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Simulating the dynamics and the non-equilibrium steady state of an open
quantum system are hard computational tasks on conventional computers. For
the simulation of the time evolution, several efficient quantum algorithms have
recently been developed. However, computing the non-equilibrium steady state
as the long-time limit of the system dynamics is often not a viable solution,
because of exceedingly long transient features or strong quantum correlations
in the dynamics. Here, we develop an efficient quantum algorithm for the
direct estimation of averaged expectation values of observables on the non-
equilibrium steady state, thus bypassing the time integration of the master
equation. The algorithm encodes the vectorized representation of the density
matrix on a quantum register, and makes use of quantum phase estimation to
approximate the eigenvector associated to the zero eigenvalue of the generator
of the system dynamics. We show that the output state of the algorithm allows
to estimate expectation values of observables on the steady state. Away from
critical points, where the Liouvillian gap scales as a power law of the system
size, the quantum algorithm performs with exponential advantage compared to
exact diagonalization.

1 Introduction

Open quantum systems are rapidly emerging as a major research field [1-3]. On the
fundamental side, they can display new classes of universal physical properties such as
dissipative phase transitions and topological phases, while applications can span from
novel paradigms of quantum simulators [4, 5] to the accurate modeling of noise in modern
quantum computing platforms [6]. The numerical simulation of the dynamics of a many-
body open quantum system is generally a hard computational task, as it combines the
unitary evolution generated by the many-body Hamiltonian with the non-unitary evolution
induced by the interaction with the environment. Similarly, computing the non-equilibrium
steady state (NESS) — i.e. the state reached asymptotically in the long-time limit — is the
computational analog of simulating the ground state of a many-body closed quantum
system, and generally embodies an analogous computational challenge.

Current approaches [7] to the solution of the Lindblad-Von-Neumann master equation
for the density matrix [8] — describing the case of a Markovian environment — include
in addition to the exact numerical solution of the resulting differential equations, tensor-
network methods [9-11], projector [12] and time-dependent variational [13-16] quantum
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Monte Carlo, various quantum trajectory approaches, as well as methods introducing vari-
ous levels of approximation [17-21]. When the goal of the simulation is to know the NESS,
integrating the system dynamics over long times is generally not an optimal strategy. In
presence of critical slowing down, the time required to actually reach the NESS may be
prohibitively large, and the transient dynamics may explore highly quantum correlated
states — generally more difficult to simulate — even when the quantum correlations in the
NESS are moderate. More specific approaches aiming directly at the simulation of the
NESS without simulating the underlying dynamics have been developed, either in terms
of variational tensor network [22—-24|, and specific real-space decimation schemes [25]. The
runtime of most of these approaches scales exponentially with the number of degrees of
freedom, while approximate methods display power-law scaling but at the cost of a limited
predictive power when in presence of significant quantum correlations in the system.

Quantum algorithms for the simulation of open quantum systems by computing the
system dynamics have recently been proposed [26-39]. The time-evolution of the Lindblad-
Von-Neumann master equation is non-unitary, hence not suited for a direct implementation
as a digital quantum simulation. While some special cases of system-environment interac-
tion have been shown to translate into a unitary stochastic quantum evolution 26|, more
generally the non-unitary dynamics is mapped onto a unitary dynamics on an appropriately
dilated Hilbert space, which models an effective environment. Similarly, a time evolution
quantum algorithm was proposed to compute the thermal equilibrium state of a system
in interaction with a thermal bath [40]. Recently, a hybrid quantum algorithm has been
proposed for the estimation of the NESS, based on a variational ansatz for the density
matrix [41].

Here, we propose a different approach consisting in the direct estimation of the averaged
expectation values of observables on the NESS, without requiring the integration of the
system dynamics. This is achieved by representing the density matrix in vectorized form
and mapping the steady-state condition onto a linear system of equations. The quantum
algorithm then uses quantum phase estimation (QPE) and the HHL algorithm [42]| to
solve the linear system. The output state is an estimate of the elements of the density
matrix of the NESS, encoded in a vectorized representation onto the output state of a
quantum register. The initial state is prepared leveraging the known spectral properties
of the generator of the open-system dynamics, so to obtain a large overlap with the target
output state. In this way, the success probability of a single QPE run is O(1). It is shown
that in cases in which the Liouvillian gap —i.e. the asymptotic relaxation rate towards the
NESS — decreases as a power law of the system size, the algorithm runs with exponential
speedup compared to exact diagonalization of the master equation on classical hardware.
By using established methods for the quantum measurement of expectation values [43],
is it finally shown how to directly estimate averages of the expectation value of physical
observables on the NESS statistical ensemble.

The article is organized as follows. In Section 2 the master equation formalism is
introduced and cast in a form suitable to be encoded on a quantum computer. In Section
3 the quantum algorithm is presented and an analysis of the success probability, gate
cost and errors is performed. In Section 4 the formalism to estimate expectation values
on the NESS is derived, and its accuracy characterized. Section 5 contains a numerical
analysis of the algorithm applied to a simple driven-dissipative problem. The conclusions
are presented in Section 6. Appendix A develops the oracular part of the algorithm for the
specific case of a dissipative transverse Ising spin model.
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2 Formalism

The dynamics of an open quantum system interacting with a Markovian environment is
described by the Lindblad-Von Neumann master equation p = £(p) [8], where p is the
density operator, and the Liouvillian super-operator is expressed as (setting i = 1)

L) =i [0 - 5 3 ({415}~ 24;041) (1)

J

Here, H is the system Hamiltonian and flj are jump operators describing the transitions
induced on the system by the environment. For the scope of this work, we will assume
that both H and the flj’s are quasi-local operators, i.e. they are expressed as sums of
tensor products of at most few local degrees of freedom of the system, so that they can
be efficiently implemented in a quantum circuit [44]. The case of global jump operators,
describing transitions between eigenstates of H , can also be addressed, provided an efficient
way of approximating these operators by a sequence of quantum gates exists. We assume
that a unique non-equilibrium steady state (NESS) exists and is therefore characterized by
the condition £(pss) = 0. The existence and uniqueness of the NESS can be established
within rather general assumptions, and is in particular verified for problems defined in a
finite-dimensional Hilbert space [45], as it will always be the case on a quantum circuit
implementation of the problem.

In order to encode the density matrix onto the state of a quantum register, we adopt
the vectorized representation, whereby operators on the Hilbert space H are mapped onto
vectors in the tensor product space H Q@ H. Given an orthonormal basis, a density operator
p = >k Pjklj) (k| maps onto the vector [p) = 3.1 pjklj) ® |k) (appropriately normalized).
This essentially corresponds to building a vector whose components are the concatenated
columns of the density matrix. Under this mapping, the Liouvillian becomes a linear
operator acting on the space H ® H, defined as

£:—z‘<I®I§r—I§IT®I)

—%Z(I@A}AjJrA]TAj@I—QAj@Aj), (2)

where I denotes the identity matrix. Here, we will assume that the Hilbert space H of the
problem has dimension 2. Then the vector |p) is defined in a 2%V-dimensional space and
can therefore be encoded onto a 2/N-qubit register.

The Liouvillian operator for a dissipative system is in general not Hermitian. Its
eigenvalues \; are in general complex, and the nonzero eigenvalues are characterized by
Re();) < 0. The right and left eigenvectors associated to the zero-eigenvalue (here assumed
unique) are respectively the NESS pss and the identity matrix, i.e. £|pss) = 0and (I|L =0
[8, 46]. The latter relation implies also £T|I) = 0. We define a Hermitian operator in a

22N+1_dimensional space as
0 £
w=(% 5 ). ®)

From the spectral properties of the Liouvillian, we gather that the operator M has two
eigenvectors with zero eigenvalue, namely |no) = |0)|I) and |n1) = |1)|pss). From the
assumption that the NESS is unique, we conclude that these will be the only eigenvectors
with zero eigenvalue of M. More generally, we denote with |n;) and ¢; the eigenvectors
and the corresponding eigenvalues of M. Given the structure of M, for each eigenvalue ¢;
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associated to the eigenvector |1;) = |0)|a;)+|1)|b;), the vector |7;) = |0)|a;) —|1)|b;) is also
eigenvector of M with eigenvalue —¢;. The eigenvector condition also implies the relations
LIL|b;) = g032-|bj) and LL|a;) = g0§|aj), thus proving that the eigenvalues of M coincide
with those of the operators £1£ and ££T. Hence, the values @; are the singular values of
the Liouvillian £ and, by applying Weyl’s inequality for singular values, one can finally
show that for the Liouvillian gap ¢ — i.e. the minimal value of |Re();)| among all nonzero
eigenvalues — the inequality g < ming; o |;| holds. We conclude that the Liouvillian gap
g sets a lower bound to the spectral gap of the operator M. We will use this property in
what follows, when discussing the computational complexity of the quantum algorithm.
To encode the operator M, the Liouvillian operator is expressed in terms of a Hermitian
and an anti-Hermitian term as £ = Ly —iL 4, with £l = Ly and ﬁi‘ = L 4. The operator
M 1is then expressed as
M=X®Lg+Y ®La, (4)

where X and Y are Pauli operators. If Ly and L4 can be efficiently encoded in terms of
quasi-local operators, then M can also be efficiently encoded. From Eq. (2),

EA:([@]f[—lf[T(@I)-I-%.Z(A;@Aj_ﬁ;!@ﬁ;)
J
[:H:%Z(A§®Aj+/i?®14;_I®A;Aj_A?A;®I)' (5)
J

3  Quantum algorithm

The goal of the algorithm is to prepare an initial state having a large overlap with the
degenerate zero eigenspace of M. QPE is then applied to estimate the projection of this
initial state onto the zero eigenspace. The quantum circuit is illustrated in Fig. 1. It
comprises an input-state preparation stage, a QPE stage, and a measurement stage.
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Figure 1. Quantum circuit of the NESS solver. The three dashed lines indicate the stages where the
states |¢1), [1)2), and |¢3), Egs. (7-10), occur. The Quantum circuit of the gate P for the preparation
of the initial state |£) for the second register is detailed in Fig. 2

The QPE algorithm uses two registers. The first one is a t-qubit register that will
encode a t-bit integer estimate of the eigenvalue. The second one encodes the corresponding
eigenvector and therefore contains, in our formulation, 2N 4+ 1 qubits. In its standard
formulation [47], QPE takes as an input the state |0)|n;), where |n;) is an eigenstate of a
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Figure 2: Quantum circuit P for the preparation of the initial state |£) for the second register. The
circuit takes as input the (2N 4 1)-qubit state |0) and outputs the state |£) in Eq. (6). Controlled-
Hadamard gates are implemented following the general procedure for arbitrary controlled gates [47, 48],
and controlled-arbitrary gates are available within current superconducting circuit technology [49].

unitary operator U with eigenvalue > assuming @j € [0,1]. If 2%p; is a t-bit integer,
then QPE outputs the state |;)[n;). If 2'¢; is not an integer, then QPE will produce with
high probability the state |p;)|n;), where 2'@; is the best t-bit integer estimate of 2%¢p);
from below.

For the present case, we set U = e>™*M%0_where the real parameter tg is set so that the
whole spectrum of Mt is included in the [0, 1] interval. The algorithm assumes that an
oracle circuit is available to efficiently perform controlled-U?" operations.

Differently from the standard QPE scheme, here the eigenvalue is known and the algo-
rithm is used to compute the corresponding eigenvector. To this purpose, the input state
|0)[£) of the QPE stage of the algorithm must be chosen in such a way that |£) has a
significant overlap with the zero-eigenspace of M spanned by |n) and |n;). Here we set

0)I1) + [1)]0)
NG :

This choice is justified by the procedure to estimate the expectation values of observables
that will be introduced below. Insight in the structure of the state |I) shows immediately
that it can be expressed as a product of Bell states, where each Bell state involves one
qubit from the row index and one from the column index of the density matrix. A circuit
on the second register, to prepare the input state (6) when input with the initial state
|0), is shown in Fig. 2. Controlled Hadamard gates can be implemented with a limited
number of gates following the prescriptions for arbitrary controlled operations [47, 48], and
controlled-arbitrary gates are available within current superconducting circuit technology
[49].

Expanding |£) on the basis of the eigenvectors |n;) of M, the state of the full circuit
following the preparation stage is

[¥1) = 10)[€)
|0>W>IDW
— Bl \}E;lemlm
_ 10)|mo) ‘1\’/gl|0>|771> +\}§j§16j|0>mj>’ (7)

1§) = (6)
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where we have indicated explicitly the expansion of the state [1)|0) on the basis of eigen-
states |n;) of M, and accounted for the fact that states |1)|0) and |ng) = |0)|I) are orthog-
onal. The first term of the sum in the last line is the one that will be untouched by the
QPE, as both |ng) and |n;) are eigenvectors of M associated to the zero eigenvalue.

In general, the other eigenvalues of M will be such that 2'¢; is not a t-bit integer.
Then, the QPE stage of the circuit applied to the state |0)|n;) will output the state

i _01 ak ]k>|nj> so that the state of the circuit at the output of the QPE stage is

2t—1

10)|70) + c1]0) |771
|1a) = cjal k) [n;) (8)

where
) 11— e27ri(2t<,0j—k)

A = 9t 1 _ e2mi(p;—k/20) (9)

After the QPE stage, the first register is measured in the computational basis, and the
algorithm is successful if the eigenvalue 0 is measured. Then, the output state is (up to a
normalization constant of order 1)

10) + C1|771 ()
[vs) =10) | ——F=——" cjag i) | (10)
’ ﬂ J;):l ’ ’

where ¢; € R because it is the projected amplitude of the density matrix onto its first
diagonal matrix element. The first term in the sum between brackets in expression (10)
is the result being sought, while the remaining term is an unwanted error proportional to
the eigenstates |1);) of M other than those with zero eigenvalues.

3.1 Success probability and runtime

From (8), the probability of measuring zero on the first register is

1 .
=3 (1 ool + 3 |cj12|aé”2)
J#0,1

1+ |eol?
:2‘[)‘4_1967 (11)

where pe = 1/237;01 |cj|2|oz(()])]2 is the probability of an error in the QPE, whereby the
zero eigenvalue is measured but the second register is projected onto one of the states |7;)
with j # 0,1. As pp > 1/2, the number of executions required to successfully measure the
zero eigenvalue is O(1) and does not scale with N or ¢.
In order to estimate the contribution of the spurious term in (10), it is useful to study
(7) 2
|

the behavior of |eyy’|°. Simple algebra leads to

(j)|z_iw

lag (12)

22t sin?(mp;)

The function (12) is plotted in Fig. 3(a). As already pointed out, the value of ¢ is set in
order to have ¢; < 1. The value of ]a(()] ) |2 can be large only when ¢; approaches an integer
value, and the value of ty can be set such that the only relevant case is When @j ~ 0. For

¢j ~ 0 we can expand the denominator and obtain (setting z = 72%p;) |a0 ]2 ~ sinc?(x),
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the squared sine cardinal function. We can use the property sinc?(x) < 272 to set a bound
on the error probability
1218 1

1 2 (2 1
pe:*Z|Cj||a0’§*Z 95202 = 5 352171
2],#071 2j#0717r2 ¥; T=g-2

where ¢ is the Liouvillian spectral gap and we have used the inequality previously estab-
lished. Then, in order to have a bound probability of error p. < €,, one must set
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Figure 3: (a) The probability \a(()j)|2 plotted as a function of ¢; for different values of ¢. (b) The
accuracy 1 — F of the quantum algorithm as a function of ¢, as computed for the simple model of one
spin in presence of an external field i along the x-direction and relaxation along the z-direction.

To estimate the gate cost of the algorithm and its scaling with the system size N, we
first observe that the initial state preparation P is made of 2N + 2 gates. The Hadamard
stage H®! contributes for ¢ gates, while the QFT stage is implemented with O(t?) gates
if the textbook implementation is used, while approximate versions of the QFT can be
implemented with O(tlog(t)) gates [50, 51]. The oracle part of QPE amounts to the
application of a controlled U2 = 2mi2'Mto ¢ the (2N + 1)-qubit register. The control is
implemented at no additional gate cost if a Suzuki-Trotter expansion [52] is used, as shown
explicitly in Appendix A for the case of the dissipative transverse-field Ising model.

A general physical setting is that of k-local Hamiltonians H = 2y owlfl7 where each

lffW acts in a non trivial way on k ~ O(1) spins only. We additionally assume that the jump
operators flj in Eq. (1) are also quasi-local operators. Then, the vectorized Liouvillian Eq.
(2) is k-local and, from Eq. (4), it follows that the effective Hamiltonian M is (k + 1)-local
on an effective system of size 2N +1. An example is provided by the 3-local expression of M
in the case of the transverse Ising model with local spin relaxation (21) derived in Appendix
A. Optimal strategies for the approximate quantum simulation of Hamiltonian evolution
over a time 7 to error e, have been developed, adopting both Suzuki-Trotter expansion
or alternative approaches [52]. The Suzuki-Trotter approach has the advantage of not
requiring ancilla qubits. Assuming a pg,-order Suzuki-Trotter expansion and the most
general k-local operator M, the best gate cost for the implementation of a C' —e?2™0M7 gate
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is estimated [52] as O((2N + 1)’“7(1“/1”)/&/1)) up to the 1-norm of the operator 2mtg||M||
which in the present case is assumed to be O(1). As noted above, here 7 = 2!, which leads
us to an estimation of the gate cost O((2N + 1)k/(gl+1/pei/pe;/2) for the simulation of the
vectorized NESS of a N-spin system characterized by a Liouvillian gap g, with probability
of error p. < €,. The (2N + 1)*-dependence is determined by the number of gates required
for the most general k-local interaction term in the Hamiltonian. However, for models with
limited range interactions, the corresponding factor typically depends linearly on N [53],
as for example in the case of the transverse Ising model discussed in Appendix A. The
overall gate cost of the present algorithm is therefore

_ (2N + 1)k

where €, and ¢, are respectively the Suzuki-Trotter error and the QPE success error.

Choosing a sufficiently high order p, the gate cost approaches O((2N + 1)]‘3/(96;,/2)),
i.e. linear in the inverse Liouvillian gap and independent of the Suzuki-Trotter error €.
The inverse gap for most model Hamiltonians and couplings to the environment scales as
a power law of the system size, except at critical points where it can scale exponentially
[54]. The required number of qubits ¢t in the first register, according to Eq. (3.1), is
t ~ O(log(N)) in the case of power-law Liouvillian gap, and ¢ ~ O(N) otherwise. Assuming
a power-law dependence 1/g = poly(N), the overall gate cost of the algorithm scales with
the system size as O(poly(N)), thus achieving a quantum advantage with respect to an
exact calculation with a classical algorithm. The scaling with N is instead not favorable
whenever the inverse gap scales exponentially with system size. This can happen in some
systems when approaching the critical point of a dissipative phase transition, in a way
analogous to the simulation of the ground state of a Hamiltonian close to a quantum phase
transition using either QPE [47] or a variational quantum eigensolver [55, 56].

Previous approaches to the quantum simulation of open quantum systems [26-39| have
focused on algorithms to simulate the time evolution of the system. The scope of the
present work is different, in that we propose an algorithm to solve directly the algebraic
equation L(pss) = 0 that defines the density matrix associated to the NESS. Computing
the NESS through time evolution would require a time 7" long enough to asymptotically
approximate the NESS. This time scale is naturally defined as the inverse Liouvillian
gap T' ~ 1/g. State-of-the-art approaches [38] achieve a gate cost O(T'polylog(T'/e), for a
required accuracy e. This is comparable to our approach which scales as O(T' /7 /el/P) for
a pgp-order Suzuki-Trotter expansion and approaches a complexity linear in T in the limit
of large p. The merit of the present approach is that it bypasses the computation of the real
time evolution altogether. The transient to the NESS is often characterized by short time
features due to the Hamiltonian part of the evolution, that would require a small integration
time step, possibly leading to a system dependent computational overhead. Computing
directly the density matrix of the NESS avoids this issue and is therefore the method to
be preferred if only averaged expectation values of observables on the steady state are
needed. A further distinctive feature of the present approach is the fact that its output
state encodes directly the elements of the density matrix characterizing the steady state.
Most previous approaches instead [27-34, 36-38] simulate the quantum channel associated
to the open system being studied, typically through appropriate dilation schemes. To
estimate the ensemble averaged expectation values of observables, these approaches thus
additionally require a possibly large number of runs in order to sample over the statistical
ensemble of pure states characterizing the quantum channel. If the goal of the quantum
simulation is to estimate ensemble-averaged expectation values, then the present algorithm
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will likely bring a significant computational advantage. A similar goal is pursued in Ref.
[35] where the time evolution of correlators is simulated, although the perturbative scheme
used for the dissipative dynamics results in a computational cost scaling exponentially with
time, thus inappropriate to extrapolate the NESS in the long-time limit.

4  Estimate of expectation values

Once the first register has been measured in the state |0), it is possible to estimate quantum
mechanical expectation values from the density matrix pss. For a given observable O, the
expectation value is computed as (O) = Tr(Opss)/Tr(pss). As before, we assume that the
Hermitian operator O can be efficiently encoded in terms of one- and two-qubit operations,
which is generally true for few-point correlations of quasi-local observables. In vectorized
form, we have for a general density matrix [(Op)) = I ® Olp), and the super-operator
O =1 ® O is also Hermitian. The trace average is then expressed as a matrix element

Tr(éﬁss) = <I|O|pss> = <pss|O|I> . (14)

In order to estimate an averaged expectation value (14) from the output state of the
algorithm, we define the Hermitian operator

0 O
Q:X®O=<@ 0), (15)

acting on the (2N + 1)-qubit second register. Then,

Tr(Opss) = (m0]Qlmi) = (m|Qlno) , (16)

while, due to the structure of the operator Q, we have (19|Q|no) = (m|Q|m) = 0.
The trace average can then be estimated as the expectation value of I ® Q on the
output state [i3)

<¢3’I b2y QW}3> = ClTr(Oﬁss) (17)
+ > Re [Cjaéj) ((m0]QIn;) +01<771|Q\77j>)} T3 > Cjcla(()J) oy (n1Qlm)
Jj#0,1 4,1#£0,1

where we used the facts that the expectation value of O is real-valued, (no|Q|n1) =
(m|Q|m), and ¢; € R. In particular, by setting O = I, the measurement returns the
quantity ¢;Tr(pss), which can be then used to eliminate the factor ¢; and obtain the ex-
pectation value (O) = Tr(Opss)/Tr(pss). The second and third term on the right hand
side of Eq. (17) are the spurious terms resulting from the finite number of qubits ¢ in the
QPE. They are respectively of order O(]a[()j )\) and O(\aéj ) |2). By setting to as discussed in
the previous Section, these terms therefore decrease exponentially in ¢, as also seen in the
example presented below.

Egs. (14) and (17) prove that the problem of computing the trace average of O maps
onto that of estimating the expectation value of a Hermitian operator onto the output
quantum state of the present algorithm. This estimate is achieved through methods for
the quantum measurement of expectation values [43, 57]. The accuracy of these methods
scales with the number of measurements N, performed on the output state after, thus
requiring IV, successful runs of the algorithm. In order to achieve a given accuracy €,,, a
direct operator averaging method requires N,, = O(1/¢2,) and no additional gates, while
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methods based on the QPE can achieve N,,, = O(1/¢,,) but at an additional algorithmic
cost [43, 57].

An important question concerns the normalization of the output state encoding the
vectorized density matrix, and how it affects the error in estimating expectation values.
The appropriately normalized state is written in terms of the elements of the density

matrix as |p) = (1/N) 35, pjkli) ® |k), where N' = /3. |pjr|> = /P is the Frobenius
norm of the density matrix and P = Tr(p?) the purity of the NESS. If we assume the
output state |i¢3) to be normalized, then the expectation value in Eq. (17) is actually
(3|I @ Qis) = (c1/P)Tr(Opss). In the case of a highly mixed NESS, the large 1/P-
factor amplifies the error in the estimation of (O> For a quantum system described in
a 2N-dimensional Hilbert space, the inequality 1 < 1/P < 2V holds. The lower bound
corresponds to pure states, whereas the upper bound is set by the maximally mixed state
corresponding to p = I/2V. In practice, physical models of interest usually have poorly
entropic steady states, for which 1/P is either bound or scales sub-extensively close to a
dissipative phase transition [4, 58|.

5 Results
0
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Figure 4: Estimated expectation values of (a) 6, and (b) &, as computed from Eq. (17). The
horizontal lines correspond to the values obtained from the exact NESS. The insets show the relative

errors § = [{(6a)est — (Ga)l/|{Fa)| (¢ = y,2) and the black line is a guide to the eye proportional to
27t

We present here a simple numerical test of the quantum algorithm by simulating the
quantum circuit for an elementary model of an open quantum system. We consider a spin
1/2 subject to an external magnetic field h along the = direction and to a decay process
along the z-axis. The system Hamiltonian is simply H = hé, and the density matrix obeys
the Lindblad-Von Neumann master equation

b= —i [H ﬁ} - % <6+6_ﬁ +pote — 26——;35#) . (18)

The Liouvillian gap for this simple model is independent of h and given by g = 1/2. We
therefore set ¢y = 1/5. The circuit in Figs. 1 and 2 was simulated by explicitly computing
the corresponding unitary operator, for a number of qubits in the first register up to t = 10
and three qubits in the second register.
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For varying values of h and t, we computed the NESS density matrix ﬁg? resulting

from the quantum algorithm, and compared it to the exact NESS pss by evaluating the

fidelity
2
F= (tI‘ V Vv Pss ﬁfg%) V ﬁss) . (19)

Results are displayed in Fig. 3(b). The accuracy of the quantum algorithm scales as 272,
as expected from Egs. (10) and (12).

In Fig. 4 the expectation values of &, and &, estimated according to Eq. (17), are
plotted as a function of the number of qubits . The corresponding errors with respect to
the exact expectation values are plotted in the insets. The leading term linear in a(()J ) in
Eq. (17) results in a relative error scaling as § ~ 27%, again proving the efficiency of the

algorithm.

6 Conclusions

We have developed a quantum algorithm for a fault-tolerant quantum computer, that
directly estimates the vectorized representation of the NESS density matrix of an open
quantum system, without the need to integrate the master equation for the time evolution
of the density operator. The algorithm leverages QPE to find the Liouvillian eigenvector
associated to the null eigenvalue, thus assuming the existence of a unique NESS. Once
this eigenvector is found, we show how to efficiently compute the averaged expectation
value of an observable onto the NESS. The scaling of the present quantum algorithm is
polynomial in the number of qubits N encoding the quantum degrees of freedom of the
system, thus providing quantum advantage when compared to exact diagonalization on
classical computer hardware. The algorithm is designed to run on a fault-tolerant quantum
computer. As such, we expect it to still execute correctly in a shallow circuit setting where
the overall error rate is contained. The question about the scaling of its accuracy, when
executed on near-term noisy quantum hardware, remains however open.

With the availability of scalable fault-tolerant quantum hardware, the present algorithm
will enable modeling open quantum systems of unprecedented size, opening a new way in
the study of the dissipation and decoherence, including among others, phenomena such
as dissipative phase transitions or the influence of the environment on quantum hardware
itself.
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A Implementation of the transverse-field Ising model

We give here a specific circuit implementation of the controlled-U?’ operations in the case
of the dissipative transverse-field Ising model, which is currently used as a benchmark
for new numerical approaches to open quantum systems [15, 59]. We assume that the
computational basis encodes spin-1/2 eigenstates of the Z operator. For N spin, the
model Hamiltonian is

E[:

NI

N h N
Z ZjZk+§ZXj’ (20)
=1 =1

where (j, k) denotes pairs of indices corresponding to first neighbor sites on the lattice

being modeled. Dissipation is described by the jump operator flj = 0’](-_) = (X; —1iYj)/2.

Both H and flj are real-valued in the computational basis, so that HT = H , fl}" = flj,
and A}L = flf = O'J(-+) = (X; +1iY;)/2.

For clarity, we omit the tensor products in Eq. (5) from the notation in the formalism
that follows. For this, we index the local operators on the left side of the tensor product
with indices 5 = 1,..., N, and those on the right side with indices j = N +1,...,2N.
We attribute the index 7 = 0 to the additional spin operators appearing on the left side of
the tensor product in the definition of M, Eq. (4). In this way, after simple algebra, the
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operator M is rewritten as a Hamiltonian for an effective spin model with 2NV + 1 spins

J N h N
M= > Yo(ZjsnZinN — ZiZy) + 5 > Yo(Xjin — Xj)
=1 =1

_|_
>~ =

Yo(XjYj4n + Y Xjn)

<
Il
—_

N

+ Xo(X;Xjen = Yj¥juen = Zjsn = Zj) — 5 Xo. (21)

=

Il
—

J

This effective Hamiltonian is 3-local, i.e. it is written as M = }__ a, M, where each M, is
a product of up to three Pauli operators.

As pointed out above, the controlled unitaries in the QPE part of the algorithm are
implemented using the Suzuki-Trotter expansion. As a result, the implementation of the
controlled unitary is reduced to the implementation of C' — > gates, where ¢ is a small
real-valued parameter. At the circuit level, this is achieved in terms of CNOTs, +m/2
single-qubit rotations along the x or y axes, and a controlled rotation by an arbitrary angle
along the z axis [53]. In Fig. 5 we show the circuits for some selected two- and three-spin
controlled operators, while those for the remaining terms occurring in the Suzuki-Trotter
expansion can be similarly laid down.

(a)

— Ry(7/2) Ry(—m/2) —
O— R.(-26) D

(b)

— Ry(m/2) Ry(—7/2) —

— Ry(7/2) —— R.(—20) —— Ry(—7/2) —

(c)

— Ry (7/2) Ry(—m/2) —
— Ry(7/2) & O Ry(—7/2) —
— R, (77—/2) D Rz(_Q(s) D Rm(_w/Z) —

Figure 5. Quantum circuits implementing respectively (a) C' — eX®Z  (b) C — e®Y®X and (c)
O _ (0 ®X®Y
Assuming to use a first-order Trotter expansion over r Trotter steps, we have

27

Ul = ei2mitoM (ei ztOM)T ; (22)
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and 27 jtg 2mjtg
eZTM ~ Hezfa-yM.y ) (23)

v

This provides the final prescription to apply the C' — U7 as a sequence of gates of the form
C — €M Based on the circuits shown in Fig. 5, the gate cost for the implementation of
the single Trotter step Eq. (23) is 40N single-qubit gates, 42N CNOTs and 1 controlled R,
gate. Twice as many gates would be needed if the second order Suzuki-Trotter expansion
was employed instead of Eq. (23).
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