Complete Information Balance in Quantum Measurement

Seung-Woo Lee1,2, Jaewan Kim3, and Hyunchul Nha4

1Center for Quantum Information, Korea Institute of Science and Technology, Seoul, 02792, Korea
2Quantum Universe Center, Korea Institute for Advanced Study, Seoul 02455, Korea
3School of Computational Sciences, Korea Institute for Advanced Study, Seoul 02455, Korea
4Department of Physics, Texas A&M University at Qatar, Education City, P.O.Box 23874, Doha, Qatar

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum measurement is a basic tool to manifest intrinsic quantum effects from fundamental tests to quantum information applications. While a measurement is typically performed to gain information on a quantum state, its role in quantum technology is indeed manifold. For instance, quantum measurement is a crucial process element in measurement-based quantum computation. It is also used to detect and correct errors thereby protecting quantum information in error-correcting frameworks. It is therefore important to fully characterize the roles of quantum measurement encompassing information gain, state disturbance and reversibility, together with their fundamental relations. Numerous efforts have been made to obtain the trade-off between information gain and state disturbance, which becomes a practical basis for secure information processing. However, a complete information balance is necessary to include the reversibility of quantum measurement, which constitutes an integral part of practical quantum information processing. We here establish all pairs of trade-off relations involving information gain, disturbance, and reversibility, and crucially the one among all of them together. By doing so, we show that the reversibility plays a vital role in completing the information balance. Remarkably, our result can be interpreted as an information-conservation law of quantum measurement in a nontrivial form. We completely identify the conditions for optimal measurements that satisfy the conservation for each tradeoff relation with their potential applications. Our work can provide a useful guideline for designing a quantum measurement in accordance with the aims of quantum information processors.

► BibTeX data

► References

[1] W. Heisenberg, Über den anschaulichen inhalt der quantentheoretischen kinematik und mechanik, Z. Phys. 43, 172–198 (1927).

[2] M. T. Quintino, T. Vértesi, and N. Brunner, Joint Measurability, Einstein-Podolsky-Rosen Steering, and Bell Nonlocality, Phys. Rev. Lett. 113, 160402 (2014).

[3] R. Uola, T. Moroder, and O. Gühne, Joint Measurability of Generalized Measurements Implies Classicality, Phys. Rev. Lett. 113, 160403 (2014).

[4] R. Raussendorf and H. J. Briegel, A One-Way Quantum Computer, Phys. Rev. Lett. 86, 5188 (2001).

[5] M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, 2000).

[6] H. M. Wiseman and G. J. Milburn, Quantum Measurement and Control (Cambridge University Press, 2009).

[7] K. Jacobs, Quantum Measurement Theory and its Applications (Cambridge University Press, 2014).

[8] C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Teleporting an unknown quantum state via dual classical and einstein-podolsky-rosen channels, Phys. Rev. Lett. 70, 1895 (1993).

[9] H. J. Briegel, D. E. Browne, W. Dür, R. Raussendorf, and M. Van den Nes, Measurement-based quantum computation, Nature Physics 5, 19–26 (2009).

[10] S. Pirandola, J. Eisert, C. Weedbrook, A. Furusawa, and S. L. Braunstein, Advances in quantum teleportation, Nature Photonics 9, 641–652 (2015).

[11] V. Giovannetti, S. Lloyd, and L. Maccone, Advances in quantum metrology, Nature Photonics 5, 222–229 (2011).

[12] D. Lidar and T. Brun, Quantum Error Correction (Cambridge University Press, 2013).

[13] N. Gisin, G. Ribordy, W. Tittel, and H. Zbinden, Quantum cryptography, Rev. Mod. Phys. 74, 145 (2002).

[14] C. H. Bennett and G. Brassard, Quantum cryptography: Public key distribution and coin tossing, Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, 175 (1984).

[15] H. J. Groenewold, A problem of information gain by quantal measurements, Int. J. Theoretical Phys. 4, 327–338 (1971).

[16] G. Lindblad, An entropy inequality for quantum measurements, Commun. Math. Phys. 28, 245–249 (1972).

[17] M. Ozawa, On information gain by quantum measurements of continuous observables, J. Math. Phys. 27, 759 (1986).

[18] C. A. Fuchs and A. Peres, Quantum-state disturbance versus information gain: Uncertainty relations for quantum information, Phys. Rev. A 53, 2038 (1996).

[19] C. A. Fuchs and K. A. Jacobs, Information-tradeoff relations for finite-strength quantum measurements, Phys. Rev. A 63, 062305 (2001).

[20] K. Banaszek, Fidelity balance in quantum operations, Phys. Rev. Lett. 86, 1366 (2001).

[21] K. Banaszek and I. Devetak, Fidelity trade-off for finite ensembles of identically prepared qubits, Phys. Rev. A 64, 052307 (2001).

[22] G. M. D'ariano, On the Heisenberg principle, namely on the information-disturbance trade-off in a quantum measurement, Fortschr. Phys. 51, 318 (2003).

[23] M. F. Sacchi, Information-disturbance tradeoff in estimating a maximally entangled state, Phys. Rev. Lett. 96, 220502 (2006).

[24] F. Buscemi, M. Hayashi, and M. Horodecki, Global information balance in quantum measurements, Phys. Rev. Lett. 100, 210504 (2008).

[25] S. Luo, Information conservation and entropy change in quantum measurements, Phys. Rev. A 82, 052103 (2010).

[26] M. Berta, J. M. Renes, and M. M. Wilde, Identifying the information gain of a quantum measurement, IEEE Transactions on Information Theory 60, 7987 (2014).

[27] M. Ueda and M. Kitagawa, Reversibility in quantum measurement processes, Phys. Rev. Lett. 68, 3424 (1992).

[28] A. Royer, Reversible quantum measurements on a spin 1/​2 and measuring the state of a single system, Phys. Rev. Lett. 73, 913 (1994).

[29] M. Ueda, N. Imoto, and H. Nagaoka, Logical reversibility in quantum measurement: General theory and specific examples, Phys. Rev. A 53, 3808 (1996).

[30] A. N. Jordan and A. N. Korotkov, Uncollapsing the wavefunction by undoing quantum measurements, Contemporary Physics 51, 125 (2010).

[31] M. Koashi and M. Ueda, Reversing measurement and probabilistic quantum error correction, Phys. Rev. Lett. 82, 2598 (1999).

[32] H. Terashima and M. Ueda, Nonunitary quantum circuit, International Journal of Quantum Information 3, 633 (2005).

[33] A. N. Korotkov and A. N. Jordan, Undoing a weak quantum measurement of a solid-state qubit, Phys. Rev. Lett. 97, 166805 (2006).

[34] A. N. Korotkov and K. Keane, Decoherence suppression by quantum measurement reversal, Phys. Rev. A 81, 040103(R) (2010).

[35] Y.-S. Kim, Y.-W. Cho, Y.-S. Ra, and Y.-H. Kim, Reversing the weak quantum measurement for a photonic qubit, Optics Express 17, 11978 (2009).

[36] Y.-S. Kim, J.-C. Lee, O. Kwon, and Y.-H. Kim, Protecting entanglement from decoherence using weak measurement and quantum measurement reversal, Nature Physics 8, 117 (2012).

[37] N. Katz, M. Neeley, M. Ansmann, R. C. Bialczak, M. Hofheinz, E. Lucero, A. O'Connell, H. Wang, A. N. Cleland, J. M. Martinis, and A. N. Korotkov, Reversal of the weak measurement of a quantum state in a superconducting phase qubit, Phys. Rev. Lett. 101, 200401 (2008).

[38] P. Schindler, T. Monz, D. Nigg, J. T. Barreiro, E. A. Martinez, M. F. Brandl, M. Chwalla, M. Hennrich, and R. Blatt, Undoing a Quantum Measurement, Phys. Rev. Lett. 110, 070403 (2013).

[39] J.-C. Lee, Y.-C. Jeong, Y.-S. Kim, and Y.-H. Kim, Experimental demonstration of decoherence suppression via quantum measurement reversal, Optics Express 19, 16309 (2011).

[40] Y. W. Cheong and S.-W. Lee, Balance between information gain and reversibility in weak measurement, Phys. Rev. Lett. 109, 150402 (2012).

[41] H.-T. Lim, Y.-S. Ra, K.-H. Hong, S.-W. Lee, and Y.-H. Kim, Fundamental bounds in measurements for estimating quantum states, Phys. Rev. Lett. 113, 020504 (2014).

[42] G. Chen, Y. Zou, X.-Y. Xu, J.-S. Tang, Y.-L. Li, J.-S. Xu, Y.-J. Han, C.-F. Li, G.-C. Guo, H.-Q. Ni, Y. Yu, M.-F. Li, G.-W. Zha, Z.-C. Niu, and Y. Kedem, Experimental Test of the State Estimation-Reversal Tradeoff Relation in General Quantum Measurements, Phys. Rev. X 4, 021043 (2014).

[43] H. Terashima, Information, fidelity, and reversibility in single-qubit measurements, Phys. Rev. A 83, 032114 (2011).

[44] H. Terashima, Information, fidelity, and reversibility in general quantum measurements, Phys. Rev. A 93, 022104 (2016).

[45] D. Petz, Sufficient subalgebras and the relative entropy of states of a von Neumann algebra, Commun. Math. Phys. 105, 123 (1986).

[46] D. Petz, Sufficiency of channels over von Neumann algebras, The Quarterly Journal of Mathematics 39, 97(1988).

[47] M. Junge, R. Renner, D. Sutter, M. M. Wilde, and A. Winter, Universal recovery maps and approximate sufficiency of quantum relative entropy, Annales Henri Poincare 19, 2955 (2018).

[48] F. Sciarrino, M. Ricci, F. De Martini, R. Filip, and L. Mišta, Jr., Realization of a minimal disturbance quantum measurement, Phys. Rev. Lett. 96, 020408 (2006).

[49] F. Buscemi, S. Das, and M. M. Wilde, Approximate reversibility in the context of entropy gain, information gain, and complete positivity, Phys. Rev. A 93, 062314 (2016).

[50] H. Kwon and M. S. Kim, Fluctuation theorems for a quantum channel, Phys. Rev. X 9, 031029 (2019).

[51] W. Wootters and W. Zurek, A Single Quantum Cannot be Cloned, Nature 299, 802–803 (1982).

[52] V. Bužek and M. Hillery, Quantum copying: Beyond the no-cloning theorem, Phys. Rev. A 54, 1844 (1996).

[53] N. Gisin and S. Massar, Optimal quantum cloning machines, Phys. Rev. Lett. 79, 2153 (1997).

[54] V. Scarani, S. Iblisdir, N. Gisin, and A. Acín, Quantum cloning, Rev. Mod. Phys. 77, 1225 (2005).

[55] D. Bruss, A. Ekert, and C. Macchiavello, Optimal universal quantum cloning and state estimation, Phys. Rev. Lett. 81, 2598 (1998).

[56] S. Iblisdir, A. Acín, N. J. Cerf, R. Filip, J. Fiurášek, and N. Gisin, Multipartite asymmetric quantum cloning, Phys. Rev. A 72, 042328 (2005).

[57] J. Bae and A. Acín, Asymptotic quantum cloning is state estimation, Phys. Rev. Lett. 97, 030402(2006).

[58] L. M. Duan and G. C. Guo, Probabilistic cloning and identification of linearly independent quantum states, Phys. Rev. Lett. 80, 4999 (1998).

[59] L. M. Duan and G. C. Guo, A probabilistic cloning machine for replicating two non-orthogonal states, Phys. Lett. A. 243, 261 (1998).

[60] T. Sagawa and M. Ueda, Second law of thermodynamics with discrete quantum feedback control, Phys. Rev. Lett. 100, 080403 (2008).

[61] K. Jacobs, Second law of thermodynamics and quantum feedback control: Maxwell's demon with weak measurements, Phys. Rev. A 80, 012322 (2009).

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-04-22 07:22:01). On SAO/NASA ADS no data on citing works was found (last attempt 2021-04-22 07:22:01).