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Homological product codes are a class of codes that can have improved distance while
retaining relatively low stabilizer weight. We show how to build union-find decoders for
these product codes, by combining a union-find decoder for one of the codes in the product
with a brute force decoder for the other code in the product. We apply this construction to
the specific case of the product of a surface code with a small code such as a [[4, 2, 2]] code,
which we call an augmented surface code. The distance of the augmented surface code is the
product of the distance of the surface code with that of the small code, and the union-find
decoder, with slight modifications, can decode errors up to half the distance. We present
numerical simulations, showing that while the pseudo-thresholds of these augmented codes
are lower than that of the surface code, the low noise performance is improved.

The homological product provides a general tool to construct a new CSS quantum code out of two
smaller CSS quantum codes. The resulting codes are called homological product codes[1, 2]. One
application of this product has been to construct quantum codes with linear distance and rate and with
stabilizers whose weight scales only as the square-root of the number of qubits[2]. Other applications
include weight balancing[3, 4] and the construction of some novel code families[5]. A special case of
the homological product is the hypergraph product[6], which has been applied to construct quantum
LDPC codes of linear rate and square-root distance.

Any application of a code necessitates a decoder. Hypergraph product codes have efficient decoders[7,
8]. Other decoders for homological product codes considered include an extension of belief propagation[9],
and a decoder for a class of “three-dimensional codes”[10].

In this paper, we give a general construction of an efficient decoder for another class of homological
product codes. The decoder is a generalization of the union-find decoder[11]. We assume that one of
the codes in the product, which we call the large code has a union-find decoder, while we assume that
the other code, which we call the fixed code, is of some fixed O(1) size so that we can use a brute force
decoder on that code. From these two ingredients, we construct a decoder on the product code. (As
a technical point, to do this in general, we must assume that the fixed code has no redundancies in
its checks, as explained later.) Importantly, the decoder on the product code is only a constant factor
slower than the decoder on the large code and so it runs in close to linear time when the large code is
a surface code.

We apply this decoder then to the product of the surface code with various small codes (the product
was proposed in [2] and the anyons of the theory were studied in [12]), and give numerical results.

First let us review the union-find algorithm and also let us say what we mean by a union-find
decoder in general: if the large code is not a surface code, what properties should the decoder have in
order for it to be called a union-find decoder? For us, a union find decoder for an LDPC code works as
follows: it takes as input some syndrome (and possibly also some list of erased qubits). It constructs a
set of clusters, where each cluster contains a set of qubits and and a set of checks. These clusters are
constructed using some local operations (i.e., local with respect to the distance defined by the checks
of the code) in an initialization phase; for example, in the original union-find decoder with no erasures,
then each cluster contains one syndrome error.
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Then it runs through an iterative process: for each cluster it checks whether the cluster is valid.
A cluster is valid if there is some error pattern on the bits in the cluster which produces exactly the
observed errors on the checks in that cluster and produces no other errors; let us call that error pattern
a valid error pattern. The decoder then grows any clusters which are invalid, merging them with other
clusters if they intersect, and again checks validity, continuing in this fashion until all clusters are valid.
Then, it constructs some valid error pattern for each cluster (arbitrarily, without regard to minimizing
weight), which we call the decoding of that cluster, and it returns the sum of all those error patterns
as the decoding of the input syndrome.

The paper is organized as follows. In Section 1, we review the homological product construction
in general. We also give as an example the special case of the homological product of the surface
code with a [[4, 2, 2]] code. Interestingly, other authors have considered concatenating a surface code
with the [[4, 2, 2]] code[13]. We leave the question of a detailed performance comparison between these
two classes of codes (homological product vs. concatenated) for future work, but we note that the
homological product gives lower weight stabilizers than concatenation does.

In Section 2, we give the decoding algorithm that we use for various products of surfaces codes
with small codes. In particular, we give routines to test validity of clusters, to decode clusters, and to
grow clusters, and we present numerical simulations of this algorithm for a variety of different codes.
The correctness of the test for validity and decoder in this section will follow from the general theory
given in in Section 3 where we consider more general products, where the large code need not be a
surface code and also where the fixed code may have some redundancies in its stabilizers.

Finally, in Section 4, we prove distance properties of the homological product under certain general
assumptions on the large code; while in some cases[2], the distance of the homological product code
can be smaller than the product of the distance of the two codes used as input to the product, if one
of the codes is a “topological code” (in a sense explained later), the distance of the product is equal
to the product of the distances. Further, in Section 2, we prove that if the fixed code has distance 2,
then our algorithm decodes up to half the distance of the product, and a modification of our algorithm
decodes up to half the distance of the product for arbitrary distance of the fixed code.

1 Review of Homological Product
In this section, we review the homological product. The product we use is a “multiple sector” product
rather than the “single sector” product used in [2]. Throughout this paper, we consider CSS codes
over qubits, meaning that all the vector spaces that we define are over Z2; this means that we may
ignore signs throughout.

1.1 Homology and cohomology
We consider only Z2-linear chain complexes and Z2-homology. A D-dimensional chain complex is a
sequence of Z2-linear spaces Ci

{0} ∂D+1−→ CD
∂D−→ CD−1 · · ·

∂2−→ C1
∂1−→ C0

∂0−→ {0}

equipped with Z2-linear maps ∂i called boundary maps such that ∂i+1 ◦ ∂i = 0 for all i = 0, . . . , D.
When no confusion is possible, we will omit the subscript i.

In the present work, all the spaces Ci will be finite dimensional. Vectors of Ci are called i-chains.
We assume that a basis is fixed for each space Ci and we refer to the basis elements as i-cells. A i-chain
can be interpreted equivalently as a binary vector or as a subset of i-cells. As a consequence, we can
talk about the boundary of a cell or a set of cells.

Two subsets of the chain space play a central role in homology: the cycles space ker ∂i denoted Zi,
and the space of boundaries or trivial cycles Im ∂i+1 that we denote Bi. The quotient Hi = Zi/Bi is
the homology group. In our setting, it is a Z2-linear space.
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We can obtain a new chain complex by replacing each boundary map ∂i by its transposed map ∂i.
Identifying each space Ci with its dual, we obtain the complex

{0} ∂
−1

−→ C0
∂0

−→ C1
∂1

−→ · · · CD−1
∂D−1

−→ CD
∂D

−→ {0}

The map ∂i will be called the coboundary map and the space Zi = ker ∂i is the space of cocycles and
Bi = Im ∂i−1 is the coboundary space. The cohomology group is defined to the be quotient Hi = Zi/Bi.

1.2 General Products
The product takes as input two codes. We describe both codes in terms of chain complexes.

The large code will be defined by some chain complex B defined by a sequence of vector spaces Bj
indexed by some integer j and a boundary map ∂B from Bj to Bj−1 such that ∂2

B = 0. For some given
q, we associate the qubits of the large code with q-cells, and we associate X- and Z-checks of the code
with (q − 1)-cells and (q + 1)-cells, respectively, with the boundary operator ∂ defining the checks of
the code in the usual way (original references include [14, 15, 16]; see [2] for a review). For use later,
use L to denote the collection of all cells. The chain complex defining the large code may be obtained
from some cellulation of a manifold, in which case we call it a topological code, but it need not be.

The fixed code C is defined by some chain complex C, with three vector spaces C0, C1, C2, with
boundary operator ∂C which is a map from C2 to C1 and from C1 to C0 such that ∂2

C = 0. Qubits are
associated with 1-cells of C and X-checks and Z-checks are associated with C0 and C2 respectively.
Assume that C is an [[nC , kC , dC ]] code with nX distinct X checks and nZ distinct Z checks. Assume
further that there are no redundancies in the stabilizers of C (i.e., no nontrivial product of stabilizers
is the identity), so nX + nZ + kC = nC . Hence, the zeroth and second homology of C vanish.

The homological product code is given by taking the product of the complex defining the large
code with the complex defining C, and then defining a code from that complex. The product complex,
which we denote A, has spaces A0,A1, . . ., with

Ai = ⊕ij=0(Bj ⊗ Ci−j),

and the product complex has boundary operator

∂ = ∂B ⊗ I + I ⊗ ∂C .

Note that if the code is over qudits rather than qubits, there is a slightly more complicated sign
structure for the boundary operator.

In the homological product code, qubits are identified with basis vectors of the space Aq+1, i.e.,

(Bq−1 ⊗ C2)⊕ (Bq ⊗ C1)⊕ (Bq+1 ⊗ C0).

Thus, for every (q+ 1)-cell of L, there are nX qubits, for every q-cell of L there are nC qubits, and for
every (q − 1)-cell of L there are nZ qubits.

The product code is an [[n, k, d]] code where, by the Kunneth formula, if the large code is an
[[nB , kB , dB ]] code, then given our assumption on the zeroth and second homology of C,

k = kBkC .

Logical Z operators of the product are given by (q + 1)-th homology classes (a particular choice
of logical operator corresponds to a representative) and logical X operators are given by (q + 1)-th
cohomology classes.

For a surface code on a square lattice, the number of 2-cells is roughly nB/2, depending on boundary
conditions, and similarly for the number of 0-cells. So, in this case

n ≈ nB(nX + nZ)
2 + nBnC .
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X-stabilizers of the product code are associated with basis vectors of Aq =

(Bq−2 ⊗ C2)⊕ (Bq−1 ⊗ C1)⊕ (Bq ⊗ C0),

so that for every (q−2)-cell there are nZ different stabilizers, for every (q−1)-cell there are kC different
stabilizers and for every q-cell that are nX different stabilizers. Note that in many cases (for example,
the surface code with q = 1 or some LDPC codes), the first term (Bq−2 ⊗ C2) is absent.

The “cells” of the product complex will be basis vectors of spaces Aq, and a cell e of the product
complex will be associated with some cell f of L if the basis vector corresponding to e is some product
of the basis vector corresponding to f with some basis vector of a cell in the fixed code. Given any
vector v in this space Aq, and any (q − 1)-cell e ∈ L, we define the vector of coefficients of v on e on
that cell in the obvious way: it is given by the nC distinct coefficients of v for cells of the product
complex which are associated to e.

1.3 Simple Example
As an example of this formalism, we give perhaps the simplest augmented surface code, the homological
product of a surface code on a square lattice with a [[4, 2, 2]] code with checks XXXX and ZZZZ.
Figure 1 shows the layout of the qubits are checks of the augmented surface code.

This code has 4 qubits per edge, one qubit per vertex, and one qubit per plaquette. It has one X
stabilizer on each edge e given by

(
4∏
a=1

Xa
e )(

∏
p,e∈∂p

Xp),

where Xa
e for a = 1, . . . , 4 are Pauli operators on the four qubits on edge e, the product is over

plaquettes p such that e is in the boundary of p, and Xp is a Pauli operator on the qubit on plaquette
p. This stabilizer is weight 6. It has four X stabilizers on each vertex v given by (for a = 1, . . . , 4)

(
∏

e,v∈∂e

Xa
e )Xv,

where Xv is a Pauli operator on the qubit on vertex v. This stabilizer is weight 5. There is also one
Z stabilizer on each edge e given by

(
4∏
a=1

Zae )(
∏
v∈∂e

Zv),

and four Z stabilizers on each plaquette p given by

(
∏
e∈∂p

Zae )Zp.

For any cellulation, the code has twice as many logical qubits as the surface code does. Based a
m×m square lattice of a torus one can define a [[2m2, 2,m]] toric code. Its product with [[4, 2, 2]] code
provides a [[10m2, 4, 2m]] which uses more physical qubits but encodes twice has many logical qubits
with a doubled minimum distance (Section 4). Overall, this strategy leads to a significant reduction
of the qubit overhead required to achieve a given minimum distance as shown in Figure 2.

2 Decoding Augmented Surface Codes
We now give our decoding algorithm for the case where the large code is a surface code and the fixed
code has no redundancies in its checks. Since we consider CSS codes, we consider just the correction
of Z-errors using X-type measurements. By duality, X-type errors can be corrected with the same
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(a)

(b) (c)

Figure 1: (a) Homological product of a distance-three surface code with a [[4, 2, 2]] code. Dashed lines represent
the original lattice of the surface code. Qubit are represented by circles and square represent the X-checks. A check
acts on its neighboring qubits. One can obtain a similar representation of Z-checks by considering the dual lattice.
(b) Two checks and their support. All the checks are local and have weight at most 6. (c) Two distinct Z logical
operators for the two logical qubits of the product code.
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Figure 2: Qubit overhead n/k as a function of the minimum distance for the toric code and augmented toric code.
The toric code reaches d = 30 with 900 physical qubits per logical qubit while the augmented toric code requires
only 562.5 physical qubits per logical qubit saving almost 40% of the qubits.

procedure. So, for us, the error patterns will be on 2-cells of the product complex and the syndrome
of an error will be the set of 1-cells on its boundary.

Before giving a detailed, technical description of decoding, let us review the union-find decoder for
the surface code at a high level. The reader should see [11] for more details. The algorithm works
by growing clusters of cells. Initially, there is exactly one cluster for each error, with the cluster
containing just the single cell on which that error occurs. As the algorithm runs, clusters grows by
adding 1-cells, and when clusters join together, they merge into a single, larger cluster. A cluster is
valid if it contains an even number of errors, which means that the error pattern on that cluster can
be produced just by errors on the edges in that cluster. Clusters are not valid if they contain an odd
number of errors, in which case to produce the observed error pattern, there must be at least one error
on an edge leaving the cluster. This motivates the growth rules: only clusters which are not valid grow
while clusters which are valid do not grow (though they can merge with a growing cluster which is not
valid). Eventually, once growth stops and all clusters are valid, the decoder then applies a correction
supported just on the clusters. The name “union-find” refers to a data structure used to keep track of
the growing clusters. The decoder here is a generalization of the union-find decoder, using in particular
a more general way to determine validity of clusters.

2.1 Error and syndrome
To define the surface code, consider a finite cellulation (V,E, F ) of a closed surface with vertex set
V , edge set E and face set F . The chain complex B of the surface code is the chain complex of the
cellulation defined over the spaces B2 = ZF2 , B1 = ZE2 and B0 = ZV2 .

The fixed code C is a [[nC , kC ]] CSS code defined by a pair of binary matrices HX ,HZ with nC
columns satisfying HT

Z ·HX = 0. The nX rows of HX correspond to the X type stabilizer generators
and nZ rows of HZ define the Z type stabilizer generators of C. Equivalently, the code C can be
described by the chain complex C2 = ZnZ

2 → C1 = ZnC
2 → C0 = ZnX

2 . The matrices HX and HT
Z are

the matrices of the boundary maps C1 → C0 and C2 → C1 respectively.
Qubits of the augmented surface code are placed on the 2-cells of the homological productA = B⊗C.

A Z error, i.e. a 2-chain x ∈ A2 = (B0 ⊗ C2) ⊕ (B1 ⊗ C1) ⊕ (B2 ⊗ C0) can be uniquely written in the
standard form

x =
∑
v∈V

v ⊗ x(v) +
∑
e∈E

e⊗ x(e) +
∑
f∈F

f ⊗ x(f) (1)
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where x(v) ∈ C2, x(e) ∈ C1 and x(f) ∈ C0. The 2-chain associated with trivial vectors x(v), x(e) and
x(f) for all the cells of the surface is the trivial 2-chain.

The syndrome s(x) of an error x as in (1) is obtained by applying the boundary map of the product
complex:

s(x) =
∑
v∈V

v ⊗HT
Zx(v)T +

∑
e∈E

e⊗HT
Xx(e)T +

∑
e∈E

∂(e)⊗ x(e) +
∑
f∈F

∂(f)⊗ x(f) (2)

One can write this syndrome using the standard form

s =
∑
v∈V

v ⊗ s(v) +
∑
e∈E

e⊗ s(e) (3)

with s(v) ∈ C1 and s(e) ∈ C0. The first and third terms of (2) contribute to the vectors s(v) and the
second and fourth terms contribute to s(e).

2.2 Generalization of the Union-Find decoder
In order to design a decoder for augmented surface codes, we use a decoder DX : C0 → C1 and a
decoder DT

Z : C1 → C2 for the linear codes with parity check matrices HX and HT
Z respectively. For a

small CSS code, these two decoders can be given as a lookup table. We can assume that they provide
a minimum weight correction.

Pick a family x1, . . . , xkC
∈ C1 representing kC independent X logical operators of the fixed CSS

code C and let z1, . . . , zkC
∈ C1 be independent Z logical operators of C such that (xi|zj) = δi,j

(mod 2).
The union-find decoder will grow connected clusters in the surface until all the clusters can be

erased and corrected independently given the syndrome s. Such a cluster is said to be a valid cluster.
To determine if a cluster κ is valid, we compute the validity vector

val(κ) =
∑
v∈κ

((s(v)|x1), . . . , (s(v)|xkC
)) ∈ ZkC

2 (4)

A cluster is valid iff its validity vector is trivial. In Section 3.1, we will prove that a valid cluster
contains a valid error pattern.

Algorithm 1 works in four steps. First, we eliminate the components of the syndrome on edges. A
syndrome component e⊗ s(e) ∈ B1 ⊗C0 is killed (moved to the endpoints of e) by adding an Z error
on the 2-cell e⊗DX(s(e)) ∈ B1 ⊗ C1. We will treat this edge set E ⊂ E as an erasure in the surface.

The second step is a growth step similar to the union-find decoder. On can erase and decode a
cluster iff it is valid. We apply the same growth procedure as in the union-find decoder with erasure
E and with the validity function defined above based on the syndrome values s(v) on nodes.

Once valid clusters are grown, they are erased and the peeling decoder [17] is used to identify a
correction that explains the syndrome inside each cluster. This peeling step applies a correction on the
edges of a spanning tree of each cluster. Over an edge e = {u, v}, two types of correction are applied.
(i) A correction e⊗s(u) moves the local syndrome s(u) from u to v. (ii) A correction of the form e⊗zi
to used to cancel the validity vector in node u. As a result, after peeling, each node v of the cluster,
except the root v0, supports a trivial syndrome v ⊗ s(v) with s(v) = 0. Moreover, the validity vector
of each node of the cluster is trivial because the cluster is valid.

Finally, the residual syndrome v0 ⊗ s(v0) on each cluster root v0 is eliminated using the decoder
DT
Z by applying a correction v0 ⊗DT

Z(s(v0)). This local decoder can be applied because s(v0) is a Z
stabilizer of C. Indeed, we will show that s(v0) is orthogonal with X stabilizers and X logical operators
of C. The root v0 satisfies val(v0) = 0, which means that s(v0) is orthogonal with all the X logical
operators of C. Moreover, since the cluster is valid before peeling, the restriction of the syndrome
to the cluster, is 1-boundary in A and this property is preserved after peeling. As a consequence
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Algorithm 1 Union-Find decoder for augmented surface codes
Require: The syndrome s(x) as in (3) of an error x ∈ A2.
Ensure: An estimation x̃ ∈ A2 of x.

1: Set x̃ = 0 and E = {e ∈ E | s(e) 6= 0}.
2: Edge cancellation:
3: Run over all edges e = {u, v} ∈ E and do:
4: Compute x̃(e) = DX(s(e)).
5: Add e⊗ x̃(e) to x̃.
6: Add u⊗ s(e) and v ⊗ s(e) to s.
7: Union-Find growth:
8: Initialize clusters with a single vertex κv = {v}.
9: Merge clusters connected by an edge of E .

10: While there exists at least one invalid cluster do:
11: Select an invalid cluster κ with minimum boundary.
12: Grow κ by one half-edge.
13: Update the validity vector of κ.
14: Set E ′ to be the set of all edges fully covered by the grown clusters.
15: Peeling:
16: Construct a spanning forest F of the subgraph E ′ of the surface.
17: While F 6= ∅ do:
18: Select an edge e = {u, v} of F such that u is a leaf.
19: Add e⊗ s(u) to x̃.
20: Add u⊗ s(u) and v ⊗ s(u) to s.
21: For i = 1, . . . , kC do:
22: If (s(u)|xi) = 1 do:
23: Add e⊗ zi to x̃.
24: Add u⊗ zi and v ⊗ zi to s.
25: Remove e from F
26: Residual Node Correction:
27: For all v ∈ V do:
28: Compute x̃(v) = DT

Z(s(v)).
29: Add v ⊗ x̃(v) to x̃.
30: Return x̃.

8



the v0 ⊗ s(v0) is a 1-boundary and it satisfies ∂(v0 ⊗ s(v0)) = 0 (because ∂ ◦ ∂ = 0). This implies
HXs(v0)T = 0, showing that s(v0) is orthogonal with all X stabilizers.

One can slightly improve the performance of Algorithm 1 by modifying the growth procedure. This
variant of the decoder is described in Appendix A.

2.3 Numerical results
In this section, we report the result of numerical simulation of augmented toric codes. We consider
the product of a rotated toric code with different CSS codes. We only simulate the correction of
Z-error since the codes considered are self-orthogonal. To sample from Z-errors, we start from the
trivial 2-chain and we flip each bit of each vector x(v), x(e) and x(f) independently with probability p.
For simplicity, we do not consider the case of erasure errors. We assume perfect syndrome extraction
circuit. Our numerical simulations are based on the variant of Algorithm 1 proposed in Appendix A.

In Figure 2 we observed that augmented topological codes can achieve the same distance as tra-
ditional topological codes with a reduced qubit overhead. To illustrate further the advantage of aug-
mented codes, we compare numerically the performance of toric codes and their product with a [[4, 2, 2]]
code. In both cases, the correction is performed using a union-find decoder. Denote by TC(m) the
toric code defined on the m×m lattice.

In Figure 3, we compare the product TC(m)⊗ [[4, 2, 2]] with all the toric codes TC(`) achieving a
smaller or equal qubit overhead. Our numerical results show that augmented toric codes with m ≥ 3
outperform toric codes in the regime of low physical error rate. At higher physical error rates, the
augmented toric codes do not perform as well, and pseudo-thresholds extracted from these figures (i.e.,
the point at which logical error rate is equal to physical) are worse for the augmented codes.

As an example, the augmented toric code TC(6)⊗ [[4, 2, 2]] consumes 90 physical qubits per logical
qubit and at low physical error rates it achieves a lower logical error rate than the toric code TC(9)
which has comparable overhead. The origin of the superiority of augmented toric codes is their in-
creased minimum distance which reaches 12 for the code TC(6) ⊗ [[4, 2, 2]], whereas the traditional
toric code is limited to distance 9 for the same overhead.

2.4 Distance
The results of Section 4 show that the distance of an augmented surface code equals the product of
the distances of the large and fixed codes. Here we show that

Lemma 1. If the fixed code has distance 2, then the union-find decoder (in its simplest form where
we do not have separate clusters for each logical operator) decodes errors with weight less than half the
distance. (It is already known[11] that for the unaugmented surface code, the union-find decoder has
this property.)

Further, a modification of the algorithm (detailed in the proof of this lemma and not studied else-
where in the paper) decodes errors with weight less than half the first for any distance of the fixed
code.

Proof. First consider the case where the fixed code has distance 2. Suppose an error of weight w
occurs. Let there be m edges in E before edge cancellation; these edges have at least one error on
them. So, the sum over diameters of clusters in E is bounded by m.

After edge cancellation, there may be some edges that have an error on them but are not in E .
Call this set of edges H, for “hidden”. There must be at least 2 errors on each of these edges and so
the number of such edges is at most (w −m)/2.

Now consider the growth process of clusters. (This step of the proof is almost exactly the same
as the proof[11] that the union-find decoder decodes up to half the distance for a surface code.) If a
cluster is not valid, then there must be some edge in H leaving the cluster. A single step of the growth
will cover half of one of the edges in H, and will increase the sum of cluster diameters by at most 1 (it
is possible that it joins two clusters and so greatly increases the largest cluster diameter). Suppose the

9



Figure 3: Comparison of augmented toric codes TC(m) ⊗ [[4, 2, 2]] with toric codes with smaller or equal overhead
for m = 3, 4, 5, 6. Toric codes are decoder is the standard union-find decoder and Algorithm 2 is used to decode
augmented toric codes. Augmented toric codes achieve a better logical error rate than toric codes in the regime of
low physical error rate. The overhead reported in these plots is the number of physical qubit per logical qubit.
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growth process terminates after t steps, at which point it has covered at least t/2 edges in H (hence,
t ≤ w−m) and the sum of cluster diameters is bounded by m+ t ≤ w. It is possible at this point that
not all edges in H are covered: there may be paths in H going from a cluster to itself, and the length of
these paths is then bounded by (w−m)/2− t/2 = (w−m− t)/2. So, the sum of the cluster diameters
plus the sum of the lengths of these paths is bounded by m+ t+ (w−m− t)/2 ≤ w. So, the algorithm
replaces the actual error with clusters of erasures plus possibly some operator which commutes with
the stabilizers (i.e., due to paths in H which are not covered), with these errors supported on sets of
diameter at most w. If w is smaller than the surface code distance, it decodes correctly. Remark: we
see that the worst case is when all edges in H are covered.

Now consider the case where the fixed code has distance d > 2. We modify the algorithm as follows.
Each edge is broken into d subedges. Note that d may be odd. Rather than keeping a set of half edges,
we keep a set of these subedges. Let w(e) denote the error weight on each edge, so that w =

∑
e w(e).

We first perform the edge cancellation step. Let c(e) denote the weight of the correction applied on
edge e if that correction weight is ≤ d/2; if the correction weight is > d/2 then c(e) = d/2. If an error
of weight w(e) occurs, with w(e) ≥ d/2, then c(e) ≥ d− w(e). We use a minimum weight decoder so
that c(e) ≤ w(e). If we fix an error on an edge e with a correction of some weight c(e), we add the
c(e) closest subedges to each vertex attached to that edge to the subedge set, so that the total number
of subedges on that edge in the subedge set is 2c(e). Thus, in the case that the distance is 2, any
correction means adding both half edges, but for larger distance, it is possible that only part of each
edge is added.

We grow so that subedges are added starting closest to the vertex and moving outwards. Note that
if d is odd, it is possible that two clusters are separated by an odd number (for example, 1) subedge;
to deal with this, we add subedges to clusters sequentially, rather than in parallel, or, alternatively,
one may further subdivide each subedge into two subsubedges to run growth in parallel.

Let s(e) denote the total number of subedges on edge e which are in the subedge set. Thus, initially
s(e) = 2c(e), but s(e) may increase as the algorithm runs. The sum of cluster diameters initially is
≤ (2/d)

∑
e c(e)

After applying edge cancellation, the error applied on each edge may be a nontrivial logical operator.
Let L denote the set of such edges with a nontrivial logical operator, and for an edge e ∈ L, let
h(e) = d − s(e) denote the “hidden weight” on that edge. Let H denote the set of edges e with
h(e) > 0: these are edges in L on which not all subedges are in the subedge set. Let the total hidden
weight h =

∑
e∈H h(e).

Before any growth, immediately after edge cancellation, the hidden weight is bounded by h0 ≡∑
e s.t. w(e)≥d/2(d− 2c(e)). This hidden weight h reduces as a result of the growth process. If a cluster

is not valid, then there must be some edge in H leaving the cluster. So, a single step of step of growth
(growing on any single subedge) will reduce the hidden weight by at least 1 and will increase the sum
of cluster diameters by at most 2/d.

So, if the algorithm terminates after t steps, the sum of cluster diameters is upper bounded by
(2/d)(

∑
e c(e) + t), and t ≤ h0. There may possibly be some hidden weight that remains at the end of

the algorithm: this is due to edges with hidden weight d forming paths from a cluster to itself. Thus,
the sum of cluster diameters plus the length of these paths is bounded by (2/d)(

∑
e c(e)+t)+(h0−t)/d.

This is maximized at t = h0, so this is bounded by (2/d)
(∑

e c(e) +h0

)
= (2/d)

(∑
e s.t. w(e)<d/2 c(e) +∑

e s.t. w(e)≥d/2(d− c(e))
)
. Note that c(e) ≤ w(e) for all e and also d− c(e) ≤ w(e) for all w(e) ≥ d/2.

Hence, the sum of cluster diameters plus path lengths is bounded by (2/d)
∑
e w(e) = (2/d)w.

3 Union-Find Decoder in General
We now consider how to construct a decoder for a more general choices of large and fixed codes. As
before, we assume that the large code has a union-find decoder, and we construct a union-find decoder
for the homological product.
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The initialization and growth aspects of the decoder can be chosen in various ways (for example,
growing each cluster by a minimal amount). What we will be concerned with is the routines for testing
if a cluster is valid and for decoding a valid cluster. We will assume that those two routines exist for any
cluster of the large code, and we will construct them for the product code for any choice of fixed code
in Section 3.1, Section 3.2, subject only to the requirement that the fixed code have no redundancies
in its stabilizers.

3.1 Syndrome Validation
We consider the question: given some set of qubits and some observed syndrome on some set of X
checks, is there a Z error pattern on those qubits which can give rise to that syndrome on those checks,
and no errors on other checks? That is, is the cluster consisting of those qubits and those checks valid?

Define a sub-cell complex to be some set of cells of the large code (i.e., some cells of the cellulation if
it is a topological code, and some set of X- and Z-checks and qubits if it is not), such that if a cell is in
the subcomplex, all cells in its boundary are also (in the case of a code that is not a topological code, we
mean that if some Z-stabilizer is in the subcomplex, then all qubits in its support are, and if a qubit
is in the subcomplex, then all X-stabilizers supported on it are, i.e., given a vector corresponding
to some cell of the subcomplex, all cells in the support of the boundary of that vector are in the
subcomplex). We write such a sub-cell complex with regular capital letters such as P ; corresponding
to such a sub-cell complex there is a sub-chain complex which we write with calligraphic letters such
as P; this is a set of vector spaces Pj corresponding to j-cells of the sub-cell complex P , and we define
the obvious boundary operator on the sub-chain complex. For brevity, we will refer to both P and P
as subcomplexes.

Then, the question at the start of this section is equivalent to the question: given some subcomplex
P (such that the given set of qubits is the set of (q+1)-cells in P , and such that the given set of checks
is the set of q-cells in P ), is there a vector supported on Pq whose boundary is the given syndrome?
Note that since we consider a subcomplex, we are guaranteed that a Z error on a qubit in P will not
produce an error on any stabilizer which is not in the set of (q − 1)-cells of the complex.

Using the language of homology, asking if a syndrome vector can be written as a boundary is
equivalent to asking: is the syndrome a closed chain (i.e., does its boundary vanish) and is the syndrome
homologically trivial? This question can be answered in a simple way in one particular important case:
that the subcomplex P is a homological product of some subcomplex M in the large code with some
subcomplex C̃ in the fixed code. We will write M to denote the sub-cell complex corresponding toM.

If C is the [[4, 2, 2]] erasure code, it makes sense to take C̃ = C always, but if C is a larger code
it may be useful in practice to take other choices for C̃ and to “grow” the subcomplex C̃ in different
clusters. The subcomplex C̃ itself defines some CSS code C̃ with some number kC̃ of logical qubits.
Note that C̃ has trivial second homology since C does. We will further assume that C̃ has trivial zeroth
homology; this holds if C̃ = C but may not hold in general.

The vector spaces Pj can be regarded as subspaces of Aj : they are the subspaces where vectors
vanish on entries which do not correspond to cells of M . A syndrome on M is some element of Aq
which is in this subspace Pj .

Then, we claim that the following algorithm will determine, given some syndrome v in Pq, whether
or not it is the boundary of some element w of Pq+1. First (this step is done offline, before running the
union-find decoder), for each j = 1, . . . , kC̃ , construct a vector xj in ZnC

2 so that these vectors span
all possible logical X-operators for code C̃. In the terminology of topology, the cohomology classes
[xj ] must be independent. Then, for each j = 1, . . . , kC̃ , define a vector ṽj in Mq−1 such that, for
each (q − 1)-cell e of M , the coefficient of ṽj on that cell is given by the inner product of the vector
of coefficients of v on e with xj . We call this vector ṽj the partial inner product of v with xj and
we write it vj = (v, xj) in an abuse of notation. Then, v is the boundary of some w if and only if
∂v = 0 and each ṽj is the boundary of some vector in Mj . The question of whether ṽj is such a
boundary, however, is precisely the question that a union-find decoder for the large code must solve so
by assumption we have an algorithm to do this, and we will show that the question of whether ∂v = 0
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can always be solved in linear time.
Let us show that this algorithm is correct.

Lemma 2. Let P be a product M⊗ C̃ where M, C̃ are subcomplexes of the large code and fixed code,
respectively. Assume that C̃ has trivial zeroth and second homology. Consider some syndrome v ∈ Aq
such that v is supported on Pq.

Then M is a valid cluster for v, meaning that v is a boundary of some vector in Pq+1, iff ∂Pv = 0
and, for all j ∈ {1, . . . , kC̃}, the vector ṽj is a boundary in M, where ṽj is the partial inner product
ṽj = (v, xj).

Note that ṽj is a boundary in M iff its inner product with all (q− 1)-th cohomology representatives
of M vanishes; in the case that the large code is the surface code, there is one such representative and
this gives precisely the j-th entry of of the validity vector considered previously.

Proof. v is a boundary (i.e., it represents trivial homology) iff ∂v = 0 and its inner product with a basis
of cohomology representatives vanishes. (This is a consequence of the universal coefficient theorem
though it can be proven more simply in the case of Z2 coefficients.)

By Künneth, given that C̃ has trivial zeroth and second homology, a basis xk for those cohomology
representatives can be given by the product of nontrivial (q − 1)-th cohomology representatives of M
with first cohomology representatives of C̃, i.e., logical X operators, namely the xj . Verifying that all
these inner products vanish is equivalent to verifying, that for each j = 1, . . . , kC̃ , the inner product
of ṽj with all cohomology representatives of M vanishes, which in turn is equivalent to requiring that
ṽj be a boundary in M.

Now consider how to efficiently check that ∂v = 0. The vector ∂v is in the space (Mq−3 ⊗ C̃2) ⊕
(Mq−2⊗C̃1)⊕(Mq−1⊗C̃0). This can clearly be done efficiently if we have an efficient representation of
the boundary operator ∂, simply by checking it for each (q− 3)-,(q− 2)-, or (q− 1)-cell of M . Further,
in a union-find decoder there is no need to check this constraint ∂v = 0 on cells e in the interior of
M (meaning those cells that are not attached to any cell in L \M), as the constraint is automatically
satisfied on those cells by the assumption that the observed syndrome is the boundary of some error
pattern on L. So, one simply needs to check this constraint on cells at the boundary of M ; in a union
find decoder, this constraint then only needs to be checked once for each cell in M , when the cell is
on the boundary.

3.2 Decoding
We have given an algorithm to determine if some vector v ∈ Pq is a boundary of some w. We now
give an algorithm that, if the answer to the previous question is yes, will find such a w. As before, we
assume that we have an algorithm to solve this problem for the large code.

Recall that v ∈ (Mq−2 ⊗ C̃2) ⊕ (Mq−1 ⊗ C̃1) ⊕ (Mq ⊗ C̃0) and we wish to find a w ∈ (Mq−1 ⊗
C̃2)⊕ (Mq ⊗ C̃1)⊕ (Mq+1 ⊗ C̃0) with v = ∂w. We will in fact find a w which vanishes in the subspace
Mq+1 ⊗ C̃0.

The construction is slightly notationally laborious in general but is straightforward: we add different
boundaries to v to cancel various components of it on subspacesMq ⊗ C̃0,Mq−1⊗ C̃1, andMq−2⊗ C̃2
in turn. The first cancellation and the last cancellation are straightforward using the vanishing of
zeroth and second homology of C̃ (in fact the last cancellation happens “automatically” as a result of
a previous cancellation). The second cancellation is a little trickier due to nontrivial first homology of
C̃, but is reduced to the problem for the large code.

We begin with the first cancellation; this step is precisely the edge cancellation step of Section 2.
Let v0 be the component of v in subspace Mq ⊗ C̃0. Let ∂M be the boundary operator on M. Define
“∂−1
C̃

” to be an operator such that ∂C̃“∂−1
C̃

”y = y for any vector y ∈ C̃0; in words, given an syndrome

for C̃, “∂−1
C̃

” computes an error pattern that gives that observed syndrome; this operator is precisely

the decoder DZ used in Section 2. Such an operator exists because the zeroth homology of C̃ is trivial.
Let w0 = “∂−1

C̃
”v0. Then, ∂w0 = v0 + ∂M“∂−1

C̃
v0”. So, the sum v+ ∂w0 vanishes in subspaceMq ⊗ C̃0.
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Replace v with v + ∂w0. We have reduced to the problem of finding w such that v = ∂w for v
vanishing in subspace Mq ⊗ C̃0.

Now, take vector v and, for each j = 1, . . . , kC̃ , compute a vector ṽj as above. Then, apply the
union-find decoder for the large code to find a w̃j such that ∂Bw̃j = ṽj . For each of the X logical
operators xj find corresponding Z logical operators zj , so that (zj , xk) = δj,k. Then, consider vector
v′ = v + ∂(

∑
j w̃j ⊗ zj). Since zj is a Z logical operator, ∂C̃zj = 0, so v′ still vanishes in subspace

Mq⊗C̃0. Let v′1 be the component of v′ in subspaceMq−1⊗C̃1. Since ∂v′ = 0, we have that for every
(q − 1)-cell, the boundary (using ∂C̃) of the vector of coefficients of v′ on that cell vanishes, i.e., that
vector of coefficients is a cycle. However, the term ∂(

∑
j w̃j ⊗ zj) in the sum for v′ guarantees then

that that vector represents trivial homology. So, it is a boundary. So, for each (q − 1)-cell e, there is
some vector we such that ∂ewe gives the vector of coefficients of v′ on cell e.

So, consider vector v′′ = v′ + ∂(
∑
e 1e ⊗ we), where 1e denotes the basis vector corresponding to

cell e. Then, v′′ vanishes on (Mq ⊗ C̃0)⊕ (Mq−1 ⊗ C̃1). So, the only nonvanishing component of v′′ is
onMq−2⊗ C̃2. Then, since ∂v′′ = 0, by computing ∂v′′ projected onto subspaceMq−2⊗ C̃1 and using
that the second homology of C̃ is trivial so that the only vector in C̃2 with vanishing boundary is the
zero vector, we find that v′′ = 0.

4 Distance
The distance d of a homological product obeys the upper bound d ≤ dBdC by the Künneth formula.
It is known[2] that this bound is not necessarily tight. However, we now show that in many cases,
including many choices of a topological large code, this bound indeed is tight.

We have the following trivial lower bound for the distance dB of the large code: if some equivalence
class [x] for q-th cohomology has at least m distinct representatives, x1, . . . , xm, such that the support
of xi is disjoint from the support of xj for i 6= j, then any representative of an equivalence class [z]
for q-th homology which has nontrivial inner product with [x] will have weight at least m, since, of
course, each representative must have some intersection with each xi. If this holds for all equivalence
classes of q-th cohomology, then the Z distance of the code is at least m.

As an example of this, consider a toric code on a torus; assume the torus is L-by-L and call the two
directions “vertical” and “horizontal”. One choice of logical Z operator is a string of Pauli Z running in
the vertical direction. There are L different such strings of minimal length, corresponding to different
locations of the string in the horizontal direction. So, any logical X operator which anti-commutes
with it must have weight at least L.

If some equivalence class [x] has this property of having m distinct representatives with disjoint
support, we say that class has property (∗).

This bound has a trivial extension (we use (q + 1)-th rather than q-th homology now since we
intend to apply this bound to the product code, but of course this bound is true for any q): if some
equivalence class [x] for (q+1)-th cohomology has at least m distinct representatives, x1, . . . , xm, such
that the support of xi is disjoint from the support of xj for i 6= j, and such that any representative of
an equivalence class [z] for (q + 1)-th homology which has nontrivial inner product with xi for any i
must have weight at least dC on the support of xi, then any representative of [z] must have weight at
least mdC .

If some class [x] has this this property of having m distinct representatives with disjoint support
and with lower bound dC on the weight of the intersection, we say that this class has property (∗∗).

We now show that if the class [x] for the large code has property (∗), then the class [x ⊗ `] has
property (∗∗) if ` represents an X logical operator of fixed code C. Proof: let z be some representative
of a class with nontrivial inner product with [x ⊗ `]. Fix some i to choose a representative xi of [x].
Let us say, given a vector v in some subspace Bq ⊗C1 or Bq ⊗C0 that the partial inner product of that
vector with some other vector u in Bq is a vector in either C1 or C0, respectively, defined in the obvious
way: regard v as being a vector (of length dim(C1) or dim(C0), respectively) of vectors in Bq, and take
the inner product of each such vector with u. Consider the projection of z onto subspace Bq ⊗ C1 and
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take its partial inner product with xi to get a vector u in ZnC
2 . We have (u, `) = (z, x ⊗ `) = 1. We

will next show that ∂u = 0. This will show that u represents a Z logical operator for C and so has
weight at least dC , proving the desired result.

To show ∂u = 0, consider the projection of ∂z onto subspace Bq ⊗ C0; call this s. Of course, since
∂z = 0 we have s = 0. Take the partial inner product of s with xi to get a vector t; again t = 0.
However, t is the sum of two contributions; the first is the partial inner product with xi of the boundary
of the projection of z into Bq+1 ⊗ C0, but this term vanishes since xi is a cocycle and so has vanishing
inner product with any boundary. The second term is exactly equal to ∂u, so indeed ∂u = 0.

Then, with these results, for many cases such as the large code being a toric code on a torus or
more generally any topological code on a torus, the distance of the homological product code equals
the product dBdC . We leave open the question of the distance of the product code when the large
code is a topological code with some boundaries.
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A Union-Find decoder with modified growth
In this section, we describe a version of Algorithm 1 with a different growth strategy.

Instead of growing a cluster until its validity vector becomes trivial, we can consider independently
each component of the validity vector. This produces smaller clusters, increasing the chances to keep
the clusters correctable.

For each logical xi, we perform a growth step and a peeling step. For the growth step of xi, a
cluster κ is said to be valid if vali(κ) =

∑
v∈κ(s(v)|xi) = 0 (mod 2). The growth step of xi produces

clusters such that the i th component of the validity vector is trivial. Then, the peeling step of xi is
the logical part of the peeling step of Algorithm 1.

Numerically, we observe a slight improvement of the performance in comparison with Algorithm 1.
Our numerical simulations are based on this variant of the decoder.
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Algorithm 2 Union-Find decoder for augmented surface codes - Version 2
Require: The syndrome s(x) as in (3) of an error x ∈ A2.
Ensure: An estimation x̃ ∈ A2 of x.

1: Set x̃ = 0 and E = {e ∈ E | s(e) 6= 0}.
2: Edge cancellation:
3: Run over all edges e = {u, v} ∈ E and do:
4: Compute x̃(e) = DX(s(e)).
5: Add e⊗ x̃(e) to x̃.
6: Add u⊗ s(e) and v ⊗ s(e) to s.
7: For i = 1, . . . , kC do:
8: Logical growth:
9: Initialize clusters with a single vertex κv = {v}.

10: Merge clusters connected by an edge of E .
11: While there exists at least one cluster with vali(κ) 6= 1 do:
12: Select a cluster κ with vali(κ) 6= 0 with minimum boundary.
13: Grow κ by one half-edge.
14: Update vali(κ).
15: Set E ′i to be the set of all edges fully covered by the grown clusters.
16: Logical peeling:
17: Construct a spanning forest F of the subgraph E ′i of the surface.
18: While F 6= ∅ do:
19: Select an edge e = {u, v} of F such that u is a leaf.
20: If (s(u)|xi) = 1 do:
21: Add e⊗ zi to x̃.
22: Add u⊗ zi and v ⊗ zi to s.
23: Remove e from F
24: Non-Logical Peeling:
25: Construct a spanning forest F for the initial set E .
26: While F 6= ∅ do:
27: Select an edge e = {u, v} of F such that u is a leaf.
28: Add e⊗ s(u) to x̃.
29: Add u⊗ s(u) and v ⊗ s(u) to s.
30: Remove e from F
31: Residual Node Correction:
32: For all v ∈ V do:
33: Compute x̃(v) = DT

Z(s(v)).
34: Add v ⊗ x̃(v) to x̃.
35: Return x̃.
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