In
our case, we are not looking for excited states, but
we are implementing VQE in a restricted search
space, and part of the technique for achieving this
is similar to that in [18] (see Section 2 for details
of the technique).

As an example, suppose we want to apply VQE
to a Hamiltonian on n qubits, but the available
quantum processor has only q qubits. CS-VQE
permits us to adjust the noncontextual approxi-
mation method so that the associated quantum
correction uses exactly q qubits. Increasing the
number of qubits used on the quantum processor
monotonically improves the quality of the over-
all approximation, interpolating between the non-
contextual approximation with no quantum cor-
rection and full VQE. Thus, we can tune the
quantum part to fit the available quantum re-
sources, with the classical method making up the
difference.

CS-VQE is the first hybrid quantum-classical
algorithm of its kind, where a nonclassicality cri-
terion (in our case, contextuality) is used to iso-
late the intrinsically quantum part of a quan-
tum algorithm, and the classical remainder of
the algorithm is simulated classically. Our prior
works [14, 15] defined contextual and noncontex-
tual Hamiltonians, and gave a classical model for
noncontextual Hamiltonians, respectively, so the
current algorithm is distinct because it is appli-
cable to arbitrary Hamiltonians and because it
has a quantum component as well as a classical
component.

In the remainder of the introduction, we re-
view the necessary information from [15] about
classical simulation of noncontextual Hamiltoni-
ans. In Section 2, we describe the quantum cor-

rection procedure. In Section 3, we describe how
to implement CS-VQE, and show the results of
simulating CS-VQE on Hamiltonians for small
molecules. Finally, in Section 4, we summa-
rize our results and discuss their implications for
NISQ computing.

1.1 Noncontextual Pauli Hamiltonians
A set of observables is noncontextual when it is
possible to assign values to them simultaneously
without contradiction [19–36]. How can we de-
termine if a set S of Pauli operators is noncon-
textual? First remove the subset Z of terms that
commute with the whole of S. The set S is non-
contextual if and only if commutation is an equiv-
alence relation on S \ Z [14]. The equivalence
classes of commutation in S \ Z are cliques Ci
for i = 1, 2, ..., N . Operators in the same clique
commute, while operators in different cliques an-
ticommute.

Let S be the set of Pauli terms in a general
Hamiltonian H. We divide S into a noncontex-
tual subset Snc and its complement Sc. This in-
duces a decomposition of H into a noncontex-
tual part Hnc whose Pauli terms are Snc, and Hc
whose Pauli terms are Sc [15]:

H = Hnc +Hc. (1)

We also require that Snc be closed under inference
within S:

Definition 1. Snc is closed under inference
within S if any operators in S whose values can
be inferred from the values of operators in Snc
must be included in Snc [15].

Closure under inference is reviewed in detail in
Appendix C. The decomposition (1) is the basis
of the CS-VQE method. We will obtain an ef-
ficient classical description of the eigenspaces of
Hnc, and use this and Hc to quantum compute
a correction to the noncontextual approximation
to the ground-state energy.

Because all terms in Hnc can simultaneously
be assigned definite values without contradiction
we can introduce a phase space description of its
eigenspaces [14, 36]. The phase space points are
the possible joint value assignments to a set of
observables derived from Snc, which we describe
below. The eigenstates ofHnc are probability dis-
tributions over this phase space. This is a quasi-
quantized model: a classical phase-space model
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with an uncertainty relation imposed upon the al-
lowed probability distributions (sometimes called
epistemic states) on the phase space [16, 17]. We
refer the reader to [15] and Appendix C for fur-
ther general points about quasi-quantized mod-
els.

We now describe the states of the model, which
we call noncontextual states. We first identify
a set of observables that define the phase-space
points in the model:

G ∪ {A1, A2, ..., AN}. (2)

Each Ai is one element of the corresponding
clique Ci, so the Ai pairwise anticommute. G
is an independent generating set for the Abelian
group Z, which includes Z as well as all prod-
ucts of pairs of operators in the same clique. The
phase space points are all assignments of values
±1 to the observables in the set (2) [15].

The noncontextual states are probability dis-
tributions over the phase space points generated
by (2). Probability distributions corresponding
to valid quantum states must obey an uncer-
tainty relation [16, 17]. A sufficient condition is
that the commuting generators Gj ∈ G take def-
inite values, and that the expectation values of
the Ai form a unit vector [15]. This means that
each noncontextual state is defined by parameters
(~q, ~r) such that

〈Gj〉 = qj = ±1, 〈Ai〉 = ri, |~r| = 1. (3)

In [15], we showed how these expectation values
for the set (2) induce expectation values for all
terms Snc in the noncontextual part Hnc of the
Hamiltonian; consequently, a noncontextual state
induces an expectation value for Hnc. We also
proved that all expectation values for Hnc can
be generated in this way. Minimizing this expec-
tation value by varying the noncontextual state
(~q, ~r) thus provides a variational estimate of the
ground state energy of Hnc [15]. We refer to the
minimizing assignment (~q, ~r) as the noncontextual
ground state.

The Ai are anticommuting Pauli operators and
~r is a real unit vector, so the observable

A ≡
N∑
i=1

riAi, (4)

is a rotated Pauli operator, and thus has eigen-
values ±1. The unitary that maps A to a single

Pauli operator is a sequence of N − 1 rotations
generated by Pauli operators, all of which pre-
serve the Gj . If each of the Ai has expectation
value ri then A has expectation value +1, and
vice versa [15]. Thus, the noncontextual state
with parameters (~q, ~r) is equivalent to a joint
value assignment for the set of observables

G ∪ {A}, (5)

where the value assignments are Gj 7→ qj = ±1
for each j and A 7→ +1. We refer to the observ-
ables in (5) as the noncontextual generators.

The noncontextual states therefore correspond
to subspaces of quantum states that are stabilized
by the operators qjGj and by A. These are al-
most stabilizer subspaces in the usual sense (see
e.g. [37, Sec. 10.3]), except that A is not a single
Pauli operator, but is unitarily equivalent to one.
Therefore, a noncontextual state can be thought
of as a stabilizer subspace, one of whose stabiliz-
ers has been rotated by an efficiently-describable
unitary.

2 Quantum correction
Let (~q, ~r) be the noncontextual ground state. If
we take the resulting energy of Hnc as a classi-
cal estimate of the ground state energy of the full
Hamiltonian H, we can obtain a quantum cor-
rection by minimizing the energy of the remain-
ing terms in the Hamiltonian over the quantum
states that are consistent with the noncontextual
ground state. As discussed above, this common
eigenspace is a stabilizer subspace up to a rota-
tion on one of the stabilizers. We refer to this
subspace as the contextual subspace.

Before we discuss how to find quantum cor-
rections, we establish when such corrections can
appear:

Theorem 1. Let S be a set of Pauli opera-
tors, and let Snc be a noncontextual subset that
is closed under inference within S (see Defini-
tion 1). Then for any noncontextual state (~q, ~r)
as in (3) describing Snc, there exists a quan-
tum state consistent with (~q, ~r) (i.e., that gives
the same expectation values for Snc as (~q, ~r)) for
which the expectation value of every operator in
Sc ≡ S \ Snc is zero.
The proof may be found in Appendix A, and fol-
lows from the fact that Snc is closed under in-
ference: no value of any operator in Sc can be
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inferred from the values of operators in the non-
contextual part of the Hamiltonian [15]. Theo-
rem 1 has two useful corollaries.

Corollary 1.1. If the noncontextual states of
Hnc uniquely identify quantum states, then for
any noncontextual state the expectation value of
every term in Hc is zero, i.e., no quantum cor-
rection is possible.

Proof. By Theorem 1, there exists a quantum
state |ψ〉 consistent with the noncontextual state
for which the expectation value of every term not
in the noncontextual part is zero. Thus if the
noncontextual state uniquely identifies a quan-
tum state, it must be |ψ〉.

Corollary 1.2. As an approximation method for
a general Hamiltonian, a quasi-quantized model
of the noncontextual part is variational, i.e., the
resulting approximate ground state energies are
lower-bounded by the true ground state energy. It
remains variational when the quantum correction
is included.

Proof. From Theorem 1, it follows that there ex-
ists a ground state of the noncontextual part
for which the expectation value of every other
term in the Hamiltonian is zero. Hence, the
ground state energy of the noncontextual part
is a possible expectation value for the energy of
the full Hamiltonian, so it is lower-bounded by
the ground state energy of the full Hamiltonian.
To compute the quantum correction we minimize
the expectation value of the full Hamiltonian over
quantum states consistent with a given noncon-
textual state. This produces a variational esti-
mate of the energy with the contribution from
Hnc given by the noncontextual state.

2.1 Mapping a contextual subspace to a stabi-
lizer subspace

We now show how to map the contextual sub-
space corresponding to the noncontextual ground
state to a subspace stabilized by single-qubit Z
operators. To achieve this goal we rotate the Gj
and subsequently the single operator A to single-
qubit Z operators.

The number of Gj is some M < n, as dis-
cussed in [15]. Therefore, the Gj can be mapped
to single-qubit Z operators by a sequence of at

most 2M π
2 -rotations

1 (for completeness, we pro-
vide a constructive proof as Lemma A.2 in Ap-
pendix A). These rotations are Clifford operators,
so they map the remaining Pauli operators in the
Hamiltonian back to single Pauli operators while
preserving their commutation relations. Let D
denote the composition of these rotations, and
let H ′ ≡ DHD† be the rotated Hamiltonian. Af-
ter applying D, the noncontextual generators Gj
have been mapped to single-qubit Z operators
G′
j . Without loss of generality, since we have al-

ready found the noncontextual ground state at
this point we can choose the signs of the G′

j such
that they all have eigenvalue +1 in the noncon-
textual ground state, and thus stabilize it. We
refer to this basis as the “rotated basis.”

Once D has been applied, we map A′ = DAD†

to a single-qubit Z operator as well. A′ is a nor-
malized linear combination of the anticommuting
Pauli operators A′

i = DAiD
†, as in (4), so we

use the sequence of rotations employed in unitary
partitioning [39, 40]. The result is a sequence of
N −1 rotations generated by products of pairs of
the A′

i; we denote by R the composition of these
rotations, and the result of applying it to A′ is

R†A′R = A′
1, (6)

where A′
1 is a single Pauli operator.

The rotations formingR are generated by prod-
ucts of the A′

i, and the A′
i commute with the op-

erators G′
j , so R commutes with the operators

G′
j . Thus A′

1 commutes with and is independent
of the operators in G′, so since it is a single Pauli
operator, we can use Lemma A.2 to map it to a
single-qubit Z operator as well, without disturb-
ing the operators in G′. Let DA′ denote the full
rotation that maps A′ to a single-qubit Z opera-
tor A′′.

2.2 Restricting the Hamiltonian to a contex-
tual subspace
In the rotated basis, we will restrict the Hamil-
tonian to the subspace stabilized by the noncon-
textual generators G′

j . We will then obtain the
quantum correction by minimizing the expecta-
tion value of this restricted Hamiltonian over +1-
eigenvectors of the remaining noncontextual gen-
erator A′.

1See for example the solution to problem 3 in [38].
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Let H1 denote the Hilbert space of the n1
qubits acted on by the single-qubit Pauli Z op-
erators G′

j , and let H2 denote the Hilbert space
of the remaining n2 qubits. Thus the full Hilbert
space is H = H1 ⊗ H2 and the total number of
qubits is n = n1 +n2. The contextual part of the
Hamiltonian in the rotated basis is:

H ′
c =

∑
P∈S′

c

hPP. (7)

The set of Pauli terms in H ′
c is S ′

c and terms in S ′
c

in general act on both of the subspaces H1 and
H2.

We can write the terms P in (7) as

P = P1 ⊗ P2, (8)

where P1 is a Pauli operator acting on H1 and P2
is a Pauli operator acting on H2. P commutes
with an element of G′ if and only if P1 ⊗ 1H2

does (where 1H2 denotes the identity operator
acting on H2), since the operators in G′ act only
onH1. Since the noncontextual state corresponds
to a subspace stabilized by G′, if P anticommutes
with any element of G′, then its expectation value
in the noncontextual state is zero. Hence, any P
that admits a quantum correction must commute
with all elements of G′, and thus P1 ⊗ 1H2 must
as well. The elements of G′ comprise all single-
qubit Z operators acting in H1, so P1 must be a
product of such operators. Hence the expectation
value of P1 is some p1 = ±1, determined by the
noncontextual state.

Let |ψ(~q,~r)〉 be any quantum state consistent
with the noncontextual state (~q, ~r). The action
of any term P that admits a quantum correction
on |ψ(~q,~r)〉 has the form

P |ψ(~q,~r)〉 =
(
P1 ⊗ P2

)
|ψ(~q,~r)〉

= p1
(
1H1 ⊗ P2

)
|ψ(~q,~r)〉.

(9)

Therefore, if we denote by H ′
c|(~q,~r) the restriction

of H ′
c to its action on the noncontextual ground

state (~q, ~r),

H ′
c|(~q,~r) =

∑
P∈S′

c
s.t. [P,G′

i]=0
∀G′

i∈G
′

p1hP1H1 ⊗ P2

= 1H1 ⊗H ′
c|H2

) (10)

for

H ′
c|H2 ≡

∑
P∈S′

c
s.t. [P ′,G′

i]=0
∀G′

i∈G
′

p1hPP2. (11)

This is a Hamiltonian on n2 qubits, for n2 given
by

n2 = n− |G|, (12)

where |G| is the number of noncontextual gen-
erators Gj . Furthermore, if terms P ∈ S ′

c are
distinct only on their tensor factors P1, the re-
maining operators P2 in H ′

c|H2 will be identical.
Also, any terms that anticommute with any of
the noncontextual generators Gj are dropped en-
tirely (since their expectation values are zero).
Thus, the restricted Hamiltonian H ′

c|H2 may con-
tain fewer than |S ′

c| terms. This is illustrated in
Fig. 3, in Section 3.2.

2.3 Optimizing within a noncontextual sub-
space

To obtain the quantum correction, we perform
n2-qubit VQE on the restricted Hamiltonian
H ′

c|H2 within the contextual subspace. The con-
textual subspace is the subspace of H2 that forms
the +1-eigenspace of A′, the remaining noncon-
textual generator in the rotated basis. To search
within the +1-eigenspace of A′, we can prepare
ansätze in the +1-eigenspace of A′′ (a single-qubit
Z operator), and then apply the inverse of DA′ .
This guarantees that every ansatz state is consis-
tent with the noncontextual ground state (~q, ~r).

Note that we only explicitly restrict the rotated
Hamiltonian to the subspace stabilized by G′

j ,
whereas we restrict to the +1-eigenbasis of A′ at
the level of the ansatz. This is because although
the operation DA′ that diagonalizes A′ can be
efficiently implemented on a quantum computer,
it is not a Clifford operation. Conjugating the
Hamiltonian with DA′ can increase the number
of terms by a factor of Θ(2N ), where N is the
number of cliques. Thus if N is small, we could
classically compute the Hamiltonian restricted to
the +1 eigenbasis of A′ and then perform VQE on
this Hamiltonian. This would save one qubit and
permit an unconstrained search for the quantum
correction, but since N can in principle scale as
Θ(n) this approach will not be efficient in general.
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2.4 Example
As an example, we construct a Hamiltonian for
which most of the terms are included in the non-
contextual part. Let S = Snc ∪ Sc, where

Snc = {ZII,IXI, IY I, IZX, IZY, IZZ,
ZXI, ZY I, ZZX,ZZY,ZZZ},

Sc = {IIX,IIY, IIZ}.
(13)

The set of terms Snc is noncontextual, par-
titioning into Z = {ZII} (recall that Z is
the set of terms that commute with all oth-
ers), and five cliques, {IXI, ZXI}, {IY I, ZY I},
{IZX,ZZX}, {IZY,ZZY }, and {IZZ,ZZZ}.
Thus we may choose

A1 = IXI, A2 = IY I, A3 = IZX,

A4 = IZY, A5 = IZZ.
(14)

The extra terms Sc all commute with Z. In this
case, G = Z since Z contains only one opera-
tor, and this operator is already a single-qubit Z
operator, so D is the identity.

Thus H2 is the Hilbert space of the second two
qubits, so for

H ′
c = Hc = hIIXIIX+hIIY IIY+hIIZIIZ (15)

for some coefficients hIIX , hIIY , hIIZ , the restric-
tion to H2 is

H ′
c|H2 = Hc = hIIXIX+hIIY IY+hIIZIZ. (16)

We also have

A′ = A = r1A1+r2A2+r3A3+r4A4+r5A5 (17)

for some unit vector ~r; the restriction of A′ to H2
is thus

A′|H2 = r1XI + r2Y I + r3ZX + r4ZY + r5ZZ,
(18)

so DA′ is the rotation that maps this to a single-
qubit Z operator, as described in Section 2.1. We
can choose

DA′A′|2D†
A′ = ZI; (19)

in this case, for an ansatz we may prepare any
state whose value is |0〉 for the first qubit in H2,
and then apply D†

A′ to this state.
Thus, we reduce an initial Hamiltonian on

three qubits to a noncontextual approximation

0.0 0.2 0.40
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500

0.0 0.1 0.2 0.3
Fractional Error

0

1000

2000
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un
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Figure 1: Comparison of fractional errors in the noncon-
textual approximation of the ground state energy (up-
per plot), and in the noncontextual approximation with
quantum correction (lower plot). The histogram points
were generated by 10000 Hamiltonians with terms (13)
and uniformly random coefficients in [−1, 1]. The mean
fractional error without quantum correction is 0.257, and
the mean fractional error with quantum correction is
0.0268.

and a quantum correction that may be imple-
mented on a two-qubit quantum processor.

To evaluate the performance of the resulting
approximations, we generated 10000 Hamiltoni-
ans with the terms (13) by choosing coefficients
for them uniformly at random from [−1, 1]. The
resulting fractional errors in the ground state en-
ergies are plotted in Fig. 1; the average fractional
error is 0.257 for the noncontextual approxima-
tion alone, and 0.0268 when the quantum correc-
tion is included. The quantum corrections were
simulated classically by directly evaluating the
lowest eigenvalues of the Hamiltonians restricted
to the noncontextual ground states.

3 Contextual subspace VQE

The quantum correction to noncontextual ap-
proximations discussed in Section 2 allows us to
use limited quantum resources to improve a clas-
sical simulation result. In this section we explain
how we can systematically step back from the
original noncontextual approximation in order to
enlarge the contextual subspace, thus improving
the overall accuracy of the approximation by us-
ing more quantum resources. This provides a pa-
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rameter that can be specified based on the quan-
tum resources available, taking us from the opti-
mal noncontextual approximation at one extreme
to full VQE at the other. We call this method
contextual subspace VQE.

3.1 Method
We begin with a Hamiltonian H whose non-
contextual approximation is Hnc. As discussed
above, the noncontextual ground state corre-
sponds to a joint eigenspace of the noncontex-
tual generators G ∪ {A}. We can trade accuracy
of the noncontextual approximation for an im-
proved quantum correction by decreasing the size
of G∪ {A}, which increases the dimension of the
contextual subspaces. We accomplish this by de-
creasing the size of G, the set of generators for
the commuting part of Hnc. Since the number of
qubits used in the quantum correction procedure
is the total number of qubits minus the number
of generators in G (see (12)), reducing the size of
G increases the dimension of the search space for
the quantum processor.

We work in the rotated basis, as in Section 2.
In this basis, we select some subset of the non-
contextual generators G′

j , and remove all terms
generated by them from the noncontextual part.
Since the G′

j are single-qubit Z operators, this
means that for each generator to be dropped we
remove from the noncontextual part all terms
containing the corresponding single-qubit Z op-
erator as a tensor factor. All the terms thus
removed should be added to the quantum cor-
rection Hamiltonian H ′

c (as in Section 2.2). We
now implement the quantum correction on this
expanded H ′

c, keeping the same noncontextual
ground state that we began with, but only apply-
ing its value assignments to the generators that
remain in the noncontextual part.

The new noncontextual approximation on its
own will in general be worse than the original
noncontextual approximation. However, after in-
cluding the new quantum correction the overall
approximation cannot be worse, and will in gen-
eral be better. This is because the values assigned
in the original noncontextual approximation and
quantum correction are still consistent with the
noncontextual ground state, so quantum states
that obtain those values are included in the new
quantum search space. Thus in the worst case the
new approximation will only recover the original

approximation. If the new quantum correction
is nonzero for any additional terms, the new ap-
proximation will be strictly better than the origi-
nal approximation. In the limit where we remove
all terms from the noncontextual part and sim-
ulate them on the quantum computer, there will
be no noncontextual approximation left, and we
will have recovered full VQE.

The additional terms that can have nonzero
quantum corrections after the removal procedure
are those that anticommute with any of the gen-
erators G′

j that were removed, but commute with
the remaining generators. These terms were pre-
viously restricted to null expectation values only
because the noncontextual state was required to
be a joint eigenstate of the removed generators,
so when that is no longer enforced their expec-
tation values can vary. Therefore, we can choose
which subset of the generators to remove based
on which will permit the optimal quantum cor-
rection.

Note that classically simulating the noncontex-
tual part of the Hamiltonian is NP-complete, so
in worst cases the classical simulation part of CS-
VQE will not perform well [15]. However, worst
case Hamiltonians for standard VQE are QMA-
complete, meaning that a similar argument ap-
plies to VQE in general. Hence, in both cases we
are interested in heuristic performance for spe-
cific Hamiltonians of interest, rather than worst
cases. Framed in this way, what CS-VQE does
is take standard VQE, which is a heuristic for
an optimization problem over a set of parame-
ters for a quantum circuit, and transform it into
two heuristics (one classical and one quantum) for
two smaller optimization problems. In practice,
we have found that a combination of Monte-Carlo
and gradient descent methods works well for the
classical part of the algorithm, but continuing to
optimize this is a topic for future work.

3.2 Applications
We tested CS-VQE on a set of electronic struc-
ture Hamiltonians in the Jordan-Wigner mapping
[41]. In order to distinguish CS-VQE from qubit
tapering, we first tapered the Hamiltonians us-
ing symmetries as in [42, 43], then implemented
CS-VQE in order to remove even more qubits.
The initial noncontextual approximation Hamil-
tonians were chosen via a greedy classical algo-
rithm, as described in [15]. This algorithm runs
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Figure 2: CS-VQE approximation errors versus number of qubits used on the quantum computer, for tapered molecular
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Figure 3: Number of terms simulated on the quantum
processor required to reach chemical accuracy using CS-
VQE versus using full VQE. The dashed line marks equal-
ity. All points represent either one, two, or three Hamil-
tonians.

in O(N5) time for an N -term Hamiltonian, since
testing a particular Hamiltonian for noncontex-
tuality takes O(N3) time [14], and a greedy al-
gorithm that adds optimal terms one at a time
requires O(N2) steps. This method is not opti-
mal, but is efficient. The quantum parts of the
procedures were simulated classically by directly
evaluating the lowest eigenvalues of the quantum
correction Hamiltonians. The results are given
in Fig. 2, which shows the overall CS-VQE ap-
proximation errors versus the number of qubits
used on the quantum computer, and in Fig. 3,
which shows the number of terms that must be
simulated on the quantum computer in order to
reach chemical accuracy using CS-VQE. Our code
is available on GitHub2, and may be used to re-
produce our results or to apply CS-VQE to new
Hamiltonians of the reader’s choosing.

As noted at the end of Section 3.1, CS-VQE
is sensitive to the order in which the qubits are
moved from the noncontextual approximation to
the quantum processor. In the calculations to ob-
tain Figs. 2 and 3, we used a heuristic that begins

2Source code: https://github.com/wmkirby1/
ContextualSubspaceVQE

Accepted in Quantum 2021-05-05, click title to verify. Published under CC-BY 4.0. 8

https://github.com/wmkirby1/ContextualSubspaceVQE
https://github.com/wmkirby1/ContextualSubspaceVQE


with the noncontextual approximation, then adds
qubits to the quantum correction two at a time,
greedily choosing each pair to maximize the de-
crease in the ground state energy estimate. This
method is informed by the structure of the non-
contextual and contextual parts of the molecu-
lar Hamiltonians, and performed best out of the
heuristics we tried that can be implemented effi-
ciently without performing full VQE. Details of
the implementation of the heuristic are given in
Appendix B.

This heuristic involves running CS-VQE re-
peatedly, since for sufficiently large applications
one would have to use the quantum processor to
compute the quantum corrections on the way to
choosing the set of qubits for the final quantum
correction. However, these preliminary computa-
tions would only be necessary once the number
of qubits chosen becomes unfeasible for classical
simulation, and from Fig. 3 we see that the num-
ber of terms required to reach chemical accuracy
can be many times smaller than the number of
terms required to implement full VQE. There-
fore, even the repeated runs of CS-VQE required
for this heuristic can require fewer measurements
overall than full VQE, and of course they also
require fewer qubits.

Alternatively, one could use a heuristic to de-
termine the order without evaluating energies at
all. However, all variants of this that we tried had
substantially worse performance than the heuris-
tic discussed above, so we suggest using that
heuristic for real applications. We also tested
an inefficient “optimal” heuristic that begins from
full VQE and moves qubits to the noncontextual
approximation one at a time, greedily minimizing
the error penalty for each. Actually implementing
this heuristic is even more costly than full VQE,
but it did identify the optimal qubit orderings in
cases small enough for us to find these by brute-
force search. The first heuristic discussed above
performed nearly as well as the “optimal” heuris-
tic, requiring the same number of qubits to reach
chemical accuracy in most cases and only one ex-
tra in the remaining few cases. Details of all of
the heuristics and their relative performance are
discussed in Appendix B.

4 Conclusion
In this paper, we showed how to use a quan-
tum computer to obtain a correction to a non-
contextual approximation of a ground state en-
ergy. We then showed how to adjust the number
of qubits used on the quantum computer in order
to increase the accuracy of the hybrid approxi-
mation. This method, contextual subspace VQE
or CS-VQE, is a true hybrid quantum-classical
algorithm, in which the quantum resources used
may be set to match whatever resources are avail-
able, and the classical approximation algorithm
accounts for the remainder. The method is ap-
proximate, but variational, as is VQE itself. Ex-
act methods will only achieve approximate results
on NISQ devices due to their noisy character. CS-
VQE allows the quantum resources used to be in-
creased systematically until the desired precision
is achieved, if possible.

Standard VQE is a heuristic algorithm: there
are no analytic characterizations of its perfor-
mance for general Hamiltonians, or even for spe-
cial classes like electronic structure Hamiltonians,
upon scaling the system size. This is also true
for CS-VQE: its performance is sensitive to the
specific problem to which it is applied. We do
not analytically characterize the errors as a func-
tion of the number of qubits used on the quantum
processor. However, the examples in Section 3.2
illustrate that CS-VQE performs well in many
cases of interest going well beyond the scale of
VQE implementations to date, so we hope that
as the available quantum processors continue to
grow, CS-VQE can be used to allow larger sys-
tems to be simulated using those processors.

The technique for restricting the quantum cor-
rection to the subspace consistent with the non-
contextual ground state may appear reminiscent
of using qubit tapering to exploit symmetries
as described in [42, 43]. However, in CS-VQE
the symmetries are intrinsic to the noncontextual
ground state, rather than to the Hamiltonian (as
in [42, 43]), and are thus under the experimenter’s
control. We illustrated this point in Section 3.2
by applying CS-VQE to Hamiltonians that were
already tapered using the methods of [42, 43]; us-
ing CS-VQE we can eliminate additional qubits
at will.

In this paper we did not explore how to
implement ansätze for the restricted VQE in-
stance used by CS-VQE, instead finding the exact
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ground states of the contextual parts. However,
standard ansatz classes, like unitary coupled-
cluster (UCC) for electronic structure Hamiltoni-
ans [44–46], can be transformed into ansätze for
CS-VQE by projecting the gates onto the contex-
tual subspace, just as the contextual part of the
Hamiltonian is restricted to the contextual sub-
space. Detailed study of this is a topic for future
research.

One concern for standard VQE as well as for
CS-VQE is that the ansatz may suffer from the
barren plateau problem [47–49], where the gradi-
ent of the cost function (in this case expected
energy) vanishes exponentially with the system
size. It is hoped that for standard VQE, using
physically-motivated ansätze like UCC may avoid
the barren plateau problem, so since we can use
projections of the same ansätze for CS-VQE, this
same hope transfers to our case. However, even
physically-motivated ansätze may be subject to
noise-induced barren plateaus [50]: to the best
of our knowledge, all variational quantum algo-
rithms have the potential to fail in this way, in-
cluding CS-VQE. Nonlinear optimization and its
attendant problems, including barren plateaus,
may be avoided by the use of quantum imagi-
nary time evolution (QITE) or similar methods
[51, 52]. In our case, QITE could be applied di-
rectly to the contextual part of the Hamiltonian.

It is possible that some of the qubit and term
reductions we obtained using CS-VQE have ex-
planations in terms of chemistry. However, in
such cases CS-VQE identifies and exploits such
features using principles that are derived from the
foundations of quantum mechanics, and are con-
sequently agnostic any specific, high-level chem-
istry arguments. Identifying such chemical ar-
guments would illustrate the role contextuality
plays in chemistry, which would be of indepen-
dent interest.

By using CS-VQE it is possible to reach chem-
ical accuracy for ground state energies of nu-
merous small molecules using many fewer qubits
than would be required to implement full VQE
on the tapered Hamitonians. The number of
terms and thus number of measurements re-
quired is also substantially reduced by using CS-
VQE, since groups of terms become equivalent
under the symmetry imposed by the noncontex-
tual ground state. The number of measurements
needed to obtain the quantum correction could

be further reduced by the techniques described
in [39, 40, 53–55]. We leave this and other opti-
mizations of the method to future work. Current
VQE implementations are limited in both qubit
count and number of measurements by the avail-
able hardware, so we expect CS-VQE to be of im-
mediate practical value in accessing new molecu-
lar simulation applications on NISQ computers.
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A Proofs
We will use Lemma 1 from [15]:

Lemma A.1 (Lemma 1 in [15]). Let
P1, P2, ..., PN be an anticommuting set of
Pauli operators. For any unit vector ~a ∈ RN , the
operator

∑N
i=1 aiPi has eigenvalues ±1. From

this it follows that for any state,
∑N
i=1〈Pi〉2 ≤ 1.

Theorem 1 Let S be a set of Pauli operators, and
let Snc be a noncontextual subset that is closed un-
der inference within S (see Definition 1). Then
for any noncontextual state (~q, ~r) as in (3) de-
scribing Snc, there exists a quantum state consis-
tent with (~q, ~r) (i.e., that gives the same expecta-
tion values for Snc as (~q, ~r)) for which the expec-
tation value of every operator in Sc ≡ S \ Snc is
zero.

Proof. Let G∪{A} be the independent, commut-
ing set of observables associated to the noncon-
textual state (~q, ~r) describing Snc (see (3) and
(5)): the values assigned to G ∪ {A} in the non-
contextual state (~q, ~r) are

Gj 7→ qj = ±1 (20)

for each Gj ∈ G, and

A ≡
N∑
i=1

riAi 7→ +1 (21)

(see (4) and the associated discussion). Let P be
a Pauli operator in S \ Snc.
Case 1. If P anticommutes with any operator

in G, then 〈P 〉 = 0, since any quantum state
consistent with (~q, ~r) is a simultaneous eigenstate
of G.
Case 2. If P commutes with the operators in

G and also with the Ai, then:

1. if P is a product of operators in G, then P
can be inferred from G, so P must in fact be
included in Snc, since by assumption Snc is
closed under inference within S. This follows
immediately from Definition 1, the definition
of closure under inference with S.

2. if P is not a product of operators in G,
then P is unconstrained by the noncontex-
tual state, and may take any expectation
value, including zero.

Accepted in Quantum 2021-05-05, click title to verify. Published under CC-BY 4.0. 12

http://arxiv.org/abs/1701.08213
https://doi.org/10.1021/acs.jctc.0c00113
https://doi.org/10.1021/acs.jctc.0c00113
https://doi.org/10.1021/acs.jctc.0c00113
https://doi.org/10.1038/srep03589
https://doi.org/10.1038/srep03589
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1088/2058-9565/aad3e4
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1038/s41467-018-07090-4
https://doi.org/10.1088/1751-8121/abfac7
https://doi.org/10.1088/1751-8121/abfac7
https://doi.org/10.1088/1751-8121/abfac7
https://doi.org/10.1038/s41467-021-21728-w
https://doi.org/10.1038/s41467-021-21728-w
http://arxiv.org/abs/2007.14384
http://arxiv.org/abs/2007.14384
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41567-019-0704-4
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1038/s41534-019-0187-2
https://doi.org/10.1063/1.5141458
https://doi.org/10.1063/1.5141458
https://doi.org/10.1021/acs.jctc.0c00008
https://doi.org/10.1021/acs.jctc.0c00008
http://arxiv.org/abs/1907.13623


Case 3. Finally, suppose P commutes with
the operators in G, but anticommutes with at
least one of the Ai. In this case we want to prove
that there exists a +1-eigenstate of A for which
〈P 〉 = 0, as follows:

Let IP be the set of indices such that

i ∈ IP ⇒ [P,Ai] = 0,
i /∈ IP ⇒ {P,Ai} = 0.

(22)

If IP is empty, then P anticommutes with all of
the Ai: thus since

N∑
i=1
〈Ai〉2 =

N∑
i=1

r2
i = 1 (23)

(see (4) and the associated discussion), and

〈P 〉2 +
N∑
i=1
〈Ai〉2 ≤ 1 (24)

(by Lemma A.1), it follows that 〈P 〉 = 0.
The remaining case is when IP is nonempty;

there also exist i /∈ IP by assumption. Let

K ≡
∑
i∈IP

riAi, L ≡
∑
i/∈IP

riAi; (25)

thus
A = K + L (26)

and

[K,P ] = 0, {L,P} = 0, {K,L} = 0. (27)

Since K and L are linear combinations of anti-
commuting Pauli operators, their eigenvalues are
±k and ±l, respectively, where

k ≡
√∑
i∈IP

r2
i , l ≡

√∑
i/∈IP

r2
i . (28)

Therefore,

K2 = k21, L2 = l21, k2 + l2 = 1. (29)

Since P commutes with K and is a Pauli oper-
ator, PK is also an observable with eigenvalues
±k, which commutes with L (since both P and
K anticommute with L). Thus, PK commutes
with A, so within the +1-eigenspace of A there
exist eigenstates |±〉 of PK with eigenvalues ±k,
i.e.,

A|±〉 = |±〉, PK|±〉 = ±k|±〉. (30)

Note that since P /∈ Snc, P cannot be written as
a product of operators in G with any of the Ai,
so both of the states |±〉 are consistent with the
noncontextual state (~q, ~r).
The noncontextual state gives us the expecta-

tion values of the Ai:

〈±|Ai|±〉 = ri (31)

(see (4) and the corresponding discussion). This
means that in addition to (30), we have

〈±|K|±〉 =
∑
i∈IP

ri〈±|Ai|±〉 =
∑
i∈IP

r2
i = k2. (32)

Define |ψ〉 ≡ 1√
2

(
|+〉+ |−〉

)
; then

〈ψ|P |ψ〉 = 1
k2 〈ψ|PK

2|ψ〉 by (29)

= 1
2k2

(
〈+|+ 〈−|

)
K
(
PK|+〉+ PK|−〉

)
= 1

2k
(
〈+|+ 〈−|

)
K
(
|+〉 − |−〉

)
by (30)

= 1
2k
(
〈+|K|+〉 − 〈+|K|−〉+ 〈−|K|+〉 − 〈−|K|−〉

)
= − 1

2k
(
〈+|K|−〉 − 〈−|K|+〉

)
by (32).

(33)

But since K and P commute, we similarly have

〈ψ|P |ψ〉 = 1
k2 〈ψ|PK

2|ψ〉 by (29)

= 1
2k2

(
〈+|KP + 〈−|KP

)
K
(
|+〉+ |−〉

)
= 1

2k
(
〈+| − 〈−|

)
K
(
|+〉+ |−〉

)
by (30)

= 1
2k
(
〈+|K|+〉+ 〈+|K|−〉 − 〈−|K|+〉 − 〈−|K|−〉

)
= 1

2k
(
〈+|K|−〉 − 〈−|K|+〉

)
by (32).

(34)

Together, (33) and (34) imply that

〈ψ|P |ψ〉 = −〈ψ|P |ψ〉 = 0, (35)

so since |ψ〉 is a state in the +1-eigenspace of A,
we are done.

Lemma A.2. For any set of M independent,
commuting Pauli operators, there exists an ef-
ficiently calculable unitary rotation U , given by
a sequence of at most 2M π

2 -rotations generated
by Pauli operators, that maps the set to a set of
distinct single-qubit Z operators.
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Proof. Let {Bi | i = 1, 2, ...,M} be a commuting
set of Pauli operators. We may write Bi as

Bi =
N⊗
k=1

σ
(Bi)
k , (36)

where each σ(Bi)
k ∈ {I,X, Y, Z}. We consider two

cases:
Case 1. Suppose Bi is not diagonal, meaning

that there is some k such that σ(Bi)
k ∈ {X,Y }.

Consider the Pauli operator

Ji =
N⊗
k=1

σ
(Ji)
k , (37)

defined as follows: for each k...

σ
(Bi)
k = I ⇒ σ

(Ji)
k = I, (38)

σ
(Bi)
k = Z ⇒ σ

(Ji)
k = Z, (39)

σ
(Bi)
k = X or Y ⇒ σ

(Ji)
k = X or Y, (40)

where the values σ(Ji)
k = X or Y in (40) are cho-

sen so that σ(Bi)
k and σ(Ji)

k differ for exactly one
k (as we noted above, at least one of the σ(Bi)

k is
X or Y if Bi is not diagonal.) This guarantees
that Ji anticommutes with Bi.

Consider a rotation by π/2 generated by Ji,
i.e.,

exp
(
i
π

4Ji
)

= 1√
2

(1 + iJi). (41)

Upon conjugating Bi by this operator, we obtain

1
2(1 + iJi)Bi(1− iJi)

= 1
2(Bi − iBiJi + iJiBi + JiBiJi)

= 1
2(Bi + 2iJiBi − JiJiBi)

= iJiBi

= i
N⊗
k=1

σ
(Ji)
k σ

(Bi)
k ,

(42)

where the third line follows because Ji anticom-
mutes with Bi, and the fourth line follows be-
cause Ji is self-inverse. By the conditions on the
σ

(Ji)
k , we see that σ(Ji)

k σ
(Bi)
k = I or ± iZ for each

k, and±iZ appears exactly once, so (42) becomes

1
2(1 + iJi)Bi(1− iJi) = ±

N⊗
k=1

σ
(Di)
k , (43)

where all σ(Di)
k = I except one, which is Z. In

other words, the rotation about Ji has mapped
Bi to a single-qubit Z operator, as desired.
In each step, we apply the rotation exp

(
iπ4Ji

)
to all operators in the set. Thus we might worry
that, having already mapped some subset of the
Bi′ to single-qubit Z operators Di′ , applying
some later rotation exp

(
iπ4Ji

)
to map Bi to a

single-qubit Z operator could change the previ-
ously obtained Di′ . This turns out not to be the
case, as we now show:

Consider some particular one of the Di′ , whose
expansion as a tensor product is

Di′ =
N⊗
k=1

σ
(Di′ )
k (44)

where one of the σ(Di′ )
k is Z and the others are I.

Di′ commutes with Bi, since the previously ap-
plied rotations preserve commutation relations,
so for all values of m such that σ(Di′ )

m = Z, σ(Bi)
m

(as defined in (36)) must be I or Z. But this
implies that Ji also commutes with Di′ , since we
know that σ(Ji)

m is I or Z exactly when σ(Bi)
m is I

or Z, and thus σ(Ji)
m is I or Z.

Therefore, the rotation that maps Bi to a
single-qubit Z preserves the previously obtained
Di′ .
Case 2. Suppose Bi is diagonal, so σ

(Bi)
k ∈

{I, Z} for all k. Since any previously-obtained
Di′ are single-qubit Z operators and we assumed
that the entire set is independent, Bi cannot
be the product of any subset of the previously-
obtained Di′ . Therefore, there must exist some
m ∈ {1, 2, ..., n} such that

σ(Bi)
m = Z (45)

and
σ

(Di′ )
m = I (46)

for all of the previously-obtained Di′ .
Apply the rotation exp

(
iπ4Ki

)
, for Ki defined

by

Ki =
N⊗
k=1

σ
(Ki)
k , (47)

where
σ(Ki)
m = Y (48)

and
σ

(Ki)
k = I (49)
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for all k 6= m. Thus exp
(
iπ4Ki

)
commutes with

and therefore does not change any previously-
obtained Di′ .
As in Case 1, applying exp

(
iπ4Ki

)
to Bi ob-

tains

exp
(
i
π

4Ki

)
Bi exp

(
−iπ4Ki

)
= i

N⊗
k=1

σ
(Ki)
k σ

(Bi)
k ,

(50)
where by construction,

σ(Ki)
m σ(Bi)

m = iX (51)

and
σ

(Ki)
k σ

(Bi)
k = σ

(Bi)
k (52)

for all k 6= m. In other words, the rotation has
changed the Z at the mth spot in Bi into an X,
and left Bi otherwise unchanged. We also ap-
ply this rotation to all other operators in the set,
which does not change those that have already
been mapped to single-qubit Z operators, as we
noted above.
Now Bi is no longer diagonal, so we proceed

as described in Step 1 above, applying a second
Pauli π2 -rotation to mapBi to a single-qubit Pauli
operator.

B CS-VQE implementation details
B.1 Moving qubits from the noncontextual ap-
proximation to the quantum correction
We describe in detail how the noncontextual ap-
proximation is truncated to make room for im-
proved quantum corrections. As in Section 2, we
work in the rotated basis, denote by H1 the sub-
space of n1 qubits acted upon by the noncontex-
tual generators G′, and denote by H2 the sub-
space of the n2 remaining qubits, which are used
to implement the quantum correction. Let I2 be
the set of indices of these latter n2 qubits (those
not acted upon by G′), whose Hilbert space is the
quantum search space H2. To increase the size of
H2, we first need to select some subset of G′ that
we want to remove from Hnc. Since the elements
of G′ are single-qubit Z operators, this subset de-
fines a set Iadd of indices for qubits whose states
are initially fixed by the noncontextual state, but
that we will switch to simulating on the quantum
processor. To begin with, from S ′

nc (the terms
in the noncontextual part of the Hamiltonian, in
the rotated basis) we remove all terms that act on

any of the qubits in Iadd, including the elements
of G′ that act on these qubits. The remaining el-
ements of G′ form a new generating set G′′ ⊂ G′

satisfying
|G′′| = |G′| − |Iadd|. (53)

Let the new noncontextual set of terms be de-
noted S ′′

nc, and let

H ′′
nc ≡

∑
P∈S′′

nc

hPP. (54)

All terms that were removed from S ′
nc to obtain

S ′′
nc should be added to S ′

c to obtain an expanded
contextual set of terms S ′′

c , whose corresponding
Hamiltonian is

H ′′
c ≡

∑
P∈S′′

c

hPP. (55)

We can see that this removal operation pre-
serves closure under inference of S ′′

nc by again
thinking of G′ ∪ A′ as stabilizers (up to some
signs) for the contextual subspace. The elements
of G′ are single Pauli operators that are genera-
tors for the stabilizer group of the subspace. In
order to increase the dimension of the stabilized
subspace, therefore, for each element G′

i of G′

that we remove we must also remove all elements
of the stabilizer group that include G′

i as a factor.
In other words, in this instance preserving closure
under inference is equivalent to preserving closure
of a stabilizer group.

We can now implement the quantum correction
on H ′′

nc and H ′′
c , keeping the same noncontextual

ground state that we began with, but only ap-
plying its value assignments to terms in H ′′

nc. Let
n′′

2 denote the new number of qubits used in the
quantum correction procedure: then by (53),

n′′
2 = n−|G′′| = n−|G|+|Iadd| = n2+|Iadd, (56)

where n2 was the initial number of qubits used in
the quantum correction procedure.

B.2 Details of heuristics
The heuristic described in the main text starts
from the pure noncontextual approximation and
moves qubits two at a time to the quantum cor-
rection search space, greedily maximizing the im-
provement to the error at each step. We guessed
that this heuristic might perform well for the fol-
lowing reasons. For the molecular Hamiltonians
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Figure 4: CS-VQE approximation errors versus number of qubits used on the quantum computer, for tapered molecular
Hamiltonians, using the qubit ordering chosen by the optimal heuristic. All Hamiltonians whose curves overlap in
the region below chemical accuracy have the same total numbers of qubits. The solid black lines indicate chemical
accuracy. Within each subplot, the ordering of the legend matches the vertical ordering of the leftmost points in the
curves.
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Figure 5: Number of terms simulated on the quantum
processor required to reach chemical accuracy using CS-
VQE versus using full VQE, for qubit ordering chosen by
the optimal heuristic. The dashed line marks equality.
All points represent either one, two, or three Hamiltoni-
ans.

we tested, the noncontextual Hamiltonians cho-
sen via the greedy heuristic discussed in [15] con-
tain the diagonal terms in the full Hamiltonian
(i.e., tensor products of combinations of Pauli Z
and single-qubit identity), together with a sin-
gle clique containing some off-diagonal terms. In
particular, this means that the generating set G
comprises single-qubit Z operators in the original
basis, so the rotated basis is identical to the orig-
inal basis. The highest weight terms that are not
included in the noncontextual part are those con-
taining only one or two off-diagonal Pauli tensor
factors.

As discussed in the main text, terms in the
quantum correction Hamiltonian are “freed” to
be optimized when the generators in the non-
contextual part that they anticommute with are
dropped. In the present case, these generators
are the single-qubit Z operators that act on the
qubits for which the terms in the quantum correc-
tion Hamiltonian are off-diagonal. Thus, greedily
dropping pairs of generators allows a new subset
of the highest weight terms in the quantum cor-
rection Hamiltonian to be freed for optimization
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at each step in the heuristic.
For other heuristics, we refer to the one that led

to the best errors of any we tested as the optimal
heuristic. The optimal heuristic begins with full
VQE, then adds qubits to the noncontextual ap-
proximation one at a time while greedily minimiz-
ing the error penalty at each step. This heuristic
is consequently as hard as performing full VQE,
so using it in practical implementations would
negate the value of CS-VQE. However, it is infor-
mative because it provides a good approximation
to the optimal orderings and consequently to the
ideal performance of CS-VQE.

For comparison to Fig. 2 and Fig. 3, the errors
versus qubits and terms to reach chemical accu-
racy figures for the heuristic in the main text, we
include here the corresponding figures for the op-
timal heuristic, as Fig. 4 and Fig. 5. Notably, the
heuristic included in the main text matches the
number of qubits required to reach chemical ac-
curacy using the optimal heuristic in all cases ex-
cept F2, LiH in the 3-21G basis, and Mg: in these
cases the heuristic in the main text requires one
more qubit than the optimal heuristic. In fact,
for HeH+ in the 3-21G basis, the heuristic in the
main text requires one fewer qubit to reach chem-
ical accuracy than the optimal heuristic.

As an alternative to heuristics that calculate
actual energies, we tested two heuristics based
on the total weight of the Pauli terms associ-
ated to each qubit. Both starting from the full
VQE end (greedily minimizing the penalty for
each qubit removed) and starting from the non-
contextual end (greedily maximizing the improve-
ment for each qubit added) had identical perfor-
mance for the examples we tested, but unfortu-
nately that performance was substantially worse
than the performance of the heuristic discussed in
the main text (as well as the optimal heuristic).

C Noncontextual Hamiltonians
As noted in the main text, a set of observables
is noncontextual when it admits consistent joint
valuations. The kind of contradiction that might
prevent such a joint valuation is closely related to
the notion of inference, which we can introduce
as follows. If a pair of observables A,B com-
mute, then they can be measured simultaneously
together with their product AB. Thus, if we at-
tempt to construct a classical, ontological model

for some set of observables including A and B, in
any assignment of values, the value assigned to
AB must be the product of the values assigned
to A and B. This is based on the fact that if an
observer measures A, B, and AB, the values they
obtain will always be consistent with the product
relation. Hence, we say that given an assignment
of values to A and B, we may infer the value
assignment to AB.

Definition 2 (see [14]). Given an arbitrary set
S of Pauli operators, the closure under inference
S of S is the minimal set of Pauli operators, con-
taining S as a subset, such that for every com-
muting pair A,B in S, AB is also in S.

Definition 3 (see [14]). A set S of Pauli oper-
ators is noncontextual if it is possible to assign
values (±1) to S that respect all inference rela-
tions in S, i.e., such that for every commuting
pair A,B ∈ S, the value assigned to AB is the
product of the values assigned to A,B.

A set of Pauli operators Snc is noncontextual if
and only if it has the form

Snc = Z ∪ C1 ∪ C2 ∪ · · · ∪ CN , (57)

where Z is the subset of Snc containing all opera-
tors in Snc that commute with all other operators
in Snc, operators in the same Ci commute, and
operators in different Ci anticommute [14]. In
other words, Snc is noncontextual if and only if
commutation is transitive on Snc \ Z. If commu-
tation is transitive on a set, then because it is
always reflexive and symmetric, it is an equiva-
lence relation: as noted in the main text, we label
its equivalence classes Ci, and also refer to these
as cliques.

As in the main text, we partition a general
Hamiltonian H into a noncontextual part Hnc
and the remaining terms Hc, where the associ-
ated sets of Pauli operators are S, Snc, and Sc,
respectively. Snc must be closed under inference
within S, which we may now define rigorously in
terms of Definition 2: Snc is closed under infer-
ence within S if and only if

Snc = Snc ∩ S. (58)

This is simply a formalization of Definition 1 in
the main text. Subject to these constraints, we
can choose Hnc in any way we like.
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The key step in building a quasi-quantized
model for the noncontextual partHnc is construc-
tion of R, a new set of Pauli operators such that
R = Snc (so that value assignments to R induce
value assignments to Snc by inference), and R is
independent:

Definition 4 (see [15]). A set R of Pauli opera-
tors is independent if no value of any operator A
in R can be inferred from any value assignment
to a subset of R not containing A. Equivalently,
R is independent if and only if for every commut-
ing subset of R, its product is not in R.

Note that in a commuting set of Pauli opera-
tors, this notion of independence reduces to the
usual definition of independence of subsets of an
Abelian group [15]. Requiring R to be indepen-
dent means that not only are some value assign-
ments to R allowed (since R is noncontextual),
but in fact all value assignments to R are allowed
(which is not true for a general noncontextual set)
[15].

The independent set R is given by

R = G ∪ {Ai | i = 1, 2, ..., N} (59)

where each Ai ∈ Ci, and G is an independent
generating set for

Z ∪
N⋃
i=1
{AA′ | A,A′ ∈ Ci}. (60)

Note that since the set (60) is composed of el-
ements of Z and products of pairs of elements
in the same clique, its elements commute with
all elements of Snc. All elements of G therefore
commute with all of the Ai, although the Ai pair-
wise anticommute (since each is an element of the
corresponding Ci). As noted in (5) in the main
text, states of the quasi-quantized model turn out
to be equivalent to joint knowledge of the set of
commuting observables

G ∪ {A}, (61)

where the Pauli operators Gj ∈ G have values
qj = ±1, and for some unit vector ~r the operator

A ≡
N∑
i=1

riAi (62)

has value +1 (and consequently each operator Ai
has expectation value ri). Since the Pauli opera-
tors Ai anticommute and |~r| = 1, A has eigenval-
ues ±1, as shown in [15] (see also Lemma A.1).

The states of the quasi-quantized model are thus
parametrized by the values (~q, ~r), so we call such
a parameter set a noncontextual state (which is
the same as an epistemic state, as in [15, 17]).

The resulting expression for the expectation
value of Hnc is

〈Hnc〉(~q,~r) =
∑
B∈G

(
hB +

N∑
i=1

hB,iri

) ∏
j∈JB

qj ,

(63)
where the classical state parameters (~q, ~r) can
take any values such that qj = ±1 for each j and
|~r| = 1 [15]. The constants in (63), hB and hB,i,
are the coefficients in the original Hamiltonian
Hnc (under an efficiently classically calculable re-
labeling), and for each B ∈ G, JB is the set of
indices such that

B =
∏
j∈JB

Gj , (64)

which is also efficiently classically calculable.
Thus (63) expresses the expectation value of the
noncontextual part of the Hamiltonian as a clas-
sical objective function of the parameters (~q, ~r),
which may be both obtained and evaluated clas-
sically efficiently [15].

Given the objective function (63), estimating
the ground state energy of the noncontextual part
of the Hamiltonian requires minimizing (63) over
the parameters (~q, ~r). For an Hamiltonian of n
qubits, the total dimension of (~q, ~r) is at most
2n+1. As noted in the main text, we refer to the
setting (~q, ~r) that minimizes (63) as the noncon-
textual ground state.
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