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We present an in-depth study of the
problem of multiple-shot discrimination
of von Neumann measurements in finite-
dimensional Hilbert spaces. Specifically,
we consider two scenarios: minimum error
and unambiguous discrimination. In the
case of minimum error discrimination, we
focus on discrimination of measurements
with the assistance of entanglement. We
provide an alternative proof of the fact
that all pairs of distinct von Neumann
measurements can be distinguished per-
fectly (i.e. with the unit success probabil-
ity) using only a finite number of queries.
Moreover, we analytically find the minimal
number of queries needed for perfect dis-
crimination. We also show that in this sce-
nario querying the measurements in par-
allel gives the optimal strategy, and hence
any possible adaptive methods do not offer
any advantage over the parallel scheme. In
the unambiguous discrimination scenario,
we give the general expressions for the op-
timal discrimination probabilities with and
without the assistance of entanglement.
Finally, we show that typical pairs of Haar-
random von Neumann measurements can
be perfectly distinguished with only two
queries.

Łukasz Pawela: lpawela@iitis.pl

1 Introduction

With the recent technological progress, quantum
information science is not merely a collection of
purely theoretical ideas anymore. Indeed, quan-
tum protocols of increasing degree of complex-
ity are currently being implemented on more and
more complicated quantum devices [1, 2] and are
expected to soon yield practical solutions to some
real-world problems [3]. This situation moti-
vates the need for certification and benchmark-
ing of various building-blocks of quantum de-
vices [4–6] (see [7] for a recent review). Discrim-
ination or quantum hypothesis testing constitute
one of the paradigms for assessing the quality of
parts of quantum protocols [8–12]. In this work,
we present a comprehensive study of various sce-
narios of discrimination of von Neumann mea-
surements on a finite-dimensional Hilbert space.
Here, by von Neumann measurements, we un-
derstand fine-grained projective measurements.
Such measurements are vital for most of the
protocols appearing in quantum information and
quantum computing. In fact, even the most
general quantum measurements are typically im-
plemented using projective measurements per-
formed on enlarged Hilbert space via the so-
called Naimark construction [13]. Due to imper-
fections present in currently available quantum
devices [3] and increased complexity associated
with Naimark construction, standard projective
measurements, such as the computational basis
measurement, are the most common measure-
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ments implemented currently on quantum pro-
cessors. It is important to point out that de-
spite their relative simplicity, the actual imple-
mentation of projective measurements on quan-
tum hardware is imperfect. For example, in a
recent demonstration of quantum computational
supremacy (advantage) by the collaboration of
Google and UCBS [14] the researchers reported
single-qubit measurement errors that are of or-
der of a few percents. This motivates the interest
in certification strategies tailored specifically to
von-Neumann measurements.

The general problem of quantum channel dis-
crimination has attracted a lot of attention in re-
cent years. One of the first results was the study
of discrimination of unitary operators [15, 16].
Later, this has been extended to various settings,
such as multipartite unitary operations [17] and
the case of discrimination among more than two
unitary channels [18]. In the work [19] the au-
thors formulated necessary and sufficient condi-
tions under which quantum channels can be per-
fectly discriminated. Further works investigated
the adaptive [20–23] and parallel [24] schemes for
discrimination of channels. Finally, some asymp-
totic results on discrimination of typical quan-
tum channels in large dimensions were obtained
in [25]. Discrimination of quantum measure-
ments, being a subset of quantum channels, is
thus of particular interest. Some of the earliest
results on this topic involve condition on perfect
discrimination of two measurements [26–30]

We are interested in the following problem.
Imagine we have an unknown device hidden in
a black box. We know it performs one of the
two possible von Neumann measurements, either
P1 or P2. Generally, whenever a quantum state
is sent through the box, the box produces, with
probabilities predicted by quantum mechanics,
classical labels corresponding to the measurement
outcomes. Our goal is to find schemes that attain
the optimal success probability for discrimination
of measurements. The results contained in this
work concern the following two scenarios:

Minimum error discrimination— In this set-
ting, we are allowed to use the black box con-
taining von Neumann measurement many times.
Furthermore, we can prepare any input state with
an arbitrarily large quantum memory (i.e., we
can use ancillas of arbitrarily large dimension),
and we can perform any channels between usages

of the black box. This allows us to implement
both parallel (see Fig. 1) as well as adaptive dis-
crimination strategies (see Fig. 2). We focus on
the case of entanglement-assisted discrimination.
Our main finding is that in the multiple-shot sce-
nario, adaptive strategies do not offer any advan-
tage over parallel queries. Moreover, we derive
an explicit dependence of the diamond norm dis-
tance in the multiple-shot scenario as a function
of the diamond norm in the single-shot setting.
As a consequence, we recover a known result [26]
stating that given sufficiently many queries, every
pair of different von Neumann measurements can
be distinguished perfectly (i.e. with zero error
probability).

? i

? j

// decision

|ψABC〉

Figure 1: A schematic representation of parallel discrim-
ination scheme of quantum measurements that uses two
applications of a measurement.

? i i

Vi

? j

// decision

|ψABC〉

Figure 2: A schematic representation of adaptive dis-
crimination scheme of quantum measurements that uses
two applications of a measurement. In this case adaptive
scheme amounts to application of the unitary channel
ΦVi which depends on the result i of the first measure-
ment.

Unambiguous discrimination— This scenario is
an analogue to the well-known scheme of unam-
biguous state discrimination [31]. Namely, for ev-
ery query to the black box, the decision procedure
outputs P1, P2, or the inconclusive answer. The
latter means that the user cannot decide which
measurement was contained in the black box. Im-
portantly, we require that the procedure cannot
wrongly identify the measurement (see Fig. 3).
Our main contribution to this problem is the
derivation of the general schemes, which attain
the optimal success probability both with and
without the assistance of entanglement. Inter-
estingly, we find that optimal success probability
pu for unambiguous discrimination of projective
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measurements P1,P2 with the assistance of en-
tanglement is functionally related to the diamond
norm distance ‖P1 − P2‖�, which quantifies dis-
tinguishability of P1,P2 with the assistance of en-
tanglement but without requiring unambiguous
results. The specific formula is given by

pu = 1−
√

1− 1
4 ‖P1 − P2‖2� (1)

and its geometric interpretation is presented in
Fig. 4. Finally, we also present simple formulas
for the optimal discrimination probability of von
Neumann measurements for qubits.

? i

P1
//

P2
//

1//

|ψ〉

1

? i

Ri

P1
//

P2
//

1//

|ψ〉

Figure 3: A schematic representation of the setting of
unambiguous measurement discrimination scheme. The
figure on the left shows an umbiguous dscrimination
without the assistance of entanglement while the fig-
ure on right shows entanglement-assisted unambiguous
discrimination.

Relation with classical channels— Let us con-
trast our results with transformations mapping
probability distributions to probability distribu-
tions, that is classical channels. In this setting,

Figure 4: Geometric interpretation of the relationship
between the diamond norm ‖P1−P2‖� and the probabil-
ity of unambiguous discrimination pu(P1,P2) presented
on the unit circle.

we know that if such channels cannot be perfectly
distinguished in one shot, they cannot be distin-
guished perfectly in any finite number of uses.
What we can do is to study the asymptotic be-
havior of error probability when the number of
applications of the channel tends to infinity. The
error probability, formulated in the language of
the hypothesis testing of two distributions, decays
exponentially, and the optimal exponential error
rate, depending on a formulation, is given by the
Stein bound, the Chernoff bound, the Hoeffding
bound, and the Han-Kobayashi bound, see [32]
and references therein. In the case of distinct
von Neumann measurements and entanglement-
assisted discrimination, we show that one can
perform perfect discrimination with the use of a
finite number of queries. Therefore, in contrary to
the classical channels, we do not have to consider
the exponential error rate, as the error probabil-
ity drops to zero in a finite number of tries.

This work is organized as follows. In Section
2, we give a survey of the main concepts and no-
tation used throughout this work (including the
basic background on discrimination of quantum
channels and measurements). Then, in Section 3,
we present our results for the scenario of multiple-
shot minimum error measurement discrimination.
Theorem 1 therein expresses the minimum error
in the parallel discrimination scheme as a func-
tion of the minimum error in the single-shot dis-
crimination scheme. Theorem 3 gives the upper
bound on the probability of correct discrimina-
tion of a generic pair of von Neumann measure-
ments coming from the Haar distribution. The
following Section 4 contains the results concern-
ing the unambiguous discrimination of quantum
measurements. The main result of this section
is formulated as Theorem 4, which states the
optimal success probability of unambiguous dis-
crimination with the assistance of entanglement.
Lastly, in Section 5 we summarize our results and
give some directions for future research.

2 Preliminaries and main concepts

By D(Cd) we will denote the set of quantum
states on Cd. Let L(Cd1 ,Cd2) denote the set of
all linear operators acting from Cd1 to Cd2 . For
brevity we will put L(Cd,Cd) ≡ L(Cd). A quan-
tum channel is a linear mapping Φ : L(Cd1) →
L(Cd2) which is completely positive and trace-
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preserving. The former means that for every
L(Cd1) ⊗ L(Cs) 3 ρ ≥ 0 we have L(Cd2) ⊗
L(Cs) 3 (Φ ⊗ 1l)(ρ) ≥ 0, while the latter means
Tr(Φ(X)) = TrX for every X ∈ L(Cd1). A set
of generalized measurements (POVMs) Cd will be
denoted by POVM(Cd). A general quantum mea-
surementM on Cd is a tuple of positive semidef-
inite operators1 on Cd that add up to identity
on Cd i.e. M = (M1, . . . ,Mn) with Mi ≥ 0 and∑
iMi = 1l. If a quantum state σ is measured by a

measurementM, then the outcome i is obtained
with the probability p(i|σ,M) = tr(σMi) (Born
rule). Therefore, a quantum measurementM can
be uniquely identified with a quantum channel

ΨM(σ) =
n∑
i=1

tr(Miσ)|i〉〈i|, (2)

where states |i〉〈i| are perfectly distinguishable
(orthogonal) pure states that can be regarded
as states describing the state of a classical reg-
ister. In what follows we will abuse the no-
tation and simply treat quantum measurements
(denoted by symbols M,N ,P, ...) as quantum
channels having the classical outputs. Using this
interpretation one can readily use the results con-
cerning the discrimination of quantum channels
for generalized measurements. In particular, for
entanglement-assisted discrimination of quantum
channels we have a classic result due to Hel-
strom [33]. It states that the probability of cor-
rect discrimination popt(Φ,Ψ) between two quan-
tum channels Φ and Ψ is given by

popt(Φ,Ψ) = 1
2 + 1

4 ‖Φ−Ψ‖� , (3)

where ‖S‖� = max‖X‖1=1 ‖(S⊗ 1l)(X)‖1 denotes
the diamond norm of the linear map S. Any op-
timal X is called a discriminator. Thus, if the
value of the diamond norm of the difference of
two channels is strictly smaller than two, then the
two channels cannot be distinguished perfectly in
a single-shot scenario.

In this work we will be concerned with von
Neumann measurements i.e. projective and fine-
grained measurements on a Hilbert space of a
given dimension d. Von Neumann measurements
P in Cd are tuples of orthogonal projectors on
vectors forming an orthonormal basis {|ψi〉}di=1

1In this paper we restrict our attention to measure-
ments with a finite number of outcomes.

in Cd i.e.

P = (|ψ1〉〈ψ1|, |ψ2〉〈ψ2|, . . . , |ψd〉〈ψd|) . (4)

In what follows we will use P1l to denote the
measurement in the standard computational ba-
sis. We will also use PU to denote the von Neu-
mann measurement in the basis |ψi〉 = U |i〉 for
a unitary d × d matrix U ∈ Ud. In other words,
vectors |ψi〉 from Eq.(4) are columns of the ma-
trix U . We also specify the subset DUd ⊂ Ud of
diagonal, unitary matrices. Consider now a gen-
eral task of discriminating between two projective
measurements PU1 , PU2 , and let popt(PU1 ,PU2)
be the optimal probability for discriminating be-
tween these measurements (both for minimum er-
ror and for unambiguous discrimination). Then,
due to the unitary invariance of the discrimina-
tion problem and identity PU (·) = P1l ◦ (U † · U)
we obtain that popt(PU1 ,PU2) = popt(P1l,PU†1U2

).
Therefore, for any discrimination of projective
measurements, without loss of generality, we can
limit ourselves to considering the problem of dis-
tinguishing between the measurement in the stan-
dard basis P1l and another projective measure-
ment PU . It is important to note that definition
of measurement PU distinguishes projective mea-
surements differing only by ordering of elements
of the basis. Moreover, a set of unitary matri-
ces {UE| E ∈ DUd} specifies the same projective
measurement, ie. PU = PUE for all E ∈ DUd.

Distinguishability of quantum measurements is
strictly related to the distinguishability of unitary
channels. The prominent result [34, 35] gives an
expression which makes calculating the diamond
norm of the difference of unitary channels ΦU , Φ1l
substantially easier. It says that the for a unitary
matrix U we have

‖ΦU − Φ1l‖� = 2
√

1− ν2, (5)

where ν = minx∈W (U) |x| and W (X) :=
{〈ψ|X|ψ〉 : 〈ψ|ψ〉 = 1} denotes the numerical
range of the operator X. Building on this re-
sult, in [29] the following characterization of the
diamond norm of the distance between von Neu-
mann measurements was obtained

‖PU − P1l‖� = min
E∈DUd

‖ΦUE − Φ1l‖� . (6)

Therefore the distance between two von Neu-
mann measurements is the minimal value of the
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? i1

? i2

...

? iN

// decision


|ψ1,...,N+1〉

Figure 5: A schematic representation of the parallel dis-
crimination scheme of quantum measurements.

diamond norm of the difference between opti-
mally coherified channels [36]. Moreover, there
is a simple condition which lets us check whether
two measurements are perfectly distinguishable
[24, 26, 29]. It holds that ‖PU − P1l‖� = 2 if and
only if there exists a state ρ such that

diag (ρU) = 0. (7)

Equation (6) will be of significant impor-
tance throughout this work. We will also make
use of the dephasing channel denoted ∆(ρ) =∑
i |i〉〈i|ρ|i〉〈i|. Finally, when talking about the

eigenvalues of a unitary matrix U ∈ Ud, we will
follow convention that λ1 = eiα1 , . . . , λd = eiαd

are ordered by their phases, if α1 ≤ . . . ≤ αd for
α1, . . . , αd ∈ [0, 2π). The angle of the shortest
arc containing all eigenvalues will be denoted by
Θ(U).

3 Minimum error discrimination

Multiple-shot minimum error discrimination is a
natural generalization of the single-shot scheme
studied in [29]. In this scenario we have ac-
cess to multiple queries to quantum measure-
ments which is mathematically equivalent to the
problem of single-shot discrimination of channels
PU⊗N ,P1l⊗N acting on states defined on multiple-
component Hilbert space (Cd)⊗N (see Fig. 5). In
the following sections will write shortly P1l instead
of P1l⊗N .

As we described in the preceding section,
the problem of distinguishing quantum measure-
ments is intimately related to distinguishing uni-
tary channels [29]. In what follows we leverage
this result to prove a number of results regard-
ing multiple-shot discrimination of von Neumann
measurements.

3.1 Optimality of the parallel scheme

The authors of [37] showed that parallel discrimi-
nation scheme is optimal among all possible archi-
tectures for the case of discrimination of unitary
channels. In this subsection we will prove a the-
orem which thesis is rendered in the spirit of the
results obtained in [37], nevertheless, our theo-
rem concerns the discrimination of von Neumann
measurements. It is worth mentioning here that
the optimality of the parallel scheme is no longer
true when studying the discrimination of general
(non-projective) POVMs. In the case of discrim-
ination of POVMs with rank-one effects one may
need to use adaptive discrimination scheme to ob-
tain perfect distinguishability [23]. While consid-
ering the discrimination of von Neumann mea-
surements, one could expect that we can improve
the discrimination by performing some process-
ing based on the obtained measurement’s labels.
It appears that such processing will not improve
the discrimination.

We will focus on the minimum error discrimi-
nation in the parallel scenario and our goal will
be to characterize the probability of correct dis-
crimination after N queries to the black box. The
first step is to extend Eq. (6) to the parallel set-
ting. We study the form of the optimal matrix
E in the parallel scheme. The following theorem,
which proof is presented in Appendix A, states
that it has a tensor product form.

Theorem 1. Let N ∈ N, U ∈ Ud and let PU
be the corresponding von Neumann measurement
on Cd. Then we have the following equality

‖PU⊗N − P1l‖� = min
E∈DUd

‖ΦU⊗NE⊗N − Φ1l‖� .

(8)

Now we are interested in calculating the num-
ber of usages of the black box required for per-
fect discrimination. Let us recall here that in the
case of distinguishing unitary operations this can
always be achieved in a finite number of steps
N = d π

Θ(U)e [15]. A similar result is achievable in
the case of distinguishing von Neumann measure-
ments. Let UE0 be an optimal unitary matrix,
that is a matrix for which

‖PU − P1l‖� = ‖ΦUE0 − Φ1l‖� . (9)

Now we compute the number of queries needed
for perfect discrimination. We have already
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proven in Theorem 1 that if UE0 is the op-
timal matrix, then the matrix (UE0)⊗N will
also be optimal. Therefore, the value of dia-
mond norm ‖PU⊗N − P1l‖� can be expressed as
a function of Θ

(
(UE0)⊗N

)
. As long as 0 6∈

W
(
(UE0)⊗N

)
, it holds that Θ((UE0)⊗N ) =

NΘ(UE0). The first time zero enters the nu-
merical rangeW

(
(UE0)⊗N

)
is therefore equal to

N = d π
Υ(U)e, where Υ(U) is an optimized version

of Θ(U) i.e.

Υ(U) := min
E∈DUd

Θ(UE). (10)

We summarize the above discussion as
the Corollary below providing the value of
‖PU⊗N − P1l‖� in terms of Θ(U).

Corollary 1. Let N ∈ N, U ∈ Ud. The following
holds

(i) if NΥ(U) ≥ π, then ‖PU⊗N − P1l‖� = 2;

(ii) if NΥ(U) < π, then ‖PU⊗N − P1l‖� =
2 sin

(
N
2 Υ(U)

)
.

Another interesting property resulting from
Theorem 1 and its proof is the amount of the
discriminator’s entanglement with environment.
The minimal dimension of an auxiliary system
needed for optimal discrimination is equal to the
rank of the input state. We found out that for
the majority of von Neumann measurements it
is sufficient when the dimension of the auxiliary
system is either two or three. A more detailed
discussion is presented in Appendix A after the
proof of Theorem 1.

Eventually, we are in the position to prove
the optimality of parallel discrimination scheme,
which we present as the following theorem.

Theorem 2. Let U ∈ Ud. Consider the distin-
guishability of general quantum network with N
uses of the black box in which there is one of two
measurements - either PU or P1l. Then the prob-
ability of correct distinction cannot be better then
in the parallel scenario.

Proof. Without loss of generality we may assume
that the processing is performed using only uni-
tary operations. Indeed, using Stinespring dila-
tion theorem, any channel might be represented
via a unitary channel on a larger system followed
by the partial trace operation. What is left to

observe is that ‖trB(XAB)‖1 ≤ ‖XAB‖1 for arbi-
trary bipartite matrix XAB.
The sequential scheme of discrimination of von

Neumann measurements is shown in Fig. 6 and
can be expressed as a channel

ΨU = (∆1,...,N ⊗ 1l) ΦAU
, (11)

associated with a matrix AU . Here ∆1,...,N is the
dephasing channel on subsystems 1, . . . , N . The
channel ΦAU

is shown in Fig. 7 and the exact
form of this transformation can be found in Ap-
pendix B.
Assuming that matrix U is optimal, that

is Υ(U) = Θ(U), we have ‖PU⊗N − P1l‖� =
‖ΦU⊗N − Φ1l‖�. Hence, we may calculate the dis-
tance between ΨU and Ψ1l as

max
ρ
‖(ΨU −Ψ1l) (ρ)‖1

= max
ρ
‖[(∆1,...,N ⊗ 1l) (ΦAU

− ΦA1l)] (ρ)‖1
≤ max

ρ
‖(ΦAU

− ΦA1l) (ρ)‖1
≤ max

ρ

∥∥(ΦU⊗N⊗1l − Φ1l
)

(ρ)
∥∥

1

= ‖ΦU⊗N − Φ1l‖� = ‖PU⊗N − P1l‖� ,

(12)

where we maximize over states ρ of appropriate
dimensions. The induced trace norm is monoton-
ically decreasing under the action of channels and
this gives us first inequality. The second one fol-
lows from the optimality of the parallel scheme of
distinguishing unitary channels [37]. Therefore,
the adaptive scenario does not give any advan-
tage over the parallel scheme.

3.2 Discrimination of random measurements
The structural characterization of multiple-shot
discrimination of von Neumann measurements
given above allows us to draw strong conclu-
sions about distinguishability of generic pairs of
von Neumann measurements. In this work we
restrict our attention to pairs of measurements
distributed independently according to the nat-
ural distribution coming from the Haar measure
µ(Ud) [38].

Theorem 3. Consider two independently dis-
tributed Haar-random von Naumann measure-
ments on Cd, i.e. PU ,PV , where U ∼
µ(Ud), V ∼ µ(Ud). Let popt(PU⊗2 ,PV ⊗2) be
the optimal probability of discrimination mea-
surements PU and PV using two queries and as-
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? i1 i1 · · · i1 i1

V
(1)
i1
...

? i2 · · · i2 i2

V
(2)
i1,i2
...

. . .
...

...

· · · ? iN−1 iN−1

· · ·
V

(N−1)
i1,...,iN−1

? iN

· · · // decision



|ψ1,...,N+1〉

Figure 6: Schematic depiction of the sequential scheme. In the kth step, after obtaining the label ik, we utilize all
labels i1, . . . , ik to modify the remaining parts of the state in the hope of improving distinguishability.

?

V (1) V (2)

· · ·

V (N−1)

? · · ·
. . .

...
...

. . .

· · · ?

· · · ?

· · ·

Figure 7: Visualization of the channel ΦAU
. Here V (k) =

∑
i1,...,ik

|i1, . . . , ik〉〈i1, . . . , ik| ⊗ V (k)
i1,...,ik

.

sistance of entanglement. Then, we have the fol-
lowing bound

Pr
U,V∼µ(Ud)

(popt(PU⊗2 ,PV ⊗2) < 1) ≤ 1
2d−1 . (13)

In other words, in the limit of large dimensions
d, typical Haar-random von Neumann measure-
ments are perfectly distinguishable with the us-
age of two queries and assistance of entanglement
(the probability that they cannot be perfectly dis-
tinguished is exponentially suppressed as a func-
tion of d).

Proof. From the unitary invariance of the
Haar measure and the symmetry of the prob-
lem of measurement discrimination it follows
that the distribution of the random vari-
able popt(P1l⊗2 ,PU⊗2) is identical to that of

popt(PU⊗2 ,PV ⊗2). Consequently, we have

Pr
U,V∼µ(Ud)

(popt(PU⊗2 ,PV ⊗2) < 1)

= Pr
U∼µ(Ud)

(popt(P1l⊗2 ,PU⊗2) < 1) .
(14)

From Corollary 1 it follows that the condition
‖PU − P1l‖� ≥

√
2 implies ‖PU⊗2 − P1l⊗2‖� =

2 and consequently we have also perfect dis-
crimination of two copies of measurements:
popt(PU⊗2 ,P1l⊗2) = 1. Therefore we have

Pr
U∼µ(Ud)

(popt(PU⊗2 ,P1l⊗2) < 1)

≤ Pr
U∼µ(Ud)

(
‖PU − P1l‖� ≤

√
2
)
.

(15)

Using now the characterization given in Eq.(6)
in conjunction with the formula in Eq.(5) we
obtain ‖PU − P1l‖� ≥ 2

√
1− |U11|2 (note that
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U11 = tr(|1〉〈1|U) ∈ W (U)). Using this and sim-
ple algebra we get

Pr
U∼µ(Ud)

(popt(PU⊗2 ,P1l⊗2) < 1)

≤ Pr
U∼µ(Ud)

(
|U11|2 ≥

1
2

)
.

(16)

The right-hand side of the above inequality can
be computed exactly using the property that for
Haar-distributed U the random variable X =
|U11|2 is distributed according to the beta dis-
tribution p(X) = (d − 1)(1 − X)d−2 (see for in-
stance Eq. (9) in [39]). The simple integration
gives (1/2)d−1, which together with Eq.(14) gives
the claimed result.

4 Unambiguous discrimination
The unambiguous discrimination of measure-
ments P1l and PU can be understood as un-
ambiguous discrimination [31] of states gener-
ated by the corresponding channels. Specifi-
cally, for a fixed input state σ, the output states
(P1l ⊗ 1l) (σ), (PU ⊗ 1l) (σ) can be unambiguously
discriminated using the measurement strategy
M = (M1l,MU ,M?), where the first two effects
represent conclusive answers and the last one cor-
responds to the inconclusive output of the proce-
dure. For equal a priori probabilities of occur-
rence of P1l and PU , as well as fixed σ (possi-
bly entangled) andM, the success probability is
given by

pu (P1l,PU ;σ,M)

= 1
2 tr(M1l(P1l ⊗ 1l)(σ)) + 1

2 tr(MU (PU ⊗ 1l)(σ)),
(17)

where additionally the unambiguity condition has
to be satisfied:

tr(MU (P1l ⊗ 1l)(σ)) = tr(M1l(PU ⊗ 1l)(σ)) = 0.
(18)

The optimal success probability of unambigu-
ous discrimination of measurements P1l,PU can
be now defined as the maximum of (17) over all
strategies. Formally, we have

pu (P1l,PU )
:= max

σ∈D(Cd⊗Cd′ )
max

M∈POVM(Cd⊗Cd′ )
pu (P1l,PU ;σ,M) ,

(19)

whereM∈ POVM(Cd⊗Cd′) is a three-outcome
measurement on Cd⊗Cd′ that satisfies constrains
(18) end σ is a state on the extended Hilbert space
Cd ⊗ Cd′ .

4.1 Unambiguous discrimination with assis-
tance of entanglement
In this subsection we present our main result
which gives the probability of unambiguous dis-
crimination with the use of entanglement This is
presented as Theorem 4 while its proof is post-
poned to Appendix C. Aside from giving a sim-
ple expression for this probability, this result re-
duces the problem of unambiguous measurement
discrimination to a convex optimization task and
gives a simple relationship between the diamond
norm and the probability of unambiguous dis-
crimination.

Theorem 4. The optimal success probability of
unambiguous discrimination between von Neu-
mann measurements P1l and PU is given by

pu(P1l,PU ) = 1− min
ρ∈D(Cd)

∑
i

|〈i|ρU |i〉|. (20)

U

°×´�

pu
Λ1

Λd

0

Figure 8: Schematic depiction of the relationship be-
tween the diamond norm ‖PU −P1l‖�, the probability of
unambiguous discrimination pu(P1l,PU ) and Υ(U).

The results coming from Theorem 1 and Theo-
rem 4 give a nice geometric interpretation for the
relationship between the diamond norm and the
probability of unambiguous discrimination. This
is depicted in Fig. 8. We start with a von Neu-
mann measurement in a basis given by some uni-
tary matrix U and try to distinguish it from the
measurement in the computational basis. We as-
sume that U is optimal and denote U ’s eigen-
values as λ1, . . . , λd ordered according to their

Accepted in Quantum 2021-03-17, click title to verify. Published under CC-BY 4.0. 8



phases and use the symbol Υ(U) to denote the
angle between two most distant eigenvalues λ1
and λd. The dependence of the diamond norm
and probability of unambiguous discrimination is
clearly shown.

Remark 1. The above calculations can be eas-
ily extended to the case of parallel discrimination
scheme. It suffices to substitute U with U⊗N and
then we obtain that

pu(PU⊗N ,P1l) = 1− min
ρ∈D

(
CdN

)∑
i

|〈i|ρU⊗N |i〉|.

(21)

Basing on Remark 1, we note that the angle
Υ(U) increases in the multiple-shot case with the
number of queries. This is depicted in Fig. 9 for
two- and three-shots scenarios.

2U

°×´�

pu

Λ1
2

Λd
2

0

3U

°×´�

pu

Λ1
3

Λd
3

0

Figure 9: Figure similar to Fig. 8 which represents two-
(left) and three- (right) shots scenario.

In the general scheme we are allowed to use
conditional unitary transformations {V (k)} after

each measurement, thus our setting for discrim-
ination is the same as presented in Fig. 6 and
Fig. 7. Similarly to the multiple-shot minimum
error discrimination, we will show that adaptive
discrimination scheme does not give any advan-
tage over the parallel one for unambiguous dis-
crimination. We state this formally in the fol-
lowing theorem, which proof is moved to Ap-
pendix D.

Theorem 5. Let U ∈ Ud. Consider the unam-
biguous discrimination of general quantum net-
work with N uses of the black box in which there
is one of two measurements - either PU or P1l.
Then the probability of correct distinction cannot
be better then in the parallel scenario.

4.2 Unambiguous discrimination without assis-
tance of entanglement
In this subsection we provide a brief discussion
on a special case of unambiguous discrimina-
tion without the utilization of entangled states.
We will use the following notation. Let Γ,Λ ⊂
{1, . . . , d}. For given unitary matrix U , we de-
fine PΓ :=

∑
i∈Γ |i〉〈i| and QΛ := UPΛU

†. We
set PΓ,Λ to be the orthogonal projector onto
Span ({U |i〉}i∈Γc)∩Span

(
{|j〉}j∈Λc

)
, where Γc,Λc

denote the complements of Γ and Λ respectively.
The following theorem states the optimal success
probability of unambiguous discrimination with-
out the use of entanglement.

Theorem 6. The optimal success probability of
unambiguous discrimination, without the use of
entanglement, between von Neumann measure-
ments P1l and PU is given by

p̃u (P1l,PU )

= 1
2 max

Γ,Λ⊂{1,...,d}:Γ∩Λ=∅

∥∥∥PΓ,Λ(PΓ +QΛ)PΓ,Λ
∥∥∥
(22)

with PΓ, QΛ,PΓ,Λ defined as above.

The proof of this theorem is presented in Ap-
pendix E.

Remark. The projector PΓ,Λ projects onto the
intersection of supports of PΛc and QΓc. By the
use of Theorem 4 from [40], we can express the
optimal probability of unambiguous discrimina-
tion as
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p̃u (P1l,PU ) = 2 max
Γ,Λ⊂{1,...,d}:Γ∩Λ=∅

∥∥∥PΛc(PΛc +QΓc)−1QΛ(PΛc +QΓc)−1 PΛc

+QΓc(PΛc +QΓc)−1PΓ(PΛc +QΓc)−1 QΓc

∥∥∥, (23)

where (·)−1 denotes Moore-Penrose pseudo in-
verse [13]. Moreover, the optimal input state is
the one which gives the above norm.

Corollary 2. In the case of qubit measurements,
the optimal probability of unambiguous discrim-
ination of P1l and PU is given by the following
(discontinuous) function

p̃u (P1l,PU ) =
{

1 if |U1,2|2 = 1
1
2 |U1,2|2 if |U1,2|2 < 1

.

(24)
In both cases the optimal input state can be cho-
sen to be |1〉〈1|.

The following corollary states that in the qubit
case the unambiguous discrimination with the as-
sistance of entanglement always outperforms the
unambiguous discrimination without the use of
entanglement. On top of that, the special cases
for which the use of entanglement does not give
any advantage are described.

Corollary 3. Let P1l and PU be two von Neu-
mann measurements on a qubit. If |U1,1| 6∈
{0, 1}, then the probability of entanglement-
assisted unambiguous discrimination is given by

pu = 1− |U1,1| (25)

and it is always greater then the probability with-
out assistance of entanglement

p̃u =
{

1 if |U1,2|2 = 1
1
2 |U1,2|2 if |U1,2|2 < 1.

(26)

Moreover, if |U1,1| ∈ {0, 1}, then pu = p̃u.

Remark. The above considerations can be ex-
tended to unambiguous discrimination of multi-
ple copies of von Neumann measurements applied
in parallel. To this end, if we have access to N
parallel queries to a black box measurement, it
suffices to replace unitaries 1l by 1l⊗N and U by
U⊗N in the above computations. Interestingly,
in the contrast to unambiguous discrimination of
quantum states [31], having access to two copies
of black box measurement, sometimes allows at-
taining perfect discrimination. Specifically, con-
sider the problem of discriminating between P1l

and PH , where H = 1√
2

(
1 1
1 −1

)
. Explicit com-

putation shows that by taking the input state as
|Ψ〉 = 1√

2(|1〉|1〉 − |2〉|2〉) allows us to perfectly
distinguish between P⊗2

1l and P⊗2
H .

5 Conclusions

We have presented a comprehensive treatment of
the problem of discrimination of von Neumann
measurements. First of all, we showed an alter-
native proof of the fact that for any pair of mea-
surements P1 and P2, P1 6= P2, there exists a
finite number N of uses of the black box which
allows us to achieve perfect discrimination. More-
over, we calculated the exact value of the dia-
mond norm for given N . This is formally stated
in Corollary 1. We also proved that the parallel
discrimination scheme is optimal in the scenario
of multiple-shot minimum error discrimination of
von Neumann measurements (see Theorem 2).

Moreover, we studied unambiguous discrimina-
tion of von Neumann measurements. Our main
contribution to this problem was the derivation of
the general schemes that attain the optimal suc-
cess probability both with (see Theorem 4) and
without (see Theorem 6) the assistance of entan-
glement. Interestingly, for entanglement-assisted
unambiguous discrimination the optimal success
probability is functionally related to the corre-
sponding success probability for minimum error
discrimination. Finally, we show that the parallel
scheme is also optimal for unambiguous discrim-
ination.

There are many interesting directions for fur-
ther study that still remain to be explored. Below
we list the most important (in our opinion) open
research problems:

• Generalization of our results from projec-
tive measurements to other classes of mea-
surements such as projective-simulable mea-
surements [41], measurements with limited
number of outcomes [42] or general quantum
measurements (POVMs).
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• Systematical study of the problem of un-
ambiguous discrimination of projective mea-
surements in the multiple-shot regime.

• Can typical pairs of Haar-random projective
measurements on Cd be discriminated per-
fectly using only one query and the assis-
tance of entanglement as d→∞?

• How much entanglement is needed to attain
the optimal success probability of multiple-
shot discrimination of generic projective
measurements on Cd? In the same scenario,
is it necessary to adopt the final measure-
ment to the pair of measurements to be dis-
criminated?
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A Proof of Theorem 1
In this appendix we will begin with quoting two lemmas from [29] which contribute the main part of
the proof of Theorem 1. The first lemma states that a function |Tr(ρUE)| has a saddle point. The
second lemma gives an equivalent condition to the existence of the saddle point and presents the form
of the optimal state. Then, we present the proof of Theorem 1 and a short discussion about the amount
of entanglement needed for the discrimination.

Lemma 1 (Lemma 4 from [29]). Let us fix a unitary matrix U ∈ Ud. Then,

max
E∈DUd

min
ρ∈D(Cd)

|Tr(ρUE)| = min
ρ∈D(Cd)

max
E∈DUd

|Tr(ρUE)|. (27)

Lemma 2 (Lemma 5 from [29]). Let us fix a unitary matrix U ∈ Ud and

• E0 ∈ DUd and D(E) = minρ∈D(Cd) |Tr ρUE|,

• D(E0) > 0,

• λ1, λd denote the most distant pair of eigenvalues of UE0

• P1, Pd denote the projectors on the subspaces spanned by the eigenvectors corresponding to λ1,
λd.

Then, the function D(Cd)×DUd 3 (ρ,E) 7→ |Tr(ρUE)| has a saddle point in (ρ0, E0) i.e.

max
E∈DUd

min
ρ∈D(Cd)

|Tr(ρUE)| = |Tr(ρ0UE0)| = min
ρ∈D(Cd)

max
E∈DUd

|Tr(ρUE)| (28)

if and only if there exist states ρ1, ρd such that

• ρ1 = P1ρ1P1,

• ρd = PdρdPd,

• diag(ρ1) = diag(ρd).

Moreover, if the above holds, then the state ρ0 satisfying Eq. (28) can be chosen as 1
2ρ1 + 1

2ρd.

Proof of Theorem 1. In the first step of the proof assume that PU and P1l are perfectly distinguishable
in a single-shot scenario i.e.

‖PU − P1l‖� = min
E∈DUd

‖ΦUE − Φ1l‖� = 2. (29)

This trivially implies that for each N ∈ N the measurements PU⊗N and P1l are perfectly distinguishable
and it holds that

2 = ‖PU⊗N − P1l‖� = min
F∈DU

dN

∥∥∥Φ(U⊗N )F − Φ1l
∥∥∥
�

≤ min
E∈DUd

‖ΦU⊗NE⊗N − Φ1l‖� ≤ 2,
(30)

which proves the thesis of the theorem in this case.
Now, consider the second case when PU and P1l are not perfectly distinguishable using a single

query. Then, according to equality

‖PU − P1l‖� = min
E∈DUd

‖ΦUE − Φ1l‖� (31)

there exists an optimal matrix E0 ∈ DUd such that 0 6∈W (UE0) and ‖PU − P1l‖� = ‖ΦUE0 − Φ1l‖�.
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The general proof strategy is to utilize the Lemma 2 in order to construct optimal discriminator ρ0
for measurements PU⊗N and P1l. Hence we start by establishing that the assumptions of this lemma
are fulfilled. This will follow from Lemma 1. According to it the function (ρ,E) 7→ |Tr(ρUE)| has a
saddle point. Let us remind that ‖ΦU − Φ1l‖� = 2

√
1− ν2, where ν = minx∈W (U) |x|. Due to equality

minE∈DUd
‖ΦUE − Φ1l‖� = ‖ΦUE0 − Φ1l‖� we have

max
E∈DUd

min
x∈W (UE)

|x| = min
x∈W (UE0)

|x|. (32)

Hence using the property that the numerical range is a convex set [43,44] we obtain

max
E∈DUd

min
ρ∈D(Cd)

|Tr(ρUE)| = min
ρ∈D(Cd)

|Tr(ρUE0)|. (33)

Therefore the former assumptions of Lemma 2 are satisfied for the matrix E0 and hence it is possible
to take states ρ1, ρd which fulfill the latter conditions of this Lemma.

To complete the proof we will separately study two cases. In the first one, we assume that POVMs
PU and P1l are not perfectly distinguishable using N queries i.e. 0 6∈ W

(
U⊗NE⊗N0

)
. Hence, as

diag(ρ1) = diag(ρd), then
diag(ρ⊗N1 ) = diag(ρ⊗Nd ) (34)

and ρ⊗N1 , ρ⊗Nd lie on the subspaces spanned by the eigenvectors of the matrix U⊗NE⊗N0 eigenvalues
λN1 and λNd , respectively. Consequently, we fulfilled the latter assumptions of Lemma 2 and the reverse
implication of this Lemma states that the unitary matrix E⊗N0 is optimal and for ρ0 = 1

2ρ
⊗N
1 + 1

2ρ
⊗N
d

it holds that

min
ρ∈D(Cd)

∣∣∣tr (ρ(UE0)⊗N
)∣∣∣ =

∣∣∣tr (ρ0(UE0)⊗N
)∣∣∣

= max
F∈DU

dN

min
ρ∈D(CdN )

∣∣∣tr (ρU⊗NF)∣∣∣ . (35)

Hence ∥∥∥ΦU⊗NE⊗N
0
− Φ1l

∥∥∥
�

= min
F∈DU

dN

‖ΦU⊗NF − Φ1l‖� ≤ min
E∈DUd

‖ΦU⊗NE⊗N − Φ1l‖� (36)

and eventually
‖PU⊗N − P1l‖� = min

E∈DUd

‖ΦU⊗NE⊗N − Φ1l‖� . (37)

In the second case, let 0 ∈ W
(
U⊗ME⊗M0

)
. Let us consider the situ-

ation when M is the first index for which this happens, which means that
0 6∈W

(
U⊗M−1E⊗M−1

0

)
.

If the measurements in question can be perfectly distinguished with M queries, then we have
0 ∈ conv(λM1 , λ1λ

M−1
d , λMd ) and there exists a probability vector p = (p1, p2, p3) such that

p1λ
M
1 + p2λ1λ

M−1
d + p3λ

M
d = 0. (38)

Define a state
ρ = p1ρ

⊗M
1 + p2

(
ρ1 ⊗ ρ⊗M−1

d

)
+ p3ρ

⊗M
d . (39)

We will show that diag
(
ρU⊗M

)
= 0. Indeed

diag
(
ρU⊗ME⊗M0

)
= diag

(
p1λ

M
1 ρ⊗M1 + p2λ1λ

M−1
d

(
ρ1 ⊗ ρ⊗M−1

d

)
+ p3λ

M
d ρ
⊗M
d

)
=p1λ

M
1 diag(ρ⊗M1 ) + p2λ1λ

M−1
d diag

(
ρ1 ⊗ ρ⊗M−1

d

)
+ p3λ

M
d diag(ρ⊗Md )

=
(
p1λ

M
1 + p2λ1λ

M−1
d + p3λ

M
d

)
diag(ρ⊗M1 ) = 0.

(40)
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Thus from Proposition 3 form [29] the condition diag
(
ρU⊗ME⊗M0

)
= 0 implies that ‖PU⊗M − P1l‖� =

2, and hence
‖PU⊗M − P1l‖� = min

E∈DUd

‖ΦU⊗ME⊗M − Φ1l‖� . (41)

For N > M , the equality ‖PU⊗M − P1l‖� = 2 implies that ‖PU⊗N − P1l‖� = 2. Therefore

‖PU⊗N − P1l‖� = min
E∈DUd

‖ΦU⊗NE⊗N − Φ1l‖� , (42)

which completes the proof.

Let us discuss the amount of the discriminator’s entanglement with environment. Note that the
minimal dimension of an auxiliary system needed for optimal discrimination is equal to the rank of
the state ρ0. One special case involves the situation ‖PU⊗N − P1l‖� < 2, where ρ0 = 1

2ρ
⊗N
1 + 1

2ρ
⊗N
d .

In the best case, when eigenvalues λ1 and λd are not degenerated, the states ρ1, ρd are pure, hence
rank(ρ0) = 2. On the other hand, when the spectrum of UE0 contains only λ1 and λd, then the rank
of ρ0 can be roughly upper-bounded by (d− 1)N + 1.

The situation ‖PU⊗N − P1l‖� = 2 is more complicated to analyze, due to lack of an analytic form
of the discriminator in a general case. However, finding a pair of not degenerated eigenvalues λ1, λd
saturating the latter assumptions of Lemma 2 will lead to rank(ρ0) = 3, where ρ0 is defined as in
Eq. (39) and we check its optimality in the same manner as in Eq. (40).

B Explicit form of the matrix AU

The matrix AU is a general operation which allows for adaptive information processing in the sequential
discrimination scenario of von Neumann measurements. It consists of a sequence of unitary matrices
U acting successively on given registers interlacing with classically controlled unitary operations V i.
The explicit form of the matrix AU is given by

AU = (1l1,...N−1 ⊗ U ⊗ 1lN+1) ∑
i1,...,iN−1

|i1, . . . , iN−1〉〈i1, . . . , iN−1| ⊗ V (N−1)
i1,...,iN−1


(1l1,...,N−2 ⊗ U ⊗ 1lN,N+1) ∑
i1,...,iN−2

|i1, . . . , iN−2〉〈i1, . . . , iN−2| ⊗ V (N−2)
i1,...,iN−2


. . .

(1l1 ⊗ U ⊗ 1l3,...N+1)∑
i1

|i1〉〈i1| ⊗ V (1)
i1


(U ⊗ 1l2,...N+1) .

(43)

C Proof of Theorem 4

Proof of Theorem 4. Assume that a black-box measurement (P1l or PU ) acts on a system extended
by the ancilla space HB (of some dimension d1). Without loss of generality we take the pure input
state i.e. σ = |ψAB〉〈ψAB|. Let X be a matrix such that |ψAB〉 =

∑d,d1
i,j=1Xij |i〉|j〉. The action of the
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channels P1l ⊗ 1lB and PU ⊗ 1lB on |ψAB〉〈ψAB| can be expressed as

(P1l ⊗ 1lB) (|ψAB〉〈ψAB|) =
d∑
i=1
|i〉〈i| ⊗XT |i〉〈i|X,

(PU ⊗ 1lB) (|ψAB〉〈ψAB|) =
d∑
i=1
|i〉〈i| ⊗XTU |i〉〈i|UTX,

(44)

where we treat measurements P1l and PU as a measure and prepare channels of the form ΨM(σ) =∑n
i=1 tr(Miσ)|i〉〈i|.
As for any Hermitian operator M and any measurement P we have

tr (M(P ⊗ 1l)(σ)) = tr (M(∆P ⊗ 1l)(σ))
= tr ((∆⊗ 1l)(M)(P ⊗ 1l)(σ)) ,

(45)

where ∆ is a dephasing channel. Hence we can restrict our attention to considering measurementsM
which effects have block-diagonal structure, that is

M =
d∑
i=1
|i〉〈i| ⊗ Ti, (46)

where Ti is a POVM on HB associated with a measure and prepare channel. From Eq.(44) we see
that upon obtaining the label i, the state of the auxiliary subsystem is either

|xi〉〈xi| = p−1
i X>|i〉〈i|X, (47)

when measurement P1l was performed, or it is given by

|yi〉〈yi| = q−1
i X>U |i〉〈i|UTX (48)

if PU was implemented. In the above formulas pi, qi are responsible for normalization. We assume
that pi > 0 and qi > 0 (otherwise the specific outcome i does not occur). We see that states |xi〉〈xi|,
|yi〉〈yi| are pure and therefore the optimal measurements Ti = {T (i)

1 , T
(i)
2 , T

(i)
? } will be simply given by

T
(i)
1 = γ1(1l− |yi〉〈yi|),

T
(i)
2 = γ2(1l− |xi〉〈xi|),

T
(i)
? = 1l− T1 − T2,

(49)

for some choice of γ1,2 which guarantees the non-negativity of T (i)
? .

The probability of success in unambiguous discrimination of pure states |x〉, |y〉 with unequal a priori
probabilities η, 1− η is given by [45]

pusucc(x, y, η) =


1− η − (1− η)c2 for η < c2

1+c2

1− 2c
√
η(1− η) for c2

1+c2 ≤ η ≤ 1
1+c2

1− (1− η)− ηc2 for 1
1+c2 < η,

(50)

where c = |〈x|y〉|.
We will use the following upper bound

pusucc(x, y, η) ≤ 1− 2c
√
η(1− η), (51)

which can be verified directly by elementary calculations.
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Let ρ = XX†. The overlap ci between states of the auxiliary subsystem is given by

ci = |〈xi|yi〉| = |〈i|XX>U |i〉|/
√
piqi = |〈i|ρU |i〉|/√piqi, (52)

while a priori probabilities of |xi〉, |yi〉 upon obtaining label i are ηi = pi
pi+qi

, 1 − ηi = qi
pi+qi

. Taking
the above into account, we get that probability of success in unambiguous measurement on auxiliary
subsystem, given that label i was observed, can be bounded from above by

pusucc(xi, yi, ηi) ≤ 1− 2ci
√
piqi

pi + qi
= 1− 2|〈i|ρU |i〉|

pi + qi
. (53)

Therefore, the overall probability of success is bounded by

pu(P1l,PU ) = max
|ψAB〉

∑
i

Pr(label = i)pusucc(xi, yi, ηi)

≤ max
ρ

∑
i

1
2(pi + qi)

(
1− 2|〈i|ρU |i〉|

pi + qi

)
= 1−min

ρ

∑
i

|〈i|ρU |i〉|.

(54)

What is more, the above bound is tight. The situation when P1l and PU are perfectly distinguishable
is trivial to check. In the case when P1l and PU are not perfectly distinguishable, then there exists
a state ρ which will give equal probabilities pi and qi for each label i. This statement follows from
Lemma 2, from which we take ρ = ρ0.

D Proof of Theorem 5
Proof of Theorem 5. We will assume that the unitary matrix U is optimal, i.e. Υ(U) = Θ(U). Take
an arbitrary input state σ = |ψA,B〉〈ψA,B|. Let us denote

|xi〉 = p
−1/2
i (〈i| ⊗ 1lN+1)A1l|ψA,B〉

|yi〉 = q
−1/2
i (〈i| ⊗ 1lN+1)AU |ψA,B〉,

(55)

where AU and A1l are defined as in Appendix B and pi, qi are responsible for normalization. Repeating
the calculation from the single-shot scenario from the proof in Appendix C we can upper-bound the
probability of successful discrimination as follows

pu(ΨU ,Ψ1l) ≤ 1− min
|ψA,B〉

∑
i

∣∣∣〈ψA,B|A†1l (|i〉〈i| ⊗ 1lN+1)AU |ψA,B〉
∣∣∣

≤ 1− min
|ψA,B〉

∣∣∣∣∣∑
i

〈ψA,B|A†1l (|i〉〈i| ⊗ 1lN+1)AU |ψA,B〉
∣∣∣∣∣

= 1− min
|ψA,B〉

∣∣∣〈ψA,B|A†1lAU |ψA,B〉∣∣∣ .
(56)

From the work [37] we know that there exists a state |φ〉 such that for all |ψA,B〉 it holds that

|〈ψA,B|A†1lAU |ψA,B〉| ≥ |〈φ|U
⊗N |φ〉|. (57)

Moreover, using optimality of U and Lemma 1, the state |φ〉 can be chosen to satisfy |〈φ|U⊗N |φ〉| =
minρ

∑
i |〈i|ρU⊗N |i〉|. This leads to the desired inequality

pu(ΨU ,Ψ1l) ≤ 1−min
ρ

∑
i

|〈i|ρU⊗N |i〉|. (58)
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E Proof of Theorem 6
Proof of Theorem 6. Let us fix the input state σ ∈ D(Cd). Without loss of generality we can restrict
our attention to measurementsM with diagonal effects (see Eq. (45) in Appendix C).
From the unambiguity condition we obtain thatM1l ⊥ supp(PU (σ)) andMU ⊥ supp(P1l(σ)). There-

fore, the optimal measurements can be always chosen as projectors onto disjoint subsets Γ,Λ of
{1, . . . , d}. The formula for the success probability reads

p̃u (P1l,PU ;σ,Γ,Λ) = 1
2 tr(PΓσ) + 1

2 tr(QΛσ). (59)

Importantly, the input state σ satisfies σ ⊥ PΛ and σ ⊥ QΓ. For fixed subsets Λ,Γ, due to linearity,
the maximum over σ equals ‖PΓ,∆(PΓ +QΛ)PΓ,∆‖, where ‖ · ‖ denotes the operator norm and PΓ,∆ is
the orthogonal projector onto Span ({U |i〉}i∈Γc)∩Span

(
{|j〉}j∈Λc

)
. By optimizing over disjoint subsets

Λ,Γ ⊂ {1, . . . , d} we obtain the result.
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