Quantum control with a multi-dimensional Gaussian quantum invariant

Selwyn Simsek and Florian Mintert

Physics Department, Blackett Laboratory, Imperial College London, Prince Consort Road, SW7 2BW, United Kingdom

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The framework of quantum invariants is an elegant generalization of adiabatic quantum control to control fields that do not need to change slowly. Due to the unavailability of invariants for systems with more than one spatial dimension, the benefits of this framework have not yet been exploited in multi-dimensional systems. We construct a multi-dimensional Gaussian quantum invariant that permits the design of time-dependent potentials that let the ground state of an initial potential evolve towards the ground state of a final potential. The scope of this framework is demonstrated with the task of shuttling an ion around a corner which is a paradigmatic control problem in achieving scalability of trapped ion quantum information technology.

► BibTeX data

► References

[1] N. Friis, O. Marty, C. Maier, C. Hempel, M. Holzäpfel, P. Jurcevic, M. B. Plenio, M. Huber, C. Roos, R. Blatt, and B. Lanyon, Phys. Rev. X 8, 021012 (2018).

[2] K. X. Wei, I. Lauer, S. Srinivasan, N. Sundaresan, D. T. McClure, D. Toyli, D. C. McKay, J. M. Gambetta, and S. Sheldon, Phys. Rev. A 101, 032343 (2020).

[3] C. Monroe, R. Raussendorf, A. Ruthven, K. R. Brown, P. Maunz, L.-M. Duan, and J. Kim, Phys. Rev. A 89, 022317 (2014).

[4] B. Lekitsch, S. Weidt, A. G. Fowler, K. Mølmer, S. J. Devitt, C. Wunderlich, and W. K. Hensinger, Science Advances 3(2), e1601540 (2017).

[5] D. Kielpinski, C. Monroe, and D. J. Wineland, Nature 417, 709 (2002), iSBN: 0028-0836.

[6] K. Mølmer and A. Sørensen, Phys. Rev. Lett. 82, 1835 (1999).

[7] M. A. Rowe, A. Ben-Kish, B. Demarco, D. Leibfried, V. Meyer, J. Beall, J. Britton, J. Hughes, W. M. Itano, B. Jelenković, C. Langer, T. Rosenband, and D. J. Wineland, Quant. Inf. Comp. 2(4), 257 (2002).

[8] W. K. Hensinger, S. Olmschenk, D. Stick, D. Hucul, M. Yeo, M. Acton, L. Deslauriers, C. Monroe, and J. Rabchuk, Appl. Phys. Lett. 88, 034101 (2006).

[9] D. Leibfried, R. Blatt, C. Monroe, and D. Wineland, Rev. Mod. Phys. 75, 281 (2003).

[10] E. J. Heller, J. Chem. Phys 62, 1544 (1975a).

[11] E. J. Heller, Chem. Phys. Lett. 34(2), 321 (1975b).

[12] E. J. Heller, J. Chem. Phys 65, 4979 (1976).

[13] E. J. Heller, J. Chem. Phys 66, 5777 (1977).

[14] E. J. Heller, J. Chem. Phys 75, 2923 (1981).

[15] H. R. Lewis, Phys. Rev. 172, 1313 (1968).

[16] X. Chen, E. Torrontegui, and J. G. Muga, Phys. Rev. A 83, 062116 (2011).

[17] E. Torrontegui, S. Ibáñez, X. Chen, A. Ruschhaupt, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. A 83, 013415 (2011).

[18] A. Levy, A. Kiely, J. G. Muga, R. Kosloff, and E. Torrontegui, New J. Phys. 20, 025006 (2018).

[19] E. Torrontegui, S. Ibáñez, S. Martínez-Garaot, M. Modugno, A. del Campo, D. Guéry-Odelin, A. Ruschhaupt, X. Chen, and J. G. Muga, Adv. At. Mol. Opt. Phys. 62, 117 (2013).

[20] A. Tobalina, M. Palmero, S. Martínez-Garaot, and J. G. Muga, Sci. Rep. 7, 5753 (2017).

[21] X.-J. Lu, A. Ruschhaupt, S. Martínez-Garaot, and J. G. Muga, Entropy 22(3), 262 (2020).

[22] Q. Zhang, J. G. Muga, D. Guéry-Odelin, and X. Chen, J. Phys. B 49(12), 125503 (2016).

[23] G. Ness, C. Shkedrov, Y. Florshaim, and Y. Sagi, New J. Phys. 20, 095002 (2018).

[24] X. Chen, R.-L. Jiang, J. Li, Y. Ban, and E. Y. Sherman, Phys. Rev. A 97, 013631 (2018).

[25] H. C. Rosu and J. L. Romero, Nuovo Cim. B 114, 569 (1999).

[26] P. B. Espinoza, arXiv:math-ph/​0002005 (2000).

[27] A. M. Goncharenko, Y. A. Logvin, A. M. Samson, P. S. Shapovalov, and S. I. Turovets, Phys. Lett. A 160(2), 138 (1991).

[28] A. Tobalina, E. Torrontegui, I. Lizuain, M. Palmero, and J. G. Muga, Phys. Rev. A 102, 063112 (2020).

[29] F. Mintert and E. J. Heller, EPL 86(5), 50006 (2009).

[30] H. R. Lewis, Phys. Rev. Lett. 18, 510 (1967).

[31] M. Palmero, E. Torrontegui, D. Guéry-Odelin, and J. G. Muga, Phys. Rev. A 88, 053423 (2013).

[32] X.-J. Lu, J. G. Muga, X. Chen, U. G. Poschinger, F. Schmidt-Kaler, and A. Ruschhaupt, Phys. Rev. A 89, 063414 (2014).

[33] H. R. Lewis and P. G. L. Leach, J. Math. Phys 23, 2371 (1982).

[34] X.-J. Lu, A. Ruschhaupt, and J. G. Muga, Phys. Rev. A 97, 053402 (2018).

[35] P. Leach and S. Andriopoulos, Appl. Anal. Discrete Math. 2(2), 146 (2008).

Cited by

[1] Ander Tobalina, Juan Gonzalo Muga, Ion Lizuain, and Mikel Palmero, "Shortcuts to adiabatic rotation of a two-ion chain", Quantum Science and Technology 6 4, 045023 (2021).

[2] Xiao-Jing Lu, Ion Lizuain, and J. G. Muga, "Inverse engineering of fast state transfer among coupled oscillators", Quantum 6, 740 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2022-10-04 16:54:51). The list may be incomplete as not all publishers provide suitable and complete citation data.

On SAO/NASA ADS no data on citing works was found (last attempt 2022-10-04 16:54:51).