Self-testing with finite statistics enabling the certification of a quantum network link

Jean-Daniel Bancal1,2,3, Kai Redeker4, Pavel Sekatski3,2, Wenjamin Rosenfeld4,5, and Nicolas Sangouard1,3

1Université Paris-Saclay, CEA, CNRS, Institut de Physique Théorique, 91191, Gif-sur-Yvette, France
2Group of Applied Physics, University of Geneva, 1211 Geneva 4, Switzerland
3Quantum Optics Theory Group, Universität Basel, CH-4056 Basel, Switzerland
4Fakultät für Physik, Ludwig-Maximilians-Universität, 80799 München, Germany
5Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Strasse 1, 85748 Garching, Germany

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Self-testing is a method to certify devices from the result of a Bell test. Although examples of noise tolerant self-testing are known, it is not clear how to deal efficiently with a finite number of experimental trials to certify the average quality of a device without assuming that it behaves identically at each run. As a result, existing self-testing results with finite statistics have been limited to guarantee the proper working of a device in just one of all experimental trials, thereby limiting their practical applicability. We here derive a method to certify through self-testing that a device produces states on average close to a Bell state without assumption on the actual state at each run. Thus the method is free of the I.I.D. (independent and identically distributed) assumption. Applying this new analysis on the data from a recent loophole-free Bell experiment, we demonstrate the successful distribution of Bell states over 398 meters with an average fidelity of $\geq$55.50% at a confidence level of 99%. Being based on a Bell test free of detection and locality loopholes, our certification is evidently device-independent, that is, it does not rely on trust in the devices or knowledge of how the devices work. This guarantees that our link can be integrated in a quantum network for performing long-distance quantum communications with security guarantees that are independent of the details of the actual implementation.

► BibTeX data

► References

[1] H. J. Kimble, The quantum internet, Nature (London) 453, 1023 (2008).
https:/​/​doi.org/​10.1038/​nature07127

[2] N. Gisin and R. Thew, Quantum communication, Nature Photonics 1, 165 (2007).
https:/​/​doi.org/​10.1038/​nphoton.2007.22

[3] E. Knill and R. Laflamme, Concatenated quantum codes, (1996), arXiv:quant-ph/​9608012.
arXiv:quant-ph/9608012

[4] H.-J. Briegel, W. Dur, J. I. Cirac, and P. Zoller, Quantum repeaters: the role of imperfect local operations in quantum communication, Phys. Rev. Lett. 81, 5932 (1998).
https:/​/​doi.org/​10.1103/​PhysRevLett.81.5932

[5] N. Sangouard, C. Simon, H. De Riedmatten, and N. Gisin, Quantum repeaters based on atomic ensembles and linear optics, Rev. Mod. Phys. 83, 33 (2011).
https:/​/​doi.org/​10.1103/​RevModPhys.83.33

[6] S. Pirandola, Capacities of repeater-assisted quantum communications, (2016), arXiv:1601.00966.
arXiv:1601.00966

[7] E. Schoute, L. Mancinska, T. Islam, I. Kerenidis, and W. S., Shortcuts to quantum network routing, arXiv:1610.05238.
arXiv:1610.05238

[8] M. Pant, H. Krovi, D. Towsley, L. Tassiulas, L. Jiang, P. Basu, D. Englund, and S. Guha, Routing entanglement in the quantum internet, arXiv:1708.07142.
arXiv:1708.07142

[9] J. Wallnofer, M. Zwerger, C. Muschik, N. Sangouard, and W. Dur, Two-dimensional quantum repeaters, Phys. Rev. A 94, 052307 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.94.052307

[10] M. Epping, H. Kampermann, and D. Bruss, Large-scale quantum networks based on graphs, New J. Phys. 18, 053036 (2016).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​5/​053036

[11] S. Das, S. Khatri, and J. P. Dowling, Robust quantum network architectures and topologies for entanglement distribution, Physical Review A 97, 012335 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.97.012335

[12] D. N. Matsukevich, T. Chanelière, S. D. Jenkins, S.-Y. Lan, T. A. B. Kennedy, and A. Kuzmich, Entanglement of remote atomic qubits, Phys. Rev. Lett. 96, 030405 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.96.030405

[13] C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, Functional quantum nodes for entanglement distribution over scalable quantum networks, Science 316, 1316 (2007).
https:/​/​doi.org/​10.1126/​science.1140300

[14] Z.-S. Yuan, Y.-A. Chen, B. Zhao, S. Chen, J. Schmiedmayer, and J.-W. Pan, Experimental demonstration of a bdcz quantum repeater node, Nature (London) 454, 1098 (2008).
https:/​/​doi.org/​10.1038/​nature07241

[15] D. L. Moehring, P. Maunz, S. Olmschenk, K. C. Younge, D. N. Matsukevich, L.-M. Duan, and C. Monroe, Entanglement of single-atom quantum bits at a distance, Nature (London) 449, 68 (2007).
https:/​/​doi.org/​10.1038/​nature06118

[16] D. N. Matsukevich, P. Maunz, D. L. Moehring, S. Olmschenck, and C. Monroe, Bell inequality violation with two remote atomic qubits, Phys. Rev. Lett. 100, 150404 (2008).
https:/​/​doi.org/​10.1103/​PhysRevLett.100.150404

[17] K. C. Lee, M. R. Sprague, B. J. Sussman, J. Nunn, N. K. Langford, X.-M. Jin, T. Champion, P. Michelberger, K. F. Reim, D. England, D. Jaksch, and I. A. Walmsley, Entangling macroscopic diamonds at room temperature, Science 334, 1253 (2011).
https:/​/​doi.org/​10.1126/​science.1211914

[18] S. Ritter, C. Nölleke, C. Hahn, A. Reiserer, A. Neuzner, M. Uphoff, M. Mücke, E. Figueroa, J. Bochmann, and G. Rempe, An elementary quantum network of single atoms in optical cavities, Nature (London) 484, 195 (2012).
https:/​/​doi.org/​10.1038/​nature11023

[19] J. Hofmann, M. Krug, N. Ortegel, L. Gérard, M. Weber, W. Rosenfeld, and H. Weinfurter, Heralded entanglement between widely separated atoms, Science 337, 72 (2012).
https:/​/​doi.org/​10.1126/​science.1221856

[20] H. Bernien, B. Hensen, W. Pfaff, G. Koolstra, M. S. Blok, L. Robledo, T. H. Taminiau, M. Markham, D. J. Twitchen, L. Childress, and R. Hanson, Heralded entanglement between solid-state qubits separated by three metres, Nature 497, 86 (2013).
https:/​/​doi.org/​10.1038/​nature12016

[21] A. Acin, N. Gisin, and L. Masanes, From Bell's theorem to secure quantum key distribution, Phys. Rev. Lett. 97, 120405 (2006).
https:/​/​doi.org/​10.1103/​PhysRevLett.97.120405

[22] V. Scarani, The device-independent outlook on quantum physics, Acta Physica Slovaca 62, 347 (2012).
https:/​/​doi.org/​10.2478/​v10155-012-0003-4

[23] S. Popescu and D. Rohrlich, Which states violate Bell's inequality maximally? Phys. Lett. A 169, 411 (1992).
https:/​/​doi.org/​10.1016/​0375-9601(92)90819-8

[24] S. L. Braunstein, A. Mann, and M. Revzen, Maximal violation of Bell inequalities for mixed states, Phys. Rev. Lett. 68, 3259 (1992).
https:/​/​doi.org/​10.1103/​PhysRevLett.68.3259

[25] J. F. Clauser, M. A. Horne, A. Shimony, and R. A. Holt, Proposed experiment to test local hidden-variable theories, Phys. Rev. Lett. 23, 880 (1969).
https:/​/​doi.org/​10.1103/​PhysRevLett.23.880

[26] D. Mayers and A. Yao, Quantum cryptography with imperfect apparatus, Proceeding FOCS '98 Proceedings of the 39th Annual Symposium on Foundations of Computer Science , 503 (1998).
https:/​/​dl.acm.org/​citation.cfm?id=795664.796390

[27] D. Mayers and A. Yao, Self testing quantum apparatus, QIC 4, 273–286 (2004).
http:/​/​portal.acm.org/​citation.cfm?id=2011830

[28] R. Colbeck, Quantum and relativistic protocols for secure multi-party computation, (2009), arXiv:0911.3814.
arXiv:0911.3814

[29] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday, D. N. Matsukevich, P. Maunz, S. Olmschenk, D. Hayes, L. Luo, T. A. Manning, and C. Monroe, Random numbers certified by Bell's theorem, Nature 464, 1021 (2010).
https:/​/​doi.org/​10.1038/​nature09008

[30] C. Bamps and S. Pironio, Sum-of-squares decompositions for a family of clauser-horne-shimony-holt-like inequalities and their application to self-testing, Phys. Rev. A 91, 052111 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.052111

[31] B. W. Reichard, F. Unger, and U. Vazirani, Classical command of quantum systems, Nature (London) 496, 456 (2013).
https:/​/​doi.org/​10.1038/​nature12035

[32] I. Šupić and J. Bowles, Self-testing of quantum systems: a review, Quantum 4, 337 (2020).
https:/​/​doi.org/​10.22331/​q-2020-09-30-337

[33] M. Tomamichel and E. Hänggi, The link between entropic uncertainty and nonlocality, J. Phys. A: Math. Theor. 46, 055301 (2013).
https:/​/​doi.org/​10.1088/​1751-8113/​46/​5/​055301

[34] C.-E. Bardyn, T. C. H. Liew, S. Massar, M. McKague, and V. Scarani, Device-independent state estimation based on Bell's inequalities, Phys. Rev. A 80, 062327 (2009).
https:/​/​doi.org/​10.1103/​PhysRevA.80.062327

[35] C. Miller and Y. Shi, Optimal robust self-testing by binary nonlocal xor games, 8th Conference on the Theory of Quantum Computation, Communication and Cryptography, TQC 2013 22, 254 (2013).
https:/​/​doi.org/​10.4230/​LIPIcs.TQC.2013.254

[36] T. H. Yang, T. Vértesi, J.-D. Bancal, V. Scarani, and M. Navascués, Robust and versatile black-box certification of quantum devices, Phys. Rev. Lett. 113, 040401 (2014).
https:/​/​doi.org/​10.1103/​PhysRevLett.113.040401

[37] J. Kaniewski, Analytic and nearly optimal self-testing bounds for the clauser-horne-shimony-holt and mermin inequalities, Phys. Rev. Lett. 117, 070402 (2016).
https:/​/​doi.org/​10.1103/​PhysRevLett.117.070402

[38] M. McKague, Interactive proofs for bqp via self-tested graph states, Theory of Computing 12, 1 (2016a).
https:/​/​doi.org/​10.4086/​toc.2016.v012a003

[39] A. Natarajan and T. Vidick, A qantum linearity test for robustly verifying entanglement, Proc. of STOC '17 , 1003–1015 (2017).
https:/​/​doi.org/​10.1145/​3055399.3055468

[40] A. Coladangelo, K. T. Goh, and V. Scarani, All pure bipartite entangled states can be self-tested, Nature Communications 8, 15485 (2017).
https:/​/​doi.org/​10.1038/​ncomms15485

[41] I. Šupić, A. Coladangelo, R. Augusiak, and A. Acín, Self-testing multipartite entangled states through projections onto two systems, New Journal of Physics 20, 083041 (2018).
https:/​/​doi.org/​10.1088/​1367-2630/​aad89b

[42] F. Magniez, D. Mayers, M. Mosca, and H. Ollivier, Self-testing of quantum circuits, Proceedings of the 33rd International Colloquium on Automata, Lang Lecture Notes in Computer Science No. 4052, edited by Bugliesi , 72 (2006).
https:/​/​doi.org/​10.1007/​11786986_8

[43] J.-D. Bancal, M. Navascues, V. Scarani, T. Vertesi, and T. H. Yang, Physical characterization of quantum devices from nonlocal correlations, Phys. Rev. A 91, 022115 (2015).
https:/​/​doi.org/​10.1103/​PhysRevA.91.022115

[44] M. Dall'Arno, S. Brandsen, and F. Buscemi, Device-independent tests of quantum channels, Proc. R. Soc. A 473, 20160721 (2017).
https:/​/​doi.org/​10.1098/​rspa.2016.0721

[45] J. Kaniewski, Self-testing of binary observables based on commutation, Phys. Rev. A 95, 062323 (2017).
https:/​/​doi.org/​10.1103/​PhysRevA.95.062323

[46] P. Sekatski, J.-D. Bancal, S. Wagner, and N. Sangouard, Certifying the building blocks of quantum computers from Bell's theorem, Phys. Rev. Lett. 121, 180505 (2018).
https:/​/​doi.org/​10.1103/​PhysRevLett.121.180505

[47] S. Wagner, J.-D. Bancal, N. Sangouard, and P. Sekatski, Device-independent characterization of quantum instruments, Quantum 4, 243 (2020).
https:/​/​doi.org/​10.22331/​q-2020-03-19-243

[48] T. R. Tan, Y. Wan, S. Erickson, P. Bierhorst, D. Kienzler, S. Glancy, E. Knill, D. Leibfried, and D. J. Wineland, Chained Bell inequality experiment with high-efficiency measurements, Phys. Rev. Lett. 118, 130403 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.118.130403

[49] X. Valcarce, P. Sekatski, D. Orsucci, E. Oudot, J.-D. Bancal, and N. Sangouard, What is the minimum CHSH score certifying that a state resembles the singlet? Quantum 4, 246 (2020).
https:/​/​doi.org/​10.22331/​q-2020-03-23-246

[50] B. Hensen, H. Bernien, A. E. Dréau, A. Reiserer, N. Kalb, M. S. Blok, J. Ruitenberg, R. F. L. Vermeulen, R. N. Schouten, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, M. Markham, D. J. Twitchen, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres, Nature (London) 526, 682 (2015).
https:/​/​doi.org/​10.1038/​nature15759

[51] L. K. Shalm, E. Meyer-Scott, B. G. Christensen, P. Bierhorst, M. A. Wayne, M. J. Stevens, T. Gerrits, S. Glancy, D. R. Hamel, M. S. Allman, K. J. Coakley, S. D. Dyer, C. Hodge, A. E. Lita, V. B. Verma, C. Lambrocco, E. Tortorici, A. L. Migdall, Y. Zhang, D. R. Kumor, W. H. Farr, F. Marsili, M. D. Shaw, J. A. Stern, C. Abellán, W. Amaya, V. Pruneri, T. Jennewein, M. W. Mitchell, P. G. Kwiat, J. C. Bienfang, R. P. Mirin, E. Knill, and S. W. Nam, Strong loophole-free test of local realism, Phys. Rev. Lett. 115, 250402 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.250402

[52] M. Giustina, M. A. M. Versteegh, S. Wengerowsky, J. Handsteiner, A. Hochrainer, K. Phelan, F. Steinlechner, J. Kofler, J.-c. A. Larsson, C. Abellán, W. Amaya, V. Pruneri, M. W. Mitchell, J. Beyer, T. Gerrits, A. E. Lita, L. K. Shalm, S. W. Nam, T. Scheidl, R. Ursin, B. Wittmann, and A. Zeilinger, Significant-loophole-free test of Bell's theorem with entangled photons, Phys. Rev. Lett. 115, 250401 (2015).
https:/​/​doi.org/​10.1103/​PhysRevLett.115.250401

[53] W. Rosenfeld, D. Burchardt, R. Garthoff, K. Redeker, N. Ortegel, M. Rau, and H. Weinfurter, Event-ready bell test using entangled atoms simultaneously closing detection and locality loopholes, Phys. Rev. Lett. 119, 010402 (2017).
https:/​/​doi.org/​10.1103/​PhysRevLett.119.010402

[54] J. S. Bell, On the einstein podolsky rosen paradox, Physics 1, 195 (1964).
https:/​/​journals.aps.org/​ppf/​pdf/​10.1103/​PhysicsPhysiqueFizika.1.195

[55] M. Fürst, H. Weier, S. Nauerth, D. G. Marangon, C. Kurtsiefer, and H. Weinfurter, High speed optical quantum random number generation, Opt. Express 18, 13029–13037 (2010).
https:/​/​doi.org/​10.1364/​OE.18.013029

[56] D. Rosset, J.-D. Bancal, and N. Gisin, Classifying 50 years of Bell inequalities, J. Phys. A: Math Theor. 47, 424022 (2014).
https:/​/​doi.org/​10.1088/​1751-8113/​47/​42/​424022

[57] M. Jenga, A selected history of expectation bias in physics, American Journal of Physics 74, 578 (2006).
https:/​/​doi.org/​10.1119/​1.2186333

[58] Probability inequalities for sums of bounded random variables, Journal of the American Statistical Association 58, 13 (1963).
http:/​/​www.jstor.org/​stable/​2282952

[59] B. Hensen, N. Kalb, M. S. Blok, A. E. Dréau, A. Reiserer, R. F. L. Vermeulen, R. N. Schouten, M. Markham, D. J. Twitchen, K. Goodenough, D. Elkouss, S. Wehner, T. H. Taminiau, and R. Hanson, Loophole-free Bell test using electron spins in diamond: second experiment and additional analysis, Scientific Reports 6, 30289 (2016).
https:/​/​doi.org/​10.1038/​srep30289

[60] J. Hofmann, Heralded atom-atom entanglement, PhD thesis (2014).
https:/​/​xqp.physik.uni-muenchen.de/​publications/​theses_phd/​phd_hofmann.html

[61] K. Redeker, Entanglement of single rubidium atoms: From a Bell test towards applications, PhD thesis (2020).
https:/​/​xqp.physik.uni-muenchen.de/​publications/​theses_phd/​phd_redeker.html

[62] W. Hoeffding, On the distribution of the number of successes in independent trials, Annals of Math. Stat. 27, 713 (1956).
https:/​/​projecteuclid.org/​euclid.aoms/​1177728178

[63] A. Ilienko, Continuous conterparts of poisson and binomial distributions and their properties, Annales Univ. Sci. Budapest., Sect. Comp. 39, 137 (2013), arXiv:1303.5990.
arXiv:1303.5990

[64] N. C. W. R. van de Ven, Bounds for the median of the negative binomial distribution, Metrika 40, 185 (1993).
https:/​/​doi.org/​10.1007/​BF02613677

[65] M. McKague, Self-testing in parallel, New J. Phys. 18, 045013 (2016b).
https:/​/​doi.org/​10.1088/​1367-2630/​18/​4/​045013

[66] A. W. Coladangelo, Parallel self-testing of (tilted) EPR pairs via copies of (tilted) CHSH, Quantum Information and Computation 17, 831 (2017).
https:/​/​doi.org/​10.26421/​QIC17.9-10

[67] F. R. Sàbat, P. Sekatski, A. Pirker, and W. Dür, Entanglement purification by counting and locating errors with entangling measurements, (2020), arXiv:2011.07084.
arXiv:2011.07084

[68] R. Arnon-Friedman, Device-independent quantum information processing, Springer (2020).
https:/​/​doi.org/​10.1007/​978-3-030-60231-4

Cited by

[1] Gaëtan Gras, Davide Rusca, Hugo Zbinden, and Félix Bussières, "Countermeasure Against Quantum Hacking Using Detection Statistics", Physical Review Applied 15 3, 034052 (2021).

[2] Ivan Šupić and Joseph Bowles, "Self-testing of quantum systems: a review", arXiv:1904.10042.

[3] Francesco Graffitti, Alexander Pickston, Peter Barrow, Massimiliano Proietti, Dmytro Kundys, Denis Rosset, Martin Ringbauer, and Alessandro Fedrizzi, "Measurement-Device-Independent Verification of Quantum Channels", Physical Review Letters 124 1, 010503 (2020).

[4] Koon Tong Goh, Chithrabhanu Perumangatt, Zhi Xian Lee, Alexander Ling, and Valerio Scarani, "Experimental comparison of tomography and self-testing in certifying entanglement", Physical Review A 100 2, 022305 (2019).

[5] Davide Orsucci, Jean-Daniel Bancal, Nicolas Sangouard, and Pavel Sekatski, "How post-selection affects device-independent claims under the fair sampling assumption", arXiv:1908.11123.

[6] Xavier Valcarce, Pavel Sekatski, Davide Orsucci, Enky Oudot, Jean-Daniel Bancal, and Nicolas Sangouard, "What is the minimum CHSH score certifying that a state resembles the singlet?", arXiv:1910.04606.

The above citations are from Crossref's cited-by service (last updated successfully 2021-10-27 21:15:34) and SAO/NASA ADS (last updated successfully 2021-10-27 21:15:36). The list may be incomplete as not all publishers provide suitable and complete citation data.