Quantum control with a multi-dimensional Gaussian quantum invariant
Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom
Published: | 2021-03-11, volume 5, page 409 |
Eprint: | arXiv:2010.15068v2 |
Doi: | https://doi.org/10.22331/q-2021-03-11-409 |
Citation: | Quantum 5, 409 (2021). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The framework of quantum invariants is an elegant generalization of adiabatic quantum control to control fields that do not need to change slowly. Due to the unavailability of invariants for systems with more than one spatial dimension, the benefits of this framework have not yet been exploited in multi-dimensional systems. We construct a multi-dimensional Gaussian quantum invariant that permits the design of time-dependent potentials that let the ground state of an initial potential evolve towards the ground state of a final potential. The scope of this framework is demonstrated with the task of shuttling an ion around a corner which is a paradigmatic control problem in achieving scalability of trapped ion quantum information technology.

Featured image: Trapped ions are shuttled around a corner in the plane. The trap trajectories are shown in blue, while the ion trajectories are in red, and the yellow ellipses represent the trapping frequencies taken at equal time intervals.
► BibTeX data
► References
[1] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, Phys. Rev. X 8, 021012 (2018).
https://doi.org/10.1103/PhysRevX.8.021012
[2] K. X. Wei, I. Lauer, S. Srinivasan, N. Sundaresan, D. T. McClure, D. Toyli, D. C. McKay, J. M. Gambetta, and S. Sheldon, Phys. Rev. A 101, 032343 (2020).
https://doi.org/10.1103/PhysRevA.101.032343
[3] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, Phys. Rev. A 89, 022317 (2014).
https://doi.org/10.1103/PhysRevA.89.022317
[4] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K. Hensinger, Science Advances 3(2), e1601540 (2017).
https://doi.org/10.1126/sciadv.1601540
[5] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002), iSBN: 0028-0836.
https://doi.org/10.1038/nature00784
[6] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).
https://doi.org/10.1103/PhysRevLett.82.1835
[7] M. A. Rowe, A. Ben-Kish, B. Demarco, D. Leibfried, V. Meyer, J. Beall, J. Britton, J. Hughes, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Quant. Inf. Comp. 2(4), 257 (2002).
http://dl.acm.org/citation.cfm?id=2011477.2011478
[8] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, and J. Rabchuk, Appl. Phys. Lett. 88, 034101 (2006).
https://doi.org/10.1063/1.2164910
[9] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).
https://doi.org/10.1103/RevModPhys.75.281
[10] E. J. Heller, J. Chem. Phys 62, 1544 (1975a).
https://doi.org/10.1063/1.430620
[11] E. J. Heller, Chem. Phys. Lett. 34(2), 321 (1975b).
https://doi.org/10.1016/0009-2614(75)85284-5
[12] E. J. Heller, J. Chem. Phys 65, 4979 (1976).
https://doi.org/10.1063/1.432974
[13] E. J. Heller, J. Chem. Phys 66, 5777 (1977).
https://doi.org/10.1063/1.433853
[14] E. J. Heller, J. Chem. Phys 75, 2923 (1981).
https://doi.org/10.1063/1.442382
[15] H. R. Lewis, Phys. Rev. 172, 1313 (1968).
https://doi.org/10.1103/PhysRev.172.1313
[16] X. Chen, E. Torrontegui, and J. G. Muga, Phys. Rev. A 83, 062116 (2011).
https://doi.org/10.1103/PhysRevA.83.062116
[17] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. A 83, 013415 (2011).
https://doi.org/10.1103/PhysRevA.83.013415
[18] A. Levy, A. Kiely, J. G. Muga, R. Kosloff, and E. Torrontegui, New J. Phys. 20, 025006 (2018).
https://doi.org/10.1088/1367-2630/aaa9e5
[19] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Adv. At. Mol. Opt. Phys. 62, 117 (2013).
https://doi.org/10.1016/B978-0-12-408090-4.00002-5
[20] A. Tobalina, M. Palmero, S. Martínez-Garaot, and J. G. Muga, Sci. Rep. 7, 5753 (2017).
https://doi.org/10.1038/s41598-017-05823-x
[21] X.-J. Lu, A. Ruschhaupt, S. Martínez-Garaot, and J. G. Muga, Entropy 22(3), 262 (2020).
https://doi.org/10.3390/e22030262
[22] Q. Zhang, J. G. Muga, D. Guéry-Odelin, and X. Chen, J. Phys. B 49(12), 125503 (2016).
https://doi.org/10.1088/0953-4075/49/12/125503
[23] G. Ness, C. Shkedrov, Y. Florshaim, and Y. Sagi, New J. Phys. 20, 095002 (2018).
https://doi.org/10.1088/1367-2630/aadcc1
[24] X. Chen, R.-L. Jiang, J. Li, Y. Ban, and E. Y. Sherman, Phys. Rev. A 97, 013631 (2018).
https://doi.org/10.1103/PhysRevA.97.013631
[25] H. C. Rosu and J. L. Romero, Nuovo Cim. B 114, 569 (1999).
arXiv:quant-ph/9707044
[26] P. B. Espinoza, arXiv:math-ph/0002005 (2000).
arXiv:math-ph/0002005
[27] A. M. Goncharenko, Y. A. Logvin, A. M. Samson, P. S. Shapovalov, and S. I. Turovets, Phys. Lett. A 160(2), 138 (1991).
https://doi.org/10.1016/0375-9601(91)90602-5
[28] A. Tobalina, E. Torrontegui, I. Lizuain, M. Palmero, and J. G. Muga, Phys. Rev. A 102, 063112 (2020).
https://doi.org/10.1103/PhysRevA.102.063112
[29] F. Mintert and E. J. Heller, EPL 86(5), 50006 (2009).
https://doi.org/10.1209/0295-5075/86/50006
[30] H. R. Lewis, Phys. Rev. Lett. 18, 510 (1967).
https://doi.org/10.1103/PhysRevLett.18.510
[31] M. Palmero, E. Torrontegui, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. A 88, 053423 (2013).
https://doi.org/10.1103/PhysRevA.88.053423
[32] X.-J. Lu, J. G. Muga, X. Chen, U. G. Poschinger, F. Schmidt-Kaler, and A. Ruschhaupt, Phys. Rev. A 89, 063414 (2014).
https://doi.org/10.1103/PhysRevA.89.063414
[33] H. R. Lewis and P. G. L. Leach, J. Math. Phys 23, 2371 (1982).
https://doi.org/10.1063/1.525329
[34] X.-J. Lu, A. Ruschhaupt, and J. G. Muga, Phys. Rev. A 97, 053402 (2018).
https://doi.org/10.1103/PhysRevA.97.053402
[35] P. Leach and S. Andriopoulos, Appl. Anal. Discrete Math. 2(2), 146 (2008).
https://doi.org/10.2298/AADM0802146L
Cited by
[1] Kazutaka Takahashi, "Dynamical invariant formalism of shortcuts to adiabaticity", Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 380 2239, 20220301 (2022).
[2] Ander Tobalina, Juan Gonzalo Muga, Ion Lizuain, and Mikel Palmero, "Shortcuts to adiabatic rotation of a two-ion chain", Quantum Science and Technology 6 4, 045023 (2021).
[3] Modesto Orozco-Ruiz, Selwyn Simsek, Sahra A. Kulmiya, Samuel J. Hile, Winfried K. Hensinger, and Florian Mintert, "Optimal control with a multidimensional quantum invariant", Physical Review A 108 2, 022601 (2023).
[4] Omar Raii, Florian Mintert, and Daniel Burgarth, "Scalable quantum control and non-Abelian anyon creation in the Kitaev honeycomb model", Physical Review A 106 6, 062401 (2022).
[5] Xiao-Jing Lu, Ion Lizuain, and J. G. Muga, "Inverse engineering of fast state transfer among coupled oscillators", Quantum 6, 740 (2022).
[6] Xiao-Jing Lu, Mikel Palmero, Ion Lizuain, and Juan Gonzalo Muga, "Fast Driving of a Particle in Two Dimensions without Final Excitation", Entropy 24 11, 1694 (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-11-29 18:55:50) and SAO/NASA ADS (last updated successfully 2023-11-29 18:55:51). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.