
Error mitigation on a near-term quantum photonic device
Daiqin Su1, Robert Israel1, Kunal Sharma2, Haoyu Qi1, Ish Dhand1, and Kamil Brádler1

1Xanadu, Toronto, Ontario, M5G 2C8, Canada
2Hearne Institute for Theoretical Physics and Department of Physics and Astronomy, Louisiana State University, Baton Rouge,
LA USA

Photon loss is destructive to the perfor-
mance of quantum photonic devices and
therefore suppressing the effects of pho-
ton loss is paramount to photonic quan-
tum technologies. We present two schemes
to mitigate the effects of photon loss for a
Gaussian Boson Sampling device, in par-
ticular, to improve the estimation of the
sampling probabilities. Instead of using
error correction codes which are expen-
sive in terms of their hardware resource
overhead, our schemes require only a small
amount of hardware modifications or even
no modification. Our loss-suppression
techniques rely either on collecting ad-
ditional measurement data or on classi-
cal post-processing once the measurement
data is obtained. We show that with a
moderate cost of classical post processing,
the effects of photon loss can be signifi-
cantly suppressed for a certain amount of
loss. The proposed schemes are thus a key
enabler for applications of near-term pho-
tonic quantum devices.

1 Introduction

Error is the main hindrance for large scale quan-
tum computation. Quantum error correction
codes are introduced to correct the errors and
allow for fault-tolerant quantum computation.
However, the conditions for fault-tolerant quan-
tum computation are extremely stringent, requir-
ing very low-error gates and a large amount of
physical qubits, e.g., about a thousand or more
physical qubits are needed to construct a single
fault-tolerant logical qubit [1]. Currently, the
state of the art technologies allow for building
quantum devices consisting of about fifty noisy
physical qubits, which is very far away from the
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number required for fault-tolerant computation.
It is expected that in the intermediate future
quantum devices with hundreds of noisy physical
qubits are available [2]. Efforts have been made
to discover algorithms that are compatible with
these noisy quantum devices and are capable of
demonstrating the advantages of quantum com-
puting. Examples include the Random Circuit
Sampling [3, 4, 5], IQP [6, 7, 8], Boson Sampling
[9], Gaussian Boson Sampling (GBS) [10, 11, 12],
Variational Quantum Eigensolver [13], and the
Quantum Approximate Optimization Algorithm
[14, 15], etc.

To improve the performance of these near-term
quantum devices, several error mitigation tech-
niques have been developed to suppress the noise.
One of the promising error mitigation techniques
exploits extrapolation to approximately estimate
the expectation values of some observables of a
noise-free circuit by using the measured expec-
tation values from noisy quantum circuits with
various error rates [16, 17]. A proof of prin-
ciple experiment has been performed in a su-
perconducting device and the accuracy of the
variational eigensolver has been significantly im-
proved [18]. Another error mitigation technique
that is capable of improving the estimation of
expectation values is called quasi-probability de-
composition technique, in which a noise-free cir-
cuit is simulated by a collection of randomly se-
lected noisy circuits following a particular quasi-
probability distribution [16, 19]. This technique
has also been tested in various experimental plat-
forms [20, 21]. Instead of estimating the expecta-
tion values, there are error mitigation techniques
that can partially recover the error-free quantum
states, though more resources are required. One
of those examples is to measure the symmetries
of the quantum systems and project it back into
the error-free subspace [22, 23, 24, 25]. Another
method is to employ variational quantum algo-
rithms to mitigate errors in the state prepara-
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tion circuits [26]. Moreover, inherent noise re-
silience of quantum algorithms can lead to error
mitigation [27, 28, 29]. Other error mitigation
techniques have also been developed to correct
measurement errors [30, 31, 32, 33], to mitigate
decoherence [34], and for analog quantum sim-
ulation [35]. Furthermore, learning-based algo-
rithms have also been designed to mitigate errors
[36, 37, 38].

All previously mentioned error mitigation tech-
niques are specifically tailored for quantum sys-
tems with a finite Hilbert space dimension. It is
an open question whether these methods are ap-
plicable for computing models based on infinite-
dimensional systems. Here we focus on the GBS
device as a promising near-term photonic infinite-
dimensional platform. It is believed that GBS
can be used to demonstrate computational advan-
tages of quantum computer over classical com-
puter. Various algorithms based on the GBS
device have also been proposed, for example,
sampling the dense subgraphs [39], distinguish-
ing non-isomorphic graphs [40] and quantifying
the similarity of graphs [41, 42]. These appli-
cations are sensitive to the imperfections of the
GBS device, within which photon loss is the main
source of errors for a photonic implementation.
Schemes to mitigate the effect of photon loss are
thus paramount for the applications of the GBS
devices. However, no error mitigation scheme for
photonic systems has been developed to date.

In this work, we propose two schemes to mit-
igate the effect of photon loss in a GBS device.
The first scheme exploits the Richardson extrap-
olation technique and is tailored to extrapolate
the probability of a photon number pattern or a
collection of patterns for a loss-free GBS circuit.
To perform the extrapolation, one has to vary the
loss of the circuit and measure the probabilities of
click patterns for every loss value. This requires
only a small modification of the circuit but one
needs to perform several experiments, depending
on the number of chosen loss values. The second
scheme estimates the probability of a click pat-
tern of a loss-free circuit by linearly combining
the probabilities of click patterns with higher to-
tal photon numbers in the presence of loss. This
requires no modifications of the circuits since one
does not need to vary the loss value as the first
scheme. Classical post-processing is required to
compute the linear combination coefficients.

This paper is organized as follows. In Sec. 2
we briefly introduce the GBS device and some
of its applications. In Sec. 3 we discuss the er-
ror mitigation scheme based on the Richardson
extrapolation technique. We detail a standard
version and an improved version of the extrapo-
lation technique, with the latter has a better per-
formance for large photon loss. We discuss the
second scheme, the loss cancellation method, in
Sec. 4. In Sec. 5, we test our error mitigation
schemes in an eight-mode circuit and compare
their performances. Finally, we summarize our
discussion in Sec. 6, followed by the Appendix.

2 Overview of GBS device
A GBS device consists of three parts: the input
state, linear passive interferometer, and photon
detectors. The input is usually chosen as a prod-
uct state of pure single-mode Gaussian states,
each of which is fully characterized by its dis-
placement and squeezing. The linear passive in-
terferometer implements a unitary transforma-
tion to the input state and produces a multimode
Gaussian state in the output. In each output
mode a photon detector counts the number of
photons.

Consider a GBS device with M input/output
modes. The output multimode Gaussian state is
characterized by a 2M -component vector d and a
2M × 2M covariance matrix σ [43]. Assume that
n = [n1, n2, . . . , nM ] represents a certain mea-
surement pattern of photons (a click pattern),
where nj is the detected photon number in the j-
th mode. In the case of no displacement, namely
d = 0, the probability of detecting a click pattern
n is given by [10]

P (n) = 1
n!
√
detσQ

M∏
k=1

(
∂2

∂αk∂α
∗
k

)nk
× exp

(1
2α
>
v Aαv

)∣∣∣∣
αv=0

, (1)

where n! = n1!n2! · · ·nM !, σQ = σ+I2M/2, αv =
(α1, · · · , αM , α∗1, · · · , α∗M )>, and the matrix A is
given by

A = X2M
(
I2M − σ−1

Q

)
, with X2M =

(
0 IM
IM 0

)
.

The expression for probability in Eq. (1) is valid
for both pure and mixed Gaussian states.
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It is believed that a GBS device with a suf-
ficiently large number of modes and input pho-
tons can generate a photon number probabil-
ity distribution that is hard to sample from us-
ing a classical computer [10]. The GBS device
can also be used to solve graph-related prob-
lems by mapping the adjacency matrix of a
graph to the covariance matrix of the GBS out-
put state [44]. The properties of the graph are
thus encoded into the photon number probabil-
ity distribution. Such applications include sam-
pling the dense subgraphs [39], distinguishing
non-isomorphic graph [40, 42], quantifying sim-
ilarity of two graphs [41], and other potential
graph-related applications to be discovered.

A realistic GBS device is noisy, suffering from
experimental imperfections like the photon loss,
thus limiting its computational power [45]. Given
that fault tolerant error correction will not be ac-
cessible in the near future, it is paramount to
develop some error mitigation techniques with
least amount of hardware modifications to sup-
press the effects of photon loss and improve the
performance of the GBS device. In the following
sections, we focus on algorithms that involve es-
timating sampling probabilities of a click pattern
or a collection of click patterns, and propose two
schemes to improve the estimation of the proba-
bility for a loss-free GBS device.

3 Suppress photon loss via extrapola-
tion

The first method of suppressing errors in GBS
is inspired from the extrapolation procedure in-
troduced in Ref. [16]. Similar to Ref. [16], our
method relies on performing multiple measure-
ments and extrapolating to obtain the desired
outcome. However, while Ref. [16] focuses on
decreasing an overall multiplicative factor in the
system Hamiltonian thus leading to an effectively
higher error rate, we exploit the possibility of di-
rectly changing the error rate in photonic sys-
tems. Another novelty of our work is an improved
method that provides enhanced performance for
GBS probabilities by removing the poles of the
extrapolation function before extrapolating as de-
scribed in Sec. 3.4.

3.1 General formalism
Consider a quantum circuit with an ideal input
state and gates, the density operator of the out-
put state before detection is ρ̂0. The expectation
value of an observable Ô is O0 = tr(Ôρ̂0), where
“tr" represents the trace. If the quantum circuit
is imperfect, for example, the gate has an error
rate characterized by a small parameter ε, then
the output density operator becomes ρ̂ε and the
expectation value becomes O(ε) = tr(Ôρ̂ε). Both
ρ̂ε and O(ε) deviate from ρ̂0 and O0, respectively,
but approach to them in the limit of ε → 0. We
thus can perform a series expansion of ρ̂ε as

ρ̂ε = ρ̂0 +
∞∑
k=1

ρ̂kε
k, (2)

and similarly for O(ε),

O(ε) = O0 +
∞∑
k=1

Okε
k, (3)

where ρ̂k are operators and Ok are real numbers.
Suppose one can vary the error rate in a con-

trollable way, in particular, to increase the er-
ror rate on purpose. Denote the error rates as
εj = εcj , with j = 0, 1, 2, · · · ,m, and we choose
c0 = 1 and cj > 1 for j 6= 0. For each error rate
εj , one performs the experiment and measures the
expectation value O(εj). By linearly combining
(m+ 1) measured expectation values, one arrives
at an estimation of the expectation value O0 as

Õ(ε) =
m∑
j=0

γjO(εj) =
m∑
j=0

γjO(εcj). (4)

The coefficients γj are appropriately chosen such
that Ok for k = 1, 2, · · · ,m are cancelled, giving

Õ(ε) = O0 +O(εm+1), (5)

a better estimation of the loss-free expectation
value when ε is small. Taking this requirement
into account, we find that γj satisfy a linear sys-
tem of equations
m∑
j=0

γj = 1,
m∑
j=0

γjc
k
j = 0, k = 1, 2, · · · ,m, (6)

and the solution can be found as

γj = (−1)m
m∏
k 6=j

ck
cj − ck

. (7)

This extrapolation technique has been applied to
qubit systems.
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3.2 Extrapolate sampling probability
We now apply the above technique to suppress
the photon loss of a GBS device and obtain a
better estimation of the sampling probability. To
illustrate the method, we first consider the uni-
form loss case, namely, the photon loss in each
mode is the same and is characterized by a single
parameter ε. This is a good approximation to a
realistic linear interferometer if it is implemented
using the Clements’ decomposition [46] (see Ap-
pendix A for more details).

Assume that the covariance matrix of the out-
put state without photon loss is σ0 and that with
photon loss is σε. They are related via the action
of a lossy bosonic channel,

σε = (1− ε)σ0 + 1
2ε I2M , (8)

where I2M is the identity matrix. We thus have

σQ(ε) = σε + 1
2 I2M

= σ0 + 1
2 I2M −

1
2 ε (2σ0 − I2M ), (9)

and

[σQ(ε)]−1 = 2(2σ0 + I2M )−1
[
I2M +

∞∑
k=1

(2σ0 − I2M )k(2σ0 + I2M )−k εk
]
.

By substituting this into Eq. (2), we obtain a se-
ries expansion of the A matrix as

A(ε) = A0 +
∞∑
k=1

Akε
k, (10)

where A0 is the matrix corresponding to no pho-
ton loss state and the coefficients Ak is given by

Ak = −2X2M (2σ0 − I2M )k(2σ0 + I2M )−k−1.
(11)

The probability, P (n; ε), of a click pattern n with
photon loss ε can be obtained by replacing the A
matrix and σQ in Eq. (1) by A(ε) and σQ(ε), re-
spectively. Since both A(ε) and σQ(ε) have series
expansions with respect to ε, we thus can find a
series expansion for P (n; ε) as

P (n; ε) = P0(n) +
∞∑
k=1

Pk(n)εk, (12)

where P0(n) corresponds to the sampling prob-
ability without photon loss and is the quantity

that we want to estimate, and Pk(n) is a com-
plicated expression and its explicit form is not
relevant here.

Now we apply the general formalism developed
in Sec. 3.1 to derive a better estimation of P0(n).
Assume that one can choose different loss values,
εj , and estimate the corresponding probability,
P (n; εj), in the experiment. Similarly, define εj =
εcj , with j = 0, 1, 2, · · · ,m, and we choose c0 = 1
and cj > 1 for j 6= 0. Then we get a better
estimation of the probability P0(n) by defining

P̃ (n, ε) =
m∑
j=0

γjP (n; εj) =
m∑
j=0

γjP (n; εcj),

(13)

which further simplifies to

P̃ (n; ε) = P0(n) +O(εm+1), (14)

for γj as in Eq. (7) and for small values of ε. Dif-
ferent values of loss are indeed possible in the ex-
periment: specifically, loss can be programmably
increased in experiment using M additional tun-
able beam splitters that have one output port dis-
carded. Experimentally, a tunable beam splitter
is implemented by a Mach-Zehnder interferome-
ter consisting of two static 50:50 beam splitters
and two phase shifters [47] (see also Appendix A
for more details). Its transmission coefficient can
be tuned by varying the phases, e.g., via changing
the temperature of the device [48]. Suppose the
transmission coefficient of each additional beam
splitter is ηad, then the overall transmission of the
circuit is modified to be (1− ε)ηad. This implies
the loss value is changed to ε′ = 1− (1− ε)ηad =
ε[ηad +(1−ηad)/ε]. One can appropriately choose
the value of ηad to attain a target loss value εj .
A potential challenge is that the detection prob-
ability of the needed click patterns decreases and
thus it requires a lot of data collection.

3.3 A two-mode squeezed vacuum example
To showcase the extrapolation technique, we con-
sider a simple example: to mitigate photon loss
in a two-mode squeezed vacuum (TMSV) state.
A TMSV state is defined as

|χ〉TMSV =
√

1− χ2
∞∑
n=0

χn|n〉|n〉, (15)

where χ = tanh r and r is the squeezing parame-
ter [49]. When the TMSV state is detected by
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Figure 1: Error mitigation to a lossy TMSV state with
squeezing parameter r = 1.0. The red circles represent
probabilities for a pure TMSV state, the blue squares
represent probabilities for a lossy TMSV state and the
black rhombuses represent the extrapolated probabilities
with photon loss ε = 0.1.

two photon-number-resolving (PNR) detectors,
the only possible detected photon number pat-
terns are n = [n, n] and the probability is

P0([n, n]) = (1− χ2)χ2n = (tanh r)2n

cosh2 r
. (16)

The measurement probability P0(n, n) for r = 1.0
is plotted in Fig. 1 (red circle). Now a pure lossy
channel with transmissivity η = 1− ε is added to
each output mode of the TMSV state, resulting in
a mixed two-mode Gaussian state. The photon
number distribution will be modified, which we
denote as P (n,m; ε). We then plot P (n, n; ε) for
r = 1.0 and ε = 0.1 in Fig. 1 (blue square), which
has a big deviation from the no photon loss case.

Now we apply the extrapolation technique to
mitigate the photon loss. We choose m = 4 and
c = (1.0, 1.2, 1.4, 1.6, 1.8). From Eq. (7), we find
γ = (126,−420, 540,−315, 70). The new approx-
imation to the ideal case can be evaluated directly
from Eq. (13). We plot P̃ (n, n; ε) for r = 1.0
and ε = 0.1 in Fig. 1 (black rhombus). We see
that P̃ (n, n; ε) is much closer to P0(n, n) as com-
pared to P (n, n; ε), showing that the extrapola-
tion technique significantly mitigate the effect of
photon loss. After the error mitigation, the effec-
tive photon loss is approximately ε′ ≈ 0.01.

3.4 Improved extrapolation of sampling prob-
ability
We have shown that the extrapolation technique
works very well for low photon loss. However,
when the amount of photon loss and input squeez-
ing increase, the extrapolated result becomes less

and less accurate. We find that by slightly mod-
ifying the previous extrapolation procedure, one
can obtain a better estimation of the probabil-
ity for large squeezing and relatively high photon
loss.

By using the expression of σQ(ε) in Eq. (9), one
can rewrite the A matrix with photon loss as

A(ε) = (1− ε)X2M (2σ0 − I2M )
× [(2σ0 + I2M )− (2σ0 − I2M )ε]−1. (17)

There exists a unitary matrix U diagonalizes the
the covariance matrix σ0 as

σ0 = 1
2U

M⊕
k=1

(
e2rk 0

0 e−2rk

)
U †, (18)

where we assume σ0 is a pure-state covariance
matrix and rk are the squeezing parameters of the
input squeezed vacuum states. Here U represents
the transformation of the linear interferometer,
and is independent of the input squeezing and
the photon loss. Then A(ε) can be rewritten as

A(ε)

= (1− ε)X2MU
M⊕
k=1

( tanh rk
1−ε tanh rk 0

0 − tanh rk
1+ε tanh rk

)
U †

≡ 1− ε
P(ε, r̃)R(ε, r), (19)

where r = (r1, r2, · · · , rM )> and r̃ =
(r̃1, r̃2, · · · , r̃Nλ)>, with {r̃j}j∈{1,...,Nλ} denotes a
set of nonzero different squeezing parameters in
the set {rk}k∈{1,...,M} , and we defined

P(ε, r̃) =
Nλ∏
j=1

(1− ε2 tanh2 r̃j),

R(ε, r) = P(ε, r̃)X2M

×U
M⊕
k=1

( tanh rk
1−ε tanh rk 0

0 − tanh rk
1+ε tanh rk

)
U †.

It is evident that P(ε, r̃) is a polynomial of order
2Nλ, and P(ε, r̃)/(1 ± ε tanh rk) is a polynomial
of order 2Nλ − 1 if rk 6= 0 and of order 2Nλ if
rk = 0. Since X2M is a constant matrix and S
(represents the linear interferometer) is indepen-
dent of photon loss ε and input squeezing rj , so
every entry of the matrix R(ε, r) is a polynomial
of ε of order at most 2Nλ (when at least one of
the rj is zero), or 2Nλ − 1 (when all rj are not
zero).
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From Eq. (10) we find

det
{
[σQ(ε)]−1/2} =

M∏
k=1

1
cosh rk

1√
1− ε2 tanh2 rk

=
( M∏
k=1

1
cosh rk

) 1
Q(ε, r) , (20)

where Q(ε, r) ≡
∏M
k=1

√
1− ε2 tanh2 rk. By sub-

stituting A(ε) and σQ(ε) into Eq. (1), we find the
probability of measuring a click pattern n in the
presence of photon loss can be written as

P (n; ε) = 1
n!

( M∏
k=1

1
cosh rk

) (1− ε)N

Q(ε, r)PN (ε, r̃) P(ε),

(21)

where N =
∑M
j=1 nj is the total detected photon

number, P(ε) is a polynomial of ε of order at most
2NNλ (when at least one of the rj is zero), or
N(2Nλ − 1) (when all rj are not zero).

Notice that Q(ε, r) → 0 and P(ε, r̃) → 0
when ε → 1 and rk → ∞, namely, both Q(ε, r)
and P(ε, r̃) are close to zero in the large squeez-
ing and photon loss regime. Therefore, Q(ε, r)
and P(ε, r̃) contribute to the “singular" part of
the probability expression P (n; ε), and the cor-
responding poles are given by ε = coth rk >
1. The presence of these poles limits the ac-
curacy of the first extrapolation procedure. To
obtain a better extrapolation accuracy, we can
remove these poles by multiplying P (n; ε) with
Q(ε, r)PN (ε, r̃), and then perform the linear
combination. That is to say, the new estimation
for the probability without photon loss is

P̄ (n, ε) =
m∑
j=0

γjP (n; cjε)Q(cjε, r)PN (cjε, r̃).

(22)

Notice that Q(ε, r) → 1 and P(ε, r̃) → 1 when
ε → 0, so the estimation P̄ (n, ε) approaches to
P0(n) in the limit of ε→ 0.

To showcase the performance of the improved
extrapolation technique, we consider mitigating
the photon loss of a TMSV state as in Sec. 3.3.
Table 1 compares the results of extrapolation
and improved extrapolation for low photon loss
ε = 0.2 and relatively high photon loss ε = 0.5
cases. We see that for low photon loss, they both
give very good approximations to the exact sam-
pling probabilities. While for high photon loss,

the improved extrapolation gives better results
for click patterns with low total photon number.
In particular, the probabilities for click patterns
[0, 0] and [1, 1] can always be exactly extrapo-
lated in the improved extrapolation. This can be
understood as follows. After removing the poles,
the right hand side of Eq. (21) is simply a poly-
nomial, so in principle the probability P0(n) can
be extrapolated exactly if sufficient loss values
are chosen, namely, m is at least the same as the
order of the polynomial. For the TMSV state ex-
ample, the two input squeezing parameters are
the same, so Nλ = 1. By taking into account the
factor (1− ε)N , the right hand side of Eq. (21) is
a polynomial with order 2N after removing the
poles. Therefore, by taking m = 4, one can ex-
actly extrapolate probabilities of click patterns
with total photon number less than three.

From the experiment perspective, removing the
poles is only possible when one can fully control
the photon loss and know the input squeezing pa-
rameters accurately. This requires a good calibra-
tion of the GBS device in a priori.

3.5 Extrapolation precision analysis

We have showed that the extrapolation technique
works quite well by simply choosing several loss
values, e.g., m = 4. Better results can be ob-
tained by increasing the number of loss values,
namely, to increase the number of experiments.
For improved extrapolation technique, one can in
principle extrapolate the exact value of the sam-
pling probability by increasing the number of loss
values. However, we show that this is challeng-
ing in practice. Specifically, the required mea-
surement accuracy should increase exponentially
in order to get a good extrapolated probability
when the number of loss values increases, result-
ing in exponential increase of running time for the
experiment.

To estimate some quantities, like the sampling
probability, there is always an uncertainty due to
a limited number of samples, or due to the ex-
perimental imperfections. We now consider how
the statistic uncertainty and experimental imper-
fections affect the extrapolation results. From
Eq. (13) we can see that the uncertainty in
P (n; cjε) results in uncertainty in P̃ (n; ε). As-
sume that P̂ (n; cjε) is an estimator of the sam-
pling probability of click pattern n with photon
loss cjε and P (n; cjε) is considered as its mean
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Table 1: Comparing the performance of the improved extrapolation and the normal extrapolation technique for a
TMSV state. The first column is the click pattern and the second column gives the probability for a pure TMSV
state. The third and fourth main columns compare results for loss ε = 0.2 and ε = 0.5, respectively. The symbol
“extrap." stands for extrapolation, and “imp. extrap." stands for improved extrapolation.

ε = 0.2 ε = 0.5
[n, n] exact extrap. imp. extrap. extrap. imp. extrap.
[0, 0] 0.4200 0.4202 0.4200 0.8406 0.4200
[1, 1] 0.2436 0.2429 0.2436 0.3125 0.2436
[2, 2] 0.1413 0.1387 0.1400 0.1597 0.1140
[3, 3] 0.0820 0.0770 0.0781 0.0308 0.0701
[4, 4] 0.0475 0.0415 0.0421 0.0128 0.0317
[5, 5] 0.0276 0.0218 0.0222 0.0102 0.0115
[6, 6] 0.0160 0.0114 0.0116 0.0068 0.0037

value, then

P̂ (n; cjε) = P (n; cjε)(1 + X̂j), (23)

where X̂j is a random variable with zero mean
and its variance characterizes the relative uncer-
tainty of the measured probability. Here we as-
sume that the precision analysis is performed for
multiplicative precision, where the variance of X̂j

does not depend on the pattern n of photons. A
more useful analysis would model the actual error
in an experiment and would need to account for
inaccuracies in the modelling of the experiment.
Such an analysis is left for future work.

From Eq. (23), the relative fluctuation of the
extrapolated probability P̃ (n; ε) is

Ŷ (n; ε) ≡
̂̃P (n; ε)− P̃ (n; ε)

P̃ (n; ε)

=
∑m
j=0 γjP (n; cjε)X̂j∑m
j=0 γjP (n; cjε)

, (24)

where ̂̃P (n; ε) is obtained by replacing P (n; cjε)
in Eq. (13) by P̂ (n; cjε). It is straightforward to
show that the variance of Ŷ (n; ε) is given by

Var(Ŷ ) =
∑m
j=0 γ

2
jP

2(n; cjε)Vj[∑m
j=0 γjP (n; cjε)

]2 , (25)

where Vj is the variance of X̂j and we have as-
sumed that X̂j are independent random variables.
Denote the minimum variance of {X̂j}mj=0 as Vmin
and the minimum nonzero P (n; cjε) as Pmin; and
the corresponding maximums as Vmax and Pmax.
Then we can derive a lower bound and an upper

bound for Var(Ŷ ),

Var(Ŷ ) ≥ P 2
minVmin[∑m

j=0 γjP (n; cjε)
]2 m∑

j=0
γ2
j

= C1 Γ2Vmin,

Var(Ŷ ) ≤ P 2
maxVmax[∑m

j=0 γjP (n; cjε)
]2 m∑

j=0
γ2
j

= C2 Γ2Vmax, (26)

where C1 and C2 are approximately constants
because

∑m
j=0 γjP (n; cjε) approaches P0(n), and

Pmin(Pmax) becomes constant for large values of
m. Moreover, Γ2 =

∑m
j=0 γ

2
j increases exponen-

tially as the number of loss values, m, increases,
which follows from Eq. (7). Therefore, Var(Ŷ )
increases exponentially if Vmin is fixed, which im-
plies that it becomes exponentially hard to esti-
mate the loss-free sampling probability.

In practice, the strategy is to choose a num-
ber of loss values such that a sufficient good ap-
proximation to P0(n) is obtained while it is still
tractable to measure the probabilities for various
photon loss. As an example, we discuss the ef-
fect of uncertainty of estimating the probability
of a certain click pattern. Estimating a probabil-
ity can be achieved by sampling a process many
times and counting the number of success event.
Assume that Nsucc and N are the number of suc-
cess tries and the total number of tries, respec-
tively. The probability estimated by p̂ = Nsucc/N
is a random variable and its variance is given by

Var(p̂) = p(1− p)
N

, (27)

where p is the mean value of p̂. The variance of
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Figure 2: Distribution of extrapolated probability for
click pattern [1, 1] due to the uncertainty of probabil-
ity measurement. Here 500 samples of size N = 105

are collected. The mean and standard deviation of the
extrapolated probability are 0.2373 and 0.2531, respec-
tively.
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Figure 3: Distribution of extrapolated probability for
click pattern [1, 1] due to the uncertainty of loss values.
The fluctuation of the loss value is assumed to follow a
normal distribution with standard deviation 0.01. The
total number of samples is 500, and the mean and stan-
dard deviation of the extrapolated probability is 0.2425
and 0.2873, respectively.

the relative error of p̂ is

Var
(
p̂

p

)
= 1− p

Np
. (28)

If this variance is treated as Vmax, then it is
straightforward to find the required total num-
ber of tries,

N = 1− p
p

[
Var

(
p̂

p

)]−1
≤ 1− p

p

C2Γ2

Var(Ŷ )
. (29)

This gives an estimation of the required total
number of tries in order to achieve a certain ac-
curacy of the extrapolated probability, and also
the required running time to collect data if the
sampling rate is known.

For the TMSV state example, we consider
the effect of probability measurement uncertainty

and the fluctuation of loss values, and the results
are shown in Figs. 2 and 3, respectively. The
probability we want to extrapolate is P0([1, 1]) =
0.2436. We choose the photon loss as ε = 0.3 and
c = (1.0, 1.3, 1.6, 1.9, 2.2), and obtain the extrap-
olated result P̃ ([1, 1]) = 0.2367 assuming no fluc-
tuations. In the first case, the relative probability
measurement uncertainty, as defined in Eq. (23),
comes from the finite number of collecting tries.
Here we collect 500 samples of size N = 105. We
can see from Fig. 2 that the extrapolated prob-
ability deviates from P̃ ([1, 1]) and the variance
is so big such that one sometimes gets negative
extrapolated probabilities. However, the peak of
the distribution is still around 0.2 and the mean
value can be calculated to be 0.2373, which is
close to the P̃ ([1, 1]), and the standard devia-
tion is 0.2531. The effect of the loss fluctuation
is similar, see Fig. 3. We assume the loss fluc-
tuation follows a normal distribution with stan-
dard deviation 0.01. The extrapolated probabil-
ity also follows a Gaussian-like distribution with
big variance, and one sometimes gets negative
values. However, the peak of the distribution is
still around 0.2 and the mean value can be calcu-
lated to be 0.2112, which is close to the P̃ ([1, 1]),
and the standard deviation is 0.2873. This ex-
ample shows that the extrapolation amplifies the
variance, as indicated by Eq. (26). However, it is
still practical to get good results by choosing an
appropriate number of loss values.

3.6 Nonzero displacement and nonuniform loss

We have shown that the extrapolation technique
works for a GBS device with squeezed vacuum
states as inputs. More general input states con-
sist of displacements, for example in the algo-
rithm to simulate the molecular vibronic spec-
tra in a GBS device [50]. Here we show that in
the presence of displacements the probability can
also be expanded as a series with respect to the
loss ε, therefore the extrapolation technique still
works. We further show that the “singular" part
(the poles) in the probability expression is inde-
pendent of the displacements, therefore the im-
proved extrapolation technique also applies. For
details see Appendix B.

We have studied the simplified case where the
photon loss in each mode are the same, which
can be considered as a good approximation if the
linear interferometer is implemented using the
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Clements’ decomposition [46]. However, in the
realistic implementation the photon loss is not
uniform, and the situation becomes even worse
if the interferometer is implemented using the
Reck’s decomposition [47]. We now propose an
extrapolation technique for a GBS device with
nonuniform loss.

A universalM -mode linear interferometer con-
sists of N = M(M−1)/2 beam splitters. Assume
that each beam splitter is lossy and is charac-
terized by two lossy channels. We order the N
beam splitters and label them using integers k,
and the loss parameters of the corresponding two
lossy channels as εka and εkb. The probability
of detecting a click pattern n is a function of all
loss parameters, and is denoted as P (n; ε) with
ε = (εa, εb) and εa = (ε1a, ε2a, · · · , εNa), εb =
(ε1b, ε2b, · · · , εNb). Define P (ia)(n) (P (ib)(n)) as
the probability by changing only one loss param-
eter from εia (εib) to ciaεia (cibεib), with cia and cib
greater than one. We then obtain an approxima-
tion of P0(n) to the second order of the photon
loss,

P̃ (n; ε) = P (n; ε)−
∑
µ

N∑
k=1

P (kµ)(n)− P (n; ε)
ckµ − 1 ,

(30)

where µ = {a, b}.
In the experiment, one first measures P (n; ε)

with loss εa and εb; then change one of the loss
parameters while keeping other parameters un-
changed to measure P (ia)(n) and P (ib)(n), which
requires M(M − 1) repeats of experiments. By
combining all these measurement results we get a
better approximation of the probability P0(n) via
Eq. (30). This method is advantageous for a large
circuit when the photon loss of each beam split-
ter is small. To precisely control the loss of each
beam splitter could be challenging for an inter-
ferometer integrated on a chip, but is realizable
for architectures based on delay loops.

4 Loss Cancellation

We now discuss another scheme to mitigate the
effect of photon loss in a GBS device. It is specif-
ically tailored for photon number detection and
is particularly suitable for platforms where pho-
ton number detection is available. One of the
advantages of this scheme is that it requires no

Figure 4: Procedure to cancel photon loss. In the first
step, the probabilities of a lossy device are calculated
using the probabilities of a loss-free device. This cor-
responds to a physical process and is accomplished by
applying the operator Tε. In the second step, the prob-
abilities of a loss-free device are inferred using the prob-
abilities of a lossy device. This is accomplished by ap-
plying the operator T	ε but does not correspond to a
physical process.

hardware modifications of the GBS device. The
only computational cost is to calculate a set of
coefficients, which we will discuss in details.

4.1 The general procedure

Consider a noisy M -mode device with same pho-
ton loss in each mode, characterized by a single
parameter ε. Equivalently, this noisy GBS de-
vice can be modelled as placing M beam split-
ters, with the same transmissivity η = 1−ε, after
a lossless GBS device. The beam splitters take
a Fock state n (corresponding to an M -tuple of
nonnegative integers nj) to n′ ≤ n (n′j ≤ nj for
all j) with conditional probabilities

Pε(n′|n) =
M∏
j=1

(
nj
n′j

)
εnj−n

′
j (1− ε)n

′
j . (31)

Then given probabilities for the states in the
lossless GBS device, we get probabilities for the
states in a lossy GBS device. This can be ex-
pressed in terms of a linear operator Tε on mea-
sures on NM . Define P0(n) as the probabilities
for Fock states n in the lossless GBS device, then
the probabilities in the lossy GBS device are

P ′(n′; ε) = Tε(P0)(n′) =
∑
n≥n′

Pε(n′|n)P0(n).

(32)

This involves an infinite series, but convergence
is clear (for 0 < ε < 1) since

∑
n P0(n) = 1 and

0 ≤ Pε(n′|n) ≤ 1. To compute Tε(P0)(n′) for
a given final Fock state n′, we do not need to
compute conditional probabilities for all n, but
only for those that could lead to n′, i.e., with
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n ≥ n′. If P0 has finite support, we only need to
include click patterns up to the largest |n| (the
total number of photons of click pattern n) for
which P0(n) 6= 0. Even if the support is infinite,
in a practical computation we might impose a
finite cutoff.

What we have just described, evaluating the
probabilities of a lossy GBS device from the prob-
abilities of a loss-free GBS device, is straightfor-
ward. However, what we want is the inverse: us-
ing the probabilities of a lossy GBS device to infer
the probabilities of a loss-free GBS device. This
can be accomplished by performing an analytic
continuation to the transformation (32).

We first show that the transformation Tε form
a semigroup. Suppose we apply two sets of beam
splitters to a loss-free device, with photon losses
ε and µ, respectively. The two sets of beam split-
ters can be combined into one set of beam split-
ters with transmissivity (1 − ε)(1 − µ), namely,
with photon losses ε+µ−εµ. This implies that the
operators Tε form a semigroup, with TεTµ = Tε⊕µ,
where ε ⊕ µ = ε + µ − εµ. Now the operators
Tε can be defined formally for arbitrary complex
numbers ε, not just those in [0, 1]: at least if P is
a complex measure of finite support, Tε(P ) will
be a complex measure with finite support, and∑
n Tε(P )(n) = 1, and by analytic continuation

the formula TεTµ = Tε⊕µ is still true. The formu-
las are all the same, although the interpretation of
Eq. (31) as a conditional probability is no longer
there.

We can use this to go backwards, inferring P0
from P ′ = Tε(P0). By setting ε ⊕ µ = 0, we
find µ = ε/(ε− 1), which we denote as 	ε. Thus
T	εTε is formally equal to the identity map, so
that applying T	ε formally brings the probabili-
ties P ′ = Tε(P0) back to the loss-free probabilities
P0. This whole procedure is schematically shown
in Fig. 4. In the calculation, one only needs to
substitute 	ε = ε/(ε− 1) for ε:

P0(m) = T	ε(P ′)(m) =
∑

n≥m
P	ε(m | n)P ′(n)

=
∑
n≥m

 M∏
j=1

(
nj
mj

)(
−1
ε

)mj ( ε

ε− 1

)njP ′(n).

(33)

We call this procedure loss cancellation.
Our formal result Eq. (33) involves an infinite

series. The convergence of this infinite series is

not guaranteed in the whole parameter regime.
Of course in practice we can only consider finitely
many terms, so we might impose a cutoff, but un-
less the series converges, the result of this compu-
tation might not be a good approximation to the
loss-free probabilities. See Appendix C for a proof
that under appropriate conditions, for sufficiently
low photon loss the series converges and gives
good approximation to the loss-free probabilities.
In an actual experiment, the overall photon loss
ε has to be determined first. This can be done by
injecting coherent lights into the circuit and mea-
suring the output coherent lights [51]. After the
overall photon loss ε being determined, one runs
the experiment many times and collects enough
data to estimate the probability P ′(n). Finally,
the probability without photon loss P0(m) is cal-
culated using Eq. (33).

4.2 Test for a two-mode squeezed vacuum
The two-mode squeezed vacuum state is given by
Eq. (15), from which it is clear that the probabil-
ities for click patterns [i, i] are given by

P0([i, i]) = χ2i(1− χ2), (34)
and zero for other patterns. With uniform loss ε
we have P ′ = Tε(P0), where for i ≤ j,

P ′([i, j]; ε)

=
(
1− χ2) ∞∑

k=j

(
k

i

)(
k

j

)
χ2kε2k−i−j(1− ε)i+j

=
(
j

i

)
χ2jεj−i(1− χ2)(1− ε)i+j

×2F1(j + 1, j + 1; j − i+ 1; (εχ)2),
and by symmetry we have P ′([j, i]; ε) =
P ′([i, j]; ε). Since 0 < ε < 1 and 0 < χ < 1,
the series converges and can be written using a
hypergeometric function.

We now apply the loss cancellation procedure
to estimate the probability P0([1, 1]). Two cases
are considered: in one case we choose the cutoff
photon number as nmax = 7, which means only
click patterns [n1, n2] with n1 ≥ 1, n2 ≥ 1 and
n1 + n2 ≤ 7 are considered, and the resulting ap-
proximation is denoted as P̃7([1, 1]); while in the
other case we choose the cutoff photon number as
nmax = 10 and the resulting approximation is de-
noted as P̃10([1, 1]). We find that the Maclaurin
series of P̃7([1, 1]) in ε begins

χ2(1− χ2)− 16χ8(1− χ2)ε6 +O(ε8), (35)
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and that for P̃10([1, 1]) begins

χ2(1− χ2) + 324(χ12 − χ14)ε10 +O(ε12), (36)

where χ2(1 − χ2) is the value of the actual
P0([1, 1]). Because the next nonzero coefficients
are ε6 (for nmax = 7) and ε10 (for nmax = 10)
respectively, this should give very good results
when ε is small.

Table 2 shows the estimated result for P0([1, 1])
using loss cancellation for different input squeez-
ing and cutoff photon number. For r = 0.5 and
nmax = 7, the loss cancellation gives very good
approximations for photon loss up to ε = 0.5,
and the estimation fails for high photon loss like
ε > 0.6. Increasing the cutoff photon number to
nmax = 10 slightly improves the result and pushes
the boundary to about ε = 0.6, but still fails for
photon loss ε > 0.7. For r = 1.0 and nmax = 7,
good approximation is achieved for photon loss
ε ≤ 0.3 and the result becomes meaningless for
ε ≥ 0.5. We discuss this result in detail in Ap-
pendix C. For r = 0.5, our series should converge
for all ε < 1, so for any ε we should be able to
attain good results by taking a sufficiently large
cutoff. However, for r = 1.0 our convergence re-
sult only works for ε < 1/(2χ) ≈ 0.6565, and for
ε greater than that an increased cutoff would be
useless (see Appendix C for more details).

4.3 Using empirical data

In a typical application, we will use an empiri-
cal distribution P̂ from measured data as an ap-
proximation to P ′, and compute our approxima-
tion to P0(n) as Tµ(P̂ )(n). Suppose the empir-
ical data is obtained from a sample of size N ,
the estimator P̂ (n) has mean P ′(n), variance
P ′(n)[1− P ′(n)]/N , and covariances

Cov
(
P̂ (n), P̂ (n′)

)
= −P ′(n)P ′(n′)/N (37)

for n 6= n′. If we write

Tµ(P̂ )(n′) =
∑
n

Pµ(n′|n)P̂ (n),

then this has mean Tµ(P ′)(n′) = P0(n′) and vari-
ance∑

n Pµ(n′|n)2P ′(n)
N

−
[∑

n Pµ(n′|n)P ′(n)
]2

N

=
∑
n Pµ(n′|n)2P ′(n)

N
− P0(n′)2

N
. (38)

It should be noted that even when the infinite
series for Tµ(P ′)(n) converges, the variance might
not. Practically speaking, this means that “out-
liers" could have a large influence on the variance.
Rather than use all the click patterns that appear
in our sample, it may be better to impose a fixed
cutoff. This means our estimator will no longer
be unbiased, but it may be more stable.

For several different values of ε with χ =
tanh(1/2), we took 100 samples of size 105

from the distribution P0, added loss ε by letting
each photon survive or disappears with probabil-
ities 1 − ε and ε, and then took the estimator
T	ε(P̂ )([1, 1]). Recall that the correct value is
0.167948. The results are shown in Table 3.

As a function of µ, Tµ(P )(n) is an analytic
function which we can expand in a power series
around µ = 0, the coefficients involving probabili-
ties of various click patterns. The terms involving
higher powers of µ will contain click patterns with
more extra photons, which will have low proba-
bility of being observed but may have large coef-
ficients. In a simulation, a few of these “outlier"
click patterns will often be observed, and this can
have a bad effect on the accuracy of our estimate.
It can be better to only use a limited number of
coefficients. The estimator will no longer be unbi-
ased, but the variance may decrease significantly.
To illustrate this we consider the example of a
TMSV state as before. To fourth order of µ, the
series for Tµ(P )([1, 1]) reads

Tµ(P )([1, 1])
= P ([1, 1]) +

{
− 2P ([1, 1]) + 2P ([2, 1]) + 2P ([1, 2])

}
µ+

{
P ([1, 1])− 4P ([2, 1])− 4P ([1, 2])

+3P ([3, 1]) + 4P ([2, 2]) + 3P ([1, 3])
}
µ2 +

{
2P ([2, 1]) + 2P ([1, 2])− 6P ([3, 1])− 8P ([2, 2])

−6P ([1, 3]) + 4P ([4, 1]) + 6P ([3, 2]) + 6P ([2, 3]) + 4P ([1, 4])
}
µ3 +

{
3P ([3, 1]) + 4P ([2, 2])

+3P ([1, 3])− 8P ([4, 1])− 12P ([3, 2])− 12P ([2, 3])− 8P ([1, 4]) + 5P ([5, 1]) + 8P ([4, 2])
+9P ([3, 3]) + 8P ([2, 4]) + 5P ([1, 5])

}
µ4. (39)

Accepted in Quantum 2021-03-09, click title to verify. Published under CC-BY 4.0. 11



Table 2: Approximate the probability P0([1, 1]) using the loss cancellation procedure for cutoff photon number nmax =
7 and nmax = 10. The first column lists the loss values and the first row gives the lossless probability P0([1, 1]).
The second column gives the estimated probability P̃7([1, 1]) for nmax = 7, with two subcolumns corresponding to
input squeezing r = 1/2 and r = 1, respectively. The third column gives the estimated probability P̃10([1, 1]) for
nmax = 10.

ε nmax = 7 nmax = 10
r = 1/2 r = 1 r = 1/2 r = 1

0.0 0.167948 0.243596 0.167948 0.243596
0.1 0.167948 0.243595 0.167948 0.243596
0.2 0.167946 0.243502 0.167948 0.243597
0.3 0.167914 0.241527 0.167948 0.243697
0.4 0.167678 0.218252 0.167953 0.247736
0.5 0.166384 0.008163 0.168027 0.351743
0.6 0.160535 -1.698578 0.168753 2.555229
0.7 0.137057 -15.634539 0.174541 47.943868
0.8 0.049440 -142.109725 0.215083 1100.091815

Table 3: Approximation of the probability P0([1, 1]) using empirical data. The first column lists the loss values. The
second column (“No.1") gives results of the approximation to P0([1, 1]) using the normal loss cancellation, with
two subcolumns corresponding to the mean and standard deviation, respectively. The third column ( “No.2") gives
results using the series expansion introduced in Eq. (39). The fourth column ( “No.3") gives results by taking into
account the form of the probability expression in Eq. (40). We choose the input squeezing as r = 1/2 and collect
100 samples of size 105.

ε No.1 No.2 No.3
mean standard deviation mean standard deviation mean standard deviation

0.2 0.167905 0.001430 0.167823 0.001562 0.168155 0.001387
0.5 0.166660 0.006316 0.167998 0.004721 0.167166 0.005806
0.6 0.158845 0.021262 0.170362 0.011843 0.167394 0.011189
0.7 0.224839 0.065665 0.189705 0.034023 0.164793 0.034124
0.8 -0.015223 0.199697 0.249027 0.116481 0.166464 0.085374

Now by replacing µ and P in Eq. (39) by 	ε
and P̂ , respectively, we obtain an estimator
T	ε(P̂ )([1, 1]) for P0([1, 1]). With r = 1/2 and
100 samples of size 105, we get results with a sig-
nificant improvement, see Table 3.

Further improvements are possible if we take
advantage of knowledge of the form of Tν(P0).
In the two-mode example we know (see Sec. 3.4)
that Tν(P0)([1, 1]) should have the form

Tν(P0)([1, 1]) = A(ν)
(1− ν2χ2)3 , (40)

where A(ν) is a polynomial, and in fact we know
A(ν) has degree ≤ 4. Note that ν = ε ⊕ µ =
ε+ µ− εµ so µ = (ν − ε)/(1− ε).

A(ν) = (1− ν2χ2)3 Tν(P0)([1, 1])
= (1− ν2χ2)3 Tµ(P )([1, 1]), (41)

where P = Tε(P0). If we expand the right hand
side in a power series in ν− ε, since the left hand
side is a polynomial of degree ≤ 4 the terms in
higher powers on the right should be 0. We can
take that series to order 4, evaluate at ν = 0
using the empirical distribution P̂ instead of P ,
and the result should be a good approximation of
A(0) = P0([1, 1]). We tried this for r = 1/2 with
100 samples of size 105, with quite good results,
see Table 3. For ε = 0.9, the mean and standard
deviation are 0.159427 and 0.368437, respectively,
which are not wildly off the mark.

5 Eight-mode example

We have discussed two schemes to mitigate the
effect of photon loss and showcased their perfor-
mance for a two-mode squeezed state. An impor-

Accepted in Quantum 2021-03-09, click title to verify. Published under CC-BY 4.0. 12



Table 4: Mitigate photon loss for the orbit probability P0([00001111]). The first column lists the loss values and the
second column gives probabilities without doing any error mitigation. The third and fourth columns show probabilities
after performing extrapolation and the improved extrapolation, respectively. The last column lists probabilities with
the loss cancellation scheme.

Photon loss No mitigation Extrapolation Improved extrapolation Loss cancellation
ε = 0.0 0.058419 0.058419 0.058419 0.058419
ε = 0.1 0.040659 0.058371 0.058406 0.058582
ε = 0.2 0.030128 0.057676 0.058019 0.058756
ε = 0.3 0.023141 0.055638 0.055843 0.056712
ε = 0.4 0.017815 0.053008 0.050619 0.040986
ε = 0.5 0.013216 0.052349 0.045251 −0.042469
ε = 0.6 0.008965 0.039900 0.050386 −0.446576
ε = 0.7 0.005086 −0.189112 0.081490 −2.413260

tant question is whether these error mitigation
techniques can be applied to a large GBS device,
which is more relevant to practical applications.
When the circuit size increases, an immediate is-
sue arises as that the size of the Hilbert space
for a fixed total photon number increases, so the
probability of detecting a single click pattern de-
creases. It is not practical to estimate a tiny
probability using a GBS device. It is thus nec-
essary to consider the probability of a collection
of click patterns, the coarse grained probability.
One of the useful coarse grained probabilities is
the orbit probability [40], which is critical in solv-
ing the graph isomorphism and graph similarity
problems. An orbit On is defined as a collection
of click patterns including all permutations of the
click pattern n. The orbit probability POn is the
sum of all click-pattern probabilities inside an or-
bit On. Although we introduce the mitigation
schemes by estimating the probability of a single
click pattern, we show here that they can also be
used to estimate the orbit probability, as well as
other coarse grained probabilities.

We consider a book graph of size eight, with
adjacency matrix

A =



0 1 1 0 1 0 1 0
1 0 0 1 0 1 0 1
1 0 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 1 0 0
0 1 0 0 1 0 0 0
1 0 0 0 0 0 0 1
0 1 0 0 0 0 1 0


. (42)

The adjacency matrix A has to be doubled and
rescaled to be cA⊕A, so that it can be encoded
into an 8-mode pure Gaussian state σ0 [40], which
is generated by injecting eight pure single-mode
squeezed vacuum states into a loss-free interfer-
ometer. Here we choose c = 0.25 so that the max-
imum input squeezing is about 7.25 dB, which
is accessible for current quantum optics experi-
ments. When the circuit is lossy, the generated
state is different from σ0. We now use the pro-
posed error mitigation schemes to estimate the
orbit probabilities for a loss-free circuit.

Consider orbits with at most one photon in
each mode up to 8 total photons: vacuum, [1],
[11], [111], [1111], [11111], [111111], [1111111]
and [11111111], where we have omitted “0" in the
click pattern to simplify the notation and used a
single click pattern to represent an orbit. The or-
bit probabilities in the absence of photon loss are
(0.453, 0., 0.283, 0., 0.058, 0., 0.0044, 0., 0.00011).
In the presence of photon loss, the photons

tend to populate toward lower photon num-
ber orbits. We now apply the extrapolation
technique to estimate the loss-free orbit prob-
abilities. To perform the extrapolation, we
choose five loss values and the vector c is chosen
as c = (1.0, 1.1, 1.2, 1.3, 1.4). The results are
shown in Fig. 5. We can see that for low photon
loss, both the extrapolation and the improved
extrapolation work very well, giving good ap-
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Figure 5: Estimate orbit probabilities using extrapolation technique. In each subfigure there are four histograms,
they represent the orbit probabilities without photon loss, with photon loss, with extrapolation and with the improved
extrapolation, respectively. The loss values for (a), (b), (c) and (d) are ε = 0.1, 0.2, 0.3 and 0.4, respectively.

proximations for most orbit probabilities. When
the photon loss increases, some estimated orbit
probabilities from extrapolation lost accuracy,
e.g., the probability of the orbit with one photon
becomes negative. However, for the improved
extrapolation with poles removed we still obtain
a good approximation, showing its advantage for
high photon loss. We also use the loss cancel-
lation method to estimate the orbit probability
P0([00001111]). With cutoff photon number
nmax = 7, we find that good approximation
can be obtained for photon loss ε ≤ 0.3, see
Table 4. This demonstrates that the proposed
error mitigation techniques still work for a bigger
circuit for reasonable amount of photon loss.

6 Summary

We have proposed two schemes to mitigate the
effect of photon loss in a GBS device. The first
scheme is based on the extrapolation technique
and requires a small modification of the GBS
circuit: to increase the photon loss of the cir-
cuit. The second scheme requires no modifica-
tions of the circuit and thus is hardware efficient.
One only needs to measure the probabilities of a

lossy circuit and then linearly combine them in
an appropriate way. The computational cost is
to calculate the linear combination coefficients.
We tested these error mitigation techniques in a
two-mode and an eight-mode GBS circuits, and
showed that they work extremely well for low
photon loss, and also give fairly good approxi-
mations for relatively high photon loss.

In realistic experiments, the accuracy of the
measured probabilities is limited by the finite
number of samples and experimental imperfec-
tions. We show that the extrapolated probabil-
ity is sensitive to the measured probabilities, and
sometimes one gets apparently meaningless re-
sults like negative probabilities. This can be over-
come by performing multiple experiments and
taking the mean value as the estimate for the
loss-free probability. The requirement of multiple
experiments should be considered as the classical
computational cost.

While the procedure that we have described so
far is focused on GBS devices, similar ideas can
also be applied to other near-term photonic ar-
chitectures such as Boson Sampling. Boson Sam-
pling differs from GBS in that expressions for
click-pattern probabilities are related to perma-
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nents of transformation matrices rather than to
Hafnians as is the case in GBS. Devising a con-
crete procedure that accounts for this difference
and mitigated Boson Sampling probabilities is an
open problem. Another important research di-
rection is to devise methods for error mitigation
in sampling problems, which may require recover-
ing the quantum states instead of recovering the
expectation value of observables.
Acknowledgement: We thank Mark Wilde,

Seth Lloyd, Kang Tan, Dylan Mahler for insight-
ful discussions.
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A Uniform loss approximation
In this appendix, we briefly review the physical implementation of a linear optics interferometer and
how to model the photon loss, and demonstrate under what conditions the uniform loss approximation
is valid. A reconfigurable linear optics interferometer consists of an array of tunable beam splitters and
phase shifters. Practically, a tunable beam splitter is implemented by two static 50:50 beam splitters
and two phase shifters. The transmission and reflection coefficients of the tunable beam splitter can be
varied by changing the phases of the phase shifters [47]. Due to the imperfect implementation of the
tunable beam splitter, photons may be lost when going through it. Here we assume that the loss rate of
each of the two modes are the same. Mathematically, the lossy tunable beam splitter can be modelled
by adding two beam splitters with reflection coefficient the same as the loss rate after a perfect tunable
beam splitter. The photons may also be lost when travelling through the medium between adjacent
tunable beam splitters, e.g., the fibre or waveguide. Similarly, this lossy channel can be modelled by
a beam splitter, which can be effectively combined with the beam splitter that models the loss of the
tunable beam splitter.

Any linear unitary matrix U(N) can be decomposed into a product of a sequence of 2 × 2 unitary
matrices, which correspond physically to the tunable beam splitters [47]. There are two main schemes
to perform the decomposition: the Reck’s scheme [47] and the Clements’ scheme [46]. The former
implements a linear unitary transformation by arranging the tunable beam splitters in a triangular
configuration. The photon entering different mode will experience very different path length. Given
that the loss rate of each tunable beam splitter is almost the same, the overall loss rate for each mode
is quite different, resulting in nonuniform loss. The Clements’ scheme implements a linear unitary
transformation by arranging the tunable beam splitters in a rectangular configuration, in which the
photon entering different mode will experience almost the same path length. If the loss rate of each
tunable beam splitter is almost the same, then the overall loss rate for each mode is almost the same,
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resulting in uniform loss.
Consider an M -mode linear interferometer. If the interferometer is perfect, then its input-output

relation is given by b̂ = U â, where â = (â1, â2, · · · , âM ) with âi the input annihilation operator,
b̂ = (b̂1, b̂2, · · · , b̂M ) with b̂i the output annihilation operator, and U is an M ×M unitary matrix
representing the transformation of the linear interferometer. If the linear interferometer is lossy, then
the input-output relation has to be modified as [52, 53]

b̂ = Aâ+
√
I −AA† ê, (43)

where ê represents the environmental modes and A is a complex matrix satisfying AA† ≤ I.
The matrix A can be decomposed as A = V λ̂W , where V and W are unitary matrices, and
λ̂ = diag{√η1,

√
η2, · · · ,

√
ηM} with ηi ∈ [0, 1]. The singular decomposition of A implies that the

transformation of a lossy linear interferometer, Eq. (43), is mathematically equivalent to first applying
a unitary transformation W , followed by M lossy channels with transmission coefficients ηi (or loss
values 1− ηi), then applying another unitary transformation V .

In general, the singular eigenvalues of A are different and no further simplification can be made.
However, when the photon entering each mode goes through almost the same number of tunable beam
splitters and experiences almost the same path length, then the singular eigenvalues √ηi are almost
the same. This implies the diagonal matrix λ̂ is close to an identity matrix, λ̂ = √η I, where η is
the overall transmission coefficient of each mode. In this case the matrix λ̂ commute with V and the
matrix A can be rewritten as A = λ̂Ũ , where Ũ = VW is a unitary transformation. This shows that
a linear interferometer with uniform loss is equivalent to a perfect linear interferometer followed by M
lossy channels with the same transmission coefficient.

B Nonzero displacement
When the displacements are not zero, the probability of the click pattern n is given by [54]

P (n) =
exp

(
− 1

2d
†σ−1
Q d

)
n!
√
detσQ

M∏
k=1

(
∂2

∂αk∂α
∗
k

)nk
exp

(1
2α
>
v Aαv + F †αv

)∣∣∣∣
αv=0

, (44)

where F = σ−1
Q d. In the presence of photon loss, the probability P (n; ε) is obtained by replacing σQ

and A in Eq. (44) by σQ(ε) and A(ε) given by Eqs. (9) and (10), respectively. Since both A(ε) and
σQ(ε) have series expansions with respect to ε, a similar series expansion for P (n; ε) like Eq. (12) can
be obtained, thus the extrapolation applies.

By using the relation between A and σQ in Eq. (2), we find [σQ(ε)]−1 = I2M − X2MA(ε), and by
further using the decomposition of A(ε) in Eq. (19), we have

[σQ(ε)]−1 = U
M⊕
k=1

 1−tanh(rk)
1−ε tanh(rk) 0

0 1+tanh(rk)
1+ε tanh(rk)

U †
= 1
P(ε, r̃)U

M⊕
k=1

 1−tanh(rk)
1−ε tanh(rk)P(ε, r̃) 0

0 1+tanh(rk)
1+ε tanh(rk)P(ε, r̃)

U †. (45)

By using Eq. (45) we can show that
M∏
k=1

(
∂2

∂αk∂α
∗
k

)nk
exp

(1
2α
>
v A(ε)αv + F †αv

)∣∣∣∣
αv=0

= 1
PN (ε, r̃) Pd(ε), (46)

where Pd(ε) is a polynomial of ε. Therefore, the probability of measuring a click pattern n in the
presence of photon loss and displacements can be written as

P (n; ε) =
exp

{
− 1

2d
†[σQ(ε)]−1d

}
n!

( M∏
k=1

1
cosh rk

) 1
Q(ε, r)PN (ε, r̃) Pd(ε). (47)
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By using Eq. (45), the quantity d†[σQ(ε)]−1d can be simplified as

d†[σQ(ε)]−1d = (d†U)
M⊕
k=1

 1−tanh(rk)
1−ε tanh(rk) 0

0 1+tanh(rk)
1+ε tanh(rk)

 (U †d) = d†in

M⊕
k=1

 1−tanh(rk)
1−ε tanh(rk) 0

0 1+tanh(rk)
1+ε tanh(rk)

din,

where din = U †d is the input displacement vector. Therefore the exponential term exp
{
−

1
2d
†[σQ(ε)]−1d

}
is known if the input squeezing parameters and displacements are known, and does

not need to be extrapolated. The only term that is unknown is the polynomial Pd(ε), which requires
extrapolation. The improved extrapolation technique can be applied here since the poles are deter-
mined by Q(ε r) and P(ε, r̃) which can be removed by simply moving them to the left hand side of
Eq. (47).

C Convergence of the loss cancellation procedure
In the Loss Cancellation procedure, T	ε(P ′) is expressed by an infinite series. We may ask how small
|ε| must be to ensure that the series converges, i.e. that our approximations approach a limit as the
cutoff goes to ∞. This will depend on decay properties of the distribution P .
Definition The decay radius of the distribution P is the infimum of u > 0 such that there exists a

constant C(u) with |P (n)| ≤ C(u)u|n| for all n.
Lemma Suppose P has decay radius ≤ t, i.e. for any u ∈ (t, 1) there exists a constant C(u) such

that |P (n)| ≤ C(u)u|n| for all n. Then for any ε (not necessarily positive), the series for Tε(P )

converges if |ε| < 1/t, and the result has decay radius ≤ |1− ε|t1− |ε|t .

Proof. We have ∣∣Tε(P )(n′)
∣∣ ≤ ∑

k≥|n′|
L(ε, k,n′),

where

L(ε, k,n′) =
∑

n:n≥n′,|n|=k

∣∣Prob(n′|n)P (n)
∣∣

≤

 ∑
n:n≥n′,|n|=k

m∏
j=1

(
nj
n′j

) |ε|k−|n′||1− ε||n′|C(u)uk.

We claim that ∑
n:n≥n′,|n|=k

m∏
j=1

(
nj
n′j

)
=
(
k +m− 1
|n′|+m− 1

)
.

The claim can be proven by a “stars and bars” argument. Let |n′| = n. The left side is the number
of objects consisting of an m-tuple n ≥ n′ and, for each j ∈ {1, . . . ,m}, a subset of cardinality n′j
of [1, . . . , nj ]. The right side counts subsets of cardinality n + m − 1 of [1, . . . , k + m − 1]. These
subsets can be placed in one-to-one correspondence with the objects on the left side as follows. If the
subset is [T1, . . . , Tn+m−1], we designate Tn′1+1, Tn′1+n′2+2, . . . , Tn′1+...+n′m−1+m−1 as “bars” b1, . . . , bm−1
and the others as “stars”, so that there are n stars separated by bars into groups of n′1, . . . , n′m. We
take n1 = b1 − 1, n2 = b2 − b1 − 1, . . . , nm = k + m − 1 − bm−1. The subset of cardinality n′j of
[1, . . . , nj ] then consists of the j’th group of “stars” translated to the left (if j > 1) by bj .
Now, with |n′| = n, we have

L(ε, k,n′) ≤ C
(
k +m− 1
n+m− 1

)
|ε|k−n|1− ε|nuk.

Accepted in Quantum 2021-03-09, click title to verify. Published under CC-BY 4.0. 19



Since (
k +m− 1
n+m− 1

)
≤ (k +m− 1)n+m−1

(n+m− 1)! ,

the sum over k converges absolutely if |εu| < 1.
Now since

∞∑
k=n

(
k +m− 1
n+m− 1

)
zk =

∞∑
j=0

(
j + n+m− 1
n+m− 1

)
zn+j = zn

(1− z)n+m+2

for |z| < 1, we get a bound

|Tε(P )(n′)| ≤ C |1− ε|nun

(1− |ε|u)n+m−2 ,

so that Tε(P ) has decay radius ≤ |1− ε|t1− |ε|t .

Now we apply the lemma to loss cancellation. Suppose the lossless distribution P has decay radius

t. If 0 < ε < 1/t, the distribution with loss P ′ = Tε(P ) has decay radius ≤ (1− ε)t
1− εt . Then with

	ε = ε/(ε− 1), the series for P = T	ε(P ′) converges if
∣∣∣∣(	ε)(1− ε)t

1− εt

∣∣∣∣ < 1, and this is equivalent to

ε <
1
2t .

The two-mode example is exceptional in that the decay radius can easily be seen to be χ = tanh(r).
so we want ε < 1/(2χ) to ensure convergence. For squeezing r = 1/2, 1/(2χ) > 1.08, so the series
converges for all ε ∈ (0, 1). But for squeezing r = 1, 1/(2χ) ≈ 0.6565.

In general it may be difficult to predict in advance the decay radius for P , but we may conjecture
that it is typically finite and nonzero. The loss-cancellation procedure can then be expected to work
very well if ε is sufficiently small, but very poorly when ε is too large.
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