Resource requirements for efficient quantum communication using all-photonic graph states generated from a few matter qubits

Paul Hilaire, Edwin Barnes, and Sophia E. Economou

Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Quantum communication technologies show great promise for applications ranging from the secure transmission of secret messages to distributed quantum computing. Due to fiber losses, long-distance quantum communication requires the use of quantum repeaters, for which there exist quantum memory-based schemes and all-photonic schemes. While all-photonic approaches based on graph states generated from linear optics avoid coherence time issues associated with memories, they outperform repeater-less protocols only at the expense of a prohibitively large overhead in resources. Here, we consider using matter qubits to produce the photonic graph states and analyze in detail the trade-off between resources and performance, as characterized by the achievable secret key rate per matter qubit. We show that fast two-qubit entangling gates between matter qubits and high photon collection and detection efficiencies are the main ingredients needed for the all-photonic protocol to outperform both repeater-less and memory-based schemes.

The laws of quantum mechanics enable the provably-secure transfer of information, which has already been demonstrated and is even commercially available. However, the fiber loss limits its range to a few tens of kilometers. Quantum repeaters have been introduced to extend the scope of quantum communications with the hope to reach inter-continental distances. Most of these schemes are based on quantum memories which store quantum information for a long time but are also subject to errors that should be mitigated.

To circumvent this problem, an all-photonic repeater which does not use quantum memories at all was introduced, recently followed by a protocol for its deterministic generation using a limited number of quantum emitters. In this work, we evaluate the performances of this new protocol using this deterministic generation and compare it to other existing protocols based on quantum memories. We find that the all-photonic quantum repeater can outperform any memory-based protocols if operations on quantum emitters are sufficiently fast and if we can efficiently collect the photons.

► BibTeX data

► References

[1] H. J. Kimble. The quantum internet. Nature, 453 (7198): 1023–1030, 2008. 10.1038/​nature07127.

[2] Stephanie Wehner, David Elkouss, and Ronald Hanson. Quantum internet: A vision for the road ahead. Science, 362 (6412): eaam9288, 2018. 10.1126/​science.aam9288.

[3] Charles H Bennett and Gilles Brassard. An update on quantum cryptography. In Workshop on the Theory and Application of Cryptographic Techniques, pages 475–480. Springer, 1984. 10.1007/​3-540-39568-7_39.

[4] Charles H. Bennett, François Bessette, Gilles Brassard, Louis Salvail, and John Smolin. Experimental quantum cryptography. Journal of Cryptology, 5: 3–28, 1992. 10.1007/​BF00191318.

[5] Thomas. Jennewein, C. Simon, Gregor Weihs, Harald Weinfurter, and Anton Zeilinger. Quantum cryprography using entangled photons. Physical Review Letters, 84: 4729, 2000. 10.1103/​PhysRevLett.84.4729.

[6] Anne Broadbent, Joseph Fitzsimons, and Elham Kashefi. Universal blind quantum computation. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 517–526. IEEE, 2009. 10.1109/​FOCS.2009.36.

[7] Lov K Grover. Quantum telecomputation. arXiv preprint quant-ph/​9704012, 1997.

[8] Naomi H Nickerson, Joseph F Fitzsimons, and Simon C Benjamin. Freely scalable quantum technologies using cells of 5-to-50 qubits with very lossy and noisy photonic links. Physical Review X, 4 (4): 041041, 2014. 10.1103/​PhysRevX.4.041041.

[9] Peter Komar, Eric M Kessler, Michael Bishof, Liang Jiang, Anders S Sørensen, Jun Ye, and Mikhail D Lukin. A quantum network of clocks. Nature Physics, 10 (8): 582, 2014. 10.1038/​nphys3000.

[10] Daniel Gottesman, Thomas Jennewein, and Sarah Croke. Longer-baseline telescopes using quantum repeaters. Physical Review Letters, 109 (7): 070503, 2012. 10.1103/​PhysRevLett.109.070503.

[11] W. K. Wootters and W. H. Zurek. A single quantum cannot be cloned. Nature, 299: 802–803, 1982. 10.1038/​299802a0.

[12] D. Dieks. Communication by EPR devices. Physics Letters A, 92: 271–272, 1982. 10.1016/​0375-9601(82)90084-6.

[13] H-J Briegel, Wolfgang Dür, Juan I Cirac, and Peter Zoller. Quantum repeaters: the role of imperfect local operations in quantum communication. Physical Review Letters, 81 (26): 5932, 1998. 10.1103/​PhysRevLett.81.5932.

[14] W Dür, H-J Briegel, JI Cirac, and P Zoller. Quantum repeaters based on entanglement purification. Physical Review A, 59 (1): 169, 1999. 10.1103/​PhysRevA.59.169.

[15] Sreraman Muralidharan, Linshu Li, Jungsang Kim, Norbert Lütkenhaus, Mikhail D Lukin, and Liang Jiang. Optimal architectures for long distance quantum communication. Scientific reports, 6: 20463, 2016. 10.1038/​srep20463.

[16] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414 (6862): 413–418, November 2001. ISSN 0028-0836. 10.1038/​35106500.

[17] Lilian Childress, JM Taylor, Anders Søndberg Sørensen, and MD Lukin. Fault-tolerant quantum communication based on solid-state photon emitters. Physical Review Letters, 96 (7): 070504, 2006. 10.1103/​PhysRevLett.96.070504.

[18] Lorenz Hartmann, Barbara Kraus, H-J Briegel, and W Dür. Role of memory errors in quantum repeaters. Physical Review A, 75 (3): 032310, 2007. 10.1103/​PhysRevA.75.032310.

[19] OA Collins, SD Jenkins, A Kuzmich, and TAB Kennedy. Multiplexed memory-insensitive quantum repeaters. Physical review letters, 98 (6): 060502, 2007. 10.1103/​PhysRevLett.98.060502.

[20] Nicolas Sangouard, Christoph Simon, Hugues De Riedmatten, and Nicolas Gisin. Quantum repeaters based on atomic ensembles and linear optics. Reviews of Modern Physics, 83 (1): 33, 2011. 10.1103/​RevModPhys.83.33.

[21] Scott E Vinay and Pieter Kok. Practical repeaters for ultralong-distance quantum communication. Physical Review A, 95 (5): 052336, 2017. 10.1103/​PhysRevA.95.052336.

[22] Filip Rozpędek, Raja Yehia, Kenneth Goodenough, Maximilian Ruf, Peter C Humphreys, Ronald Hanson, Stephanie Wehner, and David Elkouss. Near-term quantum-repeater experiments with nitrogen-vacancy centers: Overcoming the limitations of direct transmission. Physical Review A, 99 (5): 052330, 2019. 10.1103/​PhysRevA.99.052330.

[23] Mihir K Bhaskar, Ralf Riedinger, Bartholomeus Machielse, David S Levonian, Christian T Nguyen, Erik N Knall, Hongkun Park, Dirk Englund, Marko Lončar, Denis D Sukachev, et al. Experimental demonstration of memory-enhanced quantum communication. Nature, 580 (7801): 60–64, 2020. 10.1038/​s41586-020-2103-5.

[24] Sumeet Khatri, Corey T Matyas, Aliza U Siddiqui, and Jonathan P Dowling. Practical figures of merit and thresholds for entanglement distribution in quantum networks. Physical Review Research, 1 (2): 023032, 2019. 10.1103/​PhysRevResearch.1.023032.

[25] C Cabrillo, JI Cirac, P Garcia-Fernandez, and P Zoller. Creation of entangled states of distant atoms by interference. Physical Review A, 59 (2): 1025, 1999. 10.1103/​PhysRevA.59.1025.

[26] Sean D Barrett and Pieter Kok. Efficient high-fidelity quantum computation using matter qubits and linear optics. Physical Review A, 71 (6): 060310, 2005. 10.1103/​PhysRevA.71.060310.

[27] L.-M. Duan and H. J. Kimble. Scalable photonic quantum computation through cavity-assisted interactions. Physical Review Letters, 92 (12): 127902, 2004. 10.1103/​PhysRevLett.92.127902.

[28] Liang Jiang, Jacob M Taylor, Kae Nemoto, William J Munro, Rodney Van Meter, and Mikhail D Lukin. Quantum repeater with encoding. Physical Review A, 79 (3): 032325, 2009. 10.1103/​PhysRevA.79.032325.

[29] William J Munro, Ashley M Stephens, Simon J Devitt, Keith A Harrison, and Kae Nemoto. Quantum communication without the necessity of quantum memories. Nature Photonics, 6 (11): 777, 2012. 10.1038/​nphoton.2012.243.

[30] Sreraman Muralidharan, Jungsang Kim, Norbert Lütkenhaus, Mikhail D Lukin, and Liang Jiang. Ultrafast and fault-tolerant quantum communication across long distances. Physical review letters, 112 (25): 250501, 2014. 10.1103/​PhysRevLett.112.250501.

[31] Koji Azuma, Kiyoshi Tamaki, and Hoi-Kwong Lo. All-photonic quantum repeaters. Nature communications, 6: 6787, 2015. 10.1038/​ncomms7787.

[32] Fabian Ewert, Marcel Bergmann, and Peter van Loock. Ultrafast long-distance quantum communication with static linear optics. Physical review letters, 117 (21): 210501, 2016. 10.1103/​PhysRevLett.117.210501.

[33] Yasushi Hasegawa, Rikizo Ikuta, Nobuyuki Matsuda, Kiyoshi Tamaki, Hoi-Kwong Lo, Takashi Yamamoto, Koji Azuma, and Nobuyuki Imoto. Experimental time-reversed adaptive bell measurement towards all-photonic quantum repeaters. Nature communications, 10 (1): 378, 2019. 10.1038/​s41467-018-08099-5.

[34] Zheng-Da Li, Rui Zhang, Xu-Fei Yin, Li-Zheng Liu, Yi Hu, Yu-Qiang Fang, Yue-Yang Fei, Xiao Jiang, Jun Zhang, Li Li, et al. Experimental quantum repeater without quantum memory. Nature Photonics, page 1, 2019. 10.1038/​s41566-019-0468-5.

[35] Michael Varnava, Daniel E Browne, and Terry Rudolph. Loss tolerance in one-way quantum computation via counterfactual error correction. Physical review letters, 97 (12): 120501, 2006. 10.1103/​PhysRevLett.97.120501.

[36] Daniel E Browne and Terry Rudolph. Resource-efficient linear optical quantum computation. Physical Review Letters, 95 (1): 010501, 2005. 10.1103/​PhysRevLett.95.010501.

[37] Mihir Pant, Hari Krovi, Dirk Englund, and Saikat Guha. Rate-distance tradeoff and resource costs for all-optical quantum repeaters. Physical Review A, 95 (1): 012304, 2017. 10.1103/​PhysRevA.95.012304.

[38] Netanel H Lindner and Terry Rudolph. Proposal for pulsed on-demand sources of photonic cluster state strings. Physical Review Letters, 103 (11): 113602, 2009. 10.1103/​PhysRevLett.103.113602.

[39] C Saavedra, KM Gheri, P Törmä, JI Cirac, and P Zoller. Controlled source of entangled photonic qubits. Physical Review A, 61 (6): 062311, 2000. 10.1103/​PhysRevA.61.062311.

[40] Ido Schwartz, Dan Cogan, Emma R Schmidgall, Yaroslav Don, Liron Gantz, Oded Kenneth, Netanel H Lindner, and David Gershoni. Deterministic generation of a cluster state of entangled photons. Science, 354: 434–437, 2016. 10.1126/​science.aah4758.

[41] Sophia E Economou, Netanel Lindner, and Terry Rudolph. Optically generated 2-dimensional photonic cluster state from coupled quantum dots. Physical review letters, 105 (9): 093601, 2010. 10.1103/​PhysRevLett.105.093601.

[42] Donovan Buterakos, Edwin Barnes, and Sophia E Economou. Deterministic generation of all-photonic quantum repeaters from solid-state emitters. Physical Review X, 7 (4): 041023, 2017. 10.1103/​PhysRevX.7.041023.

[43] Antonio Russo, Edwin Barnes, and Sophia E Economou. Generation of arbitrary all-photonic graph states from quantum emitters. New Journal of Physics, 21 (5): 055002, 2019. 10.1088/​1367-2630/​ab193d.

[44] Hannes Pichler, Soonwon Choi, Peter Zoller, and Mikhail D Lukin. Universal photonic quantum computation via time-delayed feedback. Proceedings of the National Academy of Sciences, 114 (43): 11362–11367, 2017. 10.1073/​pnas.1711003114.

[45] Antonio Russo, Edwin Barnes, and Sophia E Economou. Photonic graph state generation from quantum dots and color centers for quantum communications. Physical Review B, 98 (8): 085303, 2018. 10.1103/​PhysRevB.98.085303.

[46] Ming Lai Chan. Optimized protocol to create repeater graph states for all-photonic quantum repeater. arXiv preprint arXiv:1811.10214, 2018.

[47] Mercedes Gimeno-Segovia, Terry Rudolph, and Sophia E Economou. Deterministic generation of large-scale entangled photonic cluster state from interacting solid state emitters. Physical review letters, 123 (7): 070501, 2019. 10.1103/​PhysRevLett.123.070501.

[48] Johannes Borregaard, Hannes Pichler, Tim Schröder, Mikhail D Lukin, Peter Lodahl, and Anders S Sørensen. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Physical Review X, 10 (2): 021071, 2020. 10.1103/​PhysRevX.10.021071.

[49] S Lloyd, MS Shahriar, JH Shapiro, and PR Hemmer. Long distance, unconditional teleportation of atomic states via complete bell state measurements. Physical Review Letters, 87 (16): 167903, 2001. 10.1103/​PhysRevLett.87.167903.

[50] Yoon-Ho Kim, Sergei P Kulik, and Yanhua Shih. Quantum teleportation of a polarization state with a complete bell state measurement. Physical Review Letters, 86 (7): 1370, 2001. 10.1103/​PhysRevLett.86.1370.

[51] Yoon-Ho Kim, SERGEI KULIK, and Yanhua Shih. Quantum teleportation with a complete bell state measurement. Journal of Modern Optics, 49 (1-2): 221–236, 2002. 10.1080/​09500340110087633.

[52] Warren P Grice. Arbitrarily complete bell-state measurement using only linear optical elements. Physical Review A, 84 (4): 042331, 2011. 10.1103/​PhysRevA.84.042331.

[53] Fabian Ewert and Peter van Loock. 3/​4-efficient bell measurement with passive linear optics and unentangled ancillae. Physical review letters, 113 (14): 140403, 2014. 10.1103/​PhysRevLett.113.140403.

[54] Stephen Wein, Khabat Heshami, Christopher A Fuchs, Hari Krovi, Zachary Dutton, Wolfgang Tittel, and Christoph Simon. Efficiency of an enhanced linear optical bell-state measurement scheme with realistic imperfections. Physical Review A, 94 (3): 032332, 2016. 10.1103/​PhysRevA.94.032332.

[55] Leigh S Martin and K Birgitta Whaley. Single-shot deterministic entanglement between non-interacting systems with linear optics. arXiv preprint arXiv:1912.00067, 2019.

[56] Marc Hein, Jens Eisert, and Hans J Briegel. Multiparty entanglement in graph states. Physical Review A, 69 (6): 062311, 2004. 10.1103/​PhysRevA.69.062311.

[57] Masahiro Takeoka, Saikat Guha, and Mark M Wilde. Fundamental rate-loss tradeoff for optical quantum key distribution. Nature communications, 5 (1): 1–7, 2014. 10.1038/​ncomms6235.

[58] Stefano Pirandola, Riccardo Laurenza, Carlo Ottaviani, and Leonardo Banchi. Fundamental limits of repeaterless quantum communications. Nature communications, 8 (1): 1–15, 2017. 10.1038/​ncomms15043.

[59] Peter W Shor and John Preskill. Simple proof of security of the bb84 quantum key distribution protocol. Physical review letters, 85 (2): 441, 2000. 10.1103/​PhysRevLett.85.441.

[60] Valerio Scarani, Helle Bechmann-Pasquinucci, Nicolas J Cerf, Miloslav Dušek, Norbert Lütkenhaus, and Momtchil Peev. The security of practical quantum key distribution. Reviews of modern physics, 81 (3): 1301, 2009. 10.1103/​RevModPhys.81.1301.

[61] Jian-Wei Pan, Christoph Simon, Časlav Brukner, and Anton Zeilinger. Entanglement purification for quantum communication. Nature, 410 (6832): 1067, 2001. 10.1038/​35074041.

[62] M Zwerger, W Dür, and HJ Briegel. Measurement-based quantum repeaters. Physical Review A, 85 (6): 062326, 2012. 10.1103/​PhysRevA.85.062326.

[63] M Zwerger, HJ Briegel, and W Dür. Measurement-based quantum communication. Applied Physics B, 122 (3): 50, 2016. 10.1007/​s00340-015-6285-8.

[64] Alex Greilich, Samuel G. Carter, Danny Kim, Allan S. Bracker, and Daniel Gammon. Optical control of one and two hole spins in interacting quantum dots. Nature Photonics, 5 (11): 702–708, November 2011. 10.1038/​nphoton.2011.237.

[65] Danny Kim, Samuel G Carter, Alex Greilich, Allan S Bracker, and Daniel Gammon. Ultrafast optical control of entanglement between two quantum-dot spins. Nature Physics, 7 (3): 223–229, 2011. 10.1038/​nphys1863.

[66] A. Greilich, A. Shabaev, D. R. Yakovlev, Al. L. Efros, I. A. Yugova, D. Reuter, A. D. Wieck, and M. Bayer. Nuclei-induced frequency focusing of electron spin coherence. Science, 317 (5846): 1896–1899, 2007. 10.1126/​science.1146850.

[67] Xiaoya Judy Wang, Stefano Chesi, and W. A. Coish. Spin-echo dynamics of a heavy hole in a quantum dot. Phys. Rev. Lett., 109: 237601, 2012. 10.1103/​PhysRevLett.109.237601.

[68] Daniel Najer, Immo Söllner, Pavel Sekatski, Vincent Dolique, Matthias C Löbl, Daniel Riedel, Rüdiger Schott, Sebastian Starosielec, Sascha R Valentin, Andreas D Wieck, et al. A gated quantum dot strongly coupled to an optical microcavity. Nature, pages 1–1, 2019. 10.1038/​s41586-019-1709-y.

[69] GD Fuchs, Guido Burkard, PV Klimov, and DD Awschalom. A quantum memory intrinsic to single nitrogen–vacancy centres in diamond. Nature Physics, 7 (10): 789–793, 2011. 10.1038/​nphys2026.

[70] Dmitry Solenov, Sophia E Economou, and Thomas L Reinecke. Two-qubit quantum gates for defect qubits in diamond and similar systems. Physical Review B, 88 (16): 161403, 2013. 10.1103/​PhysRevB.88.161403.

[71] ML Goldman, TL Patti, D Levonian, SF Yelin, and MD Lukin. Optical control of a single nuclear spin in the solid state. Physical Review Letters, 124 (15): 153203, 2020. 10.1103/​PhysRevLett.124.153203.

[72] Xing Rong, Jianpei Geng, Fazhan Shi, Ying Liu, Kebiao Xu, Wenchao Ma, Fei Kong, Zhen Jiang, Yang Wu, and Jiangfeng Du. Experimental fault-tolerant universal quantum gates with solid-state spins under ambient conditions. Nature communications, 6 (1): 1–7, 2015. 10.1038/​ncomms9748 (2015).

[73] Nir Bar-Gill, Linh M Pham, Andrejs Jarmola, Dmitry Budker, and Ronald L Walsworth. Solid-state electronic spin coherence time approaching one second. Nature communications, 4: 1743, 2013. 10.1038/​ncomms2771.

[74] CJ Ballance, TP Harty, NM Linke, MA Sepiol, and DM Lucas. High-fidelity quantum logic gates using trapped-ion hyperfine qubits. Physical review letters, 117 (6): 060504, 2016. 10.1103/​PhysRevLett.117.060504.

[75] Ye Wang, Mark Um, Junhua Zhang, Shuoming An, Ming Lyu, Jing-Ning Zhang, L-M Duan, Dahyun Yum, and Kihwan Kim. Single-qubit quantum memory exceeding ten-minute coherence time. Nature Photonics, 11 (10): 646, 2017. 10.1038/​s41566-017-0007-1.

[76] Severin Daiss, Stephan Welte, Bastian Hacker, Lin Li, and Gerhard Rempe. Single-photon distillation via a photonic parity measurement using cavity qed. Physical review letters, 122 (13): 133603, 2019. 10.1103/​PhysRevLett.122.133603.

[77] C. Y. Hu, A. Young, J. L. O'Brien, W. J. Munro, and J. G. Rarity. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Physical Review B, 78 (8): 085307, Aug 2008a. 10.1103/​PhysRevB.78.085307. URL http:/​/​​abstract/​PRB/​v78/​i8/​e085307.

[78] Kazuki Koshino, Satoshi Ishizaka, and Yasunobu Nakamura. Deterministic photon-photon swap gate using a $\lambda$ system. Physical Review A, 82 (1): 010301, 2010. 10.1103/​PhysRevA.82.010301.

[79] Serge Rosenblum, Scott Parkins, and Barak Dayan. Photon routing in cavity QED: Beyond the fundamental limit of photon blockade. Physical Review A, 84: 033854, 2011. 10.1103/​PhysRevA.84.033854.

[80] Shuo Sun, Hyochul Kim, Glenn S Solomon, and Edo Waks. A quantum phase switch between a single solid-state spin and a photon. Nature Nanotechnology, 11 (6): 539–544, 2016. 10.1038/​nnano.2015.334.

[81] LM Wells, Sokratis Kalliakos, Bruno Villa, DJP Ellis, RM Stevenson, AJ Bennett, Ian Farrer, DA Ritchie, and AJ Shields. Photon phase shift at the few-photon level and optical switching by a quantum dot in a microcavity. Physical Review Applied, 11 (6): 061001, 2019. 10.1103/​PhysRevApplied.11.061001.

[82] Petros Androvitsaneas, Andrew Young, Joseph Lennon, Christian Schneider, Sebastian Maier, Janna Hinchliff, George Atkinson, Edmund Harbord, Martin Kamp, Sven Höfling, et al. An efficient quantum photonic phase shift in a low q-factor regime. ACS Photonics, 2019. 10.1021/​acsphotonics.8b01380.

[83] Robert H Hadfield. Single-photon detectors for optical quantum information applications. Nature photonics, 3 (12): 696, 2009. 10.1038/​nphoton.2009.230.

[84] Yuan Zhan and Shuo Sun. Deterministic generation of loss-tolerant photonic cluster states with a single quantum emitter. Physical Review Letters, 125 (22): 223601, 2020. 10.1103/​PhysRevLett.125.223601.

[85] C. Y. Hu, A. Young, J. L. O'Brien, W. J. Munro, and J. G. Rarity. Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: Applications to entangling remote spins via a single photon. Physical Review B, 78 (8): 085307, 2008b. 10.1103/​PhysRevB.78.085307.

Cited by

[1] Sumeet Khatri, "Policies for elementary link generation in quantum networks", arXiv:2007.03193.

[2] Yuan Zhan and Shuo Sun, "Deterministic Generation of Loss-Tolerant Photonic Cluster States with a Single Quantum Emitter", Physical Review Letters 125 22, 223601 (2020).

[3] Kenneth Sharman, Faezeh Kimiaee Asadi, Stephen C Wein, and Christoph Simon, "Quantum repeaters based on individual electron spins and nuclear-spin-ensemble memories in quantum dots", arXiv:2010.13863.

[4] Arian Vezvaee, Girish Sharma, Sophia E. Economou, and Edwin Barnes, "Driven dynamics of a quantum dot electron spin coupled to bath of higher-spin nuclei", arXiv:2012.07227.

[5] Paul Hilaire, Edwin Barnes, Sophia E. Economou, and Frédéric Grosshans, "Error-correcting entanglement swapping using a practical logical photon encoding", arXiv:2101.11082.

The above citations are from SAO/NASA ADS (last updated successfully 2021-03-02 06:49:18). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2021-03-02 06:49:17).