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For universal quantum computation, a major challenge to overcome for practical
implementation is the large amount of resources required for fault-tolerant quantum
information processing. An important aspect is implementing arbitrary unitary oper-
ators built from logical gates within the quantum error correction code. A synthesis
algorithm can be used to approximate any unitary gate up to arbitrary precision by
assembling sequences of logical gates chosen from a small set of universal gates that are
fault-tolerantly performable while encoded in a quantum error-correction code. How-
ever, current procedures do not yet support individual assignment of base gate costs and
many do not support extended sets of universal base gates. We analysed cost-optimal
sequences using an exhaustive search based on Dijkstra’s pathfinding algorithm for the
canonical Clifford+T set of base gates and compared them to when additionally in-
cluding Z-rotations from higher orders of the Clifford hierarchy. Two approaches of
assigning base gate costs were used. First, costs were reduced to T -counts by recur-
sively applying a Z-rotation catalyst circuit. Second, costs were assigned as the average
numbers of raw (i.e. physical level) magic states required to directly distil and imple-
ment the gates fault-tolerantly. We found that the average sequence cost decreases by
up to 54±3% when using the Z-rotation catalyst circuit approach and by up to 33±2%
when using the magic state distillation approach. In addition, we investigated observed
limitations of certain assignments of base gate costs by developing an analytic model
to estimate the proportion of sets of Z-rotation gates from higher orders of the Clifford
hierarchy that are found within sequences approximating random target gates.

1 Introduction
Quantum computing has the potential to solve many real-world problems by using significantly
fewer physical resources and computation time than the best known classical algorithms. The
quantum algorithms for these problems are implemented using deep quantum circuits. Thus to
reliably implement these circuits, qubits within the devices require long coherence times and high
precision control. Current systems consist of physical qubits that are too noisy for large scale
computation. Error-correction schemes provide the ability to overcome this hurdle by entangling
clusters of physical qubits in such a way that they collectively encode the information into more
robust logical qubits. In principle, when physical qubits have error-rates below the error threshold
of the error-correction scheme, logical qubits within the code can be made arbitrarily robust using
increasing numbers of qubits. A particular error-correction scheme with relatively high physical
error threshold of approximately 1% is the surface code, which is implemented over a nearest-
neighbour two-dimensional physical layout, making it one of the most realistically implementable
schemes [1–4]. In this work, we analyse the resource costs for gate synthesis, which is used to
fault-tolerantly implement arbitrary unitary gates in error-correction codes.
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The surface code, among other high-threshold codes, is limited to a small set of Clifford gates
over logical qubits that can be performed with relative ease. A procedure called magic state
distillation can be used to perform a wider range of non-Clifford gates fault-tolerantly, such as the
T := Rz(π/4) gate (up to global phase), which cannot be produced using only Clifford gates [5, 6].
Initially, raw magic states are surgically injected into the code and with the aid of state distillation
procedures, a number of raw magic states are consumed to produce a smaller number of more
robust magic states. In principle, the procedures can be recursively applied to obtain states
with arbitrarily low noise, although requiring large amounts of physical resources. These purified
magic states can then be consumed to fault-tolerantly perform corresponding gates using quantum
teleportation circuits. Distillation procedures only exist for a subset of gates, in order to implement
arbitrary unitary gates, the Solovay-Kitaev (SK) theorem can be used. The SK theorem states
that a universal set of n-qubit gates generate a group dense in SU(2n) (Special Unitary), and the
set fills SU(2n) relatively quickly. Hence single-qubit base gates that form a universal set can be
multiplied in sequence to approximate any single-qubit gate to arbitrary precision [7, 8].

A frequently used set of single-qubit universal base gates for fault-tolerant quantum compu-
tation are the Clifford+T gates, where the Clifford gates are relatively cheap to apply while the
T gate requires a considerable amount of resources due to the magic state distillation proce-
dure. This set of gates and how they can be used to synthesise arbitrary single-qubit gates is a
well studied topic within the quantum compilation literature. Gate synthesis algorithms, besides
brute-force [9], began with the Solovay-Kitaev algorithm [8, 10]. It initially searches for a base
sequence that roughly approximates a target gate and then uses a recursive strategy to append
other base sequences in such a way that the new sequence approximates a gate that is closer to the
target gate with distance reducing efficiently with the number of iterations. It is compatible with
arbitrary single-qubit universal gate sets, provided that they include each gate’s adjoint. The SK
algorithm has room for optimisation with respect to lengths of resulting gate sequences since the
recursive process generates strings of disjoint subsequences which are only individually optimised,
rather than optimising over the entire sequence. In 2008, Matsumoto and Amano [11] developed
a normal form for sequences of Clifford+T gates that produces unique elements in SU(2). Shortly
after, Bocharov and Svore [12] introduced their canonical form which extends the normal form by
instead producing unique elements in PSU(2) (Projective Special Unitary) which more concisely
describes the space of all physical single-qubit gates by ignoring global phase. This normal form
can be used to enumerate length optimal sequences of Clifford+T base gates which produce dis-
tinct gates, considerably reducing the size of the sequence configuration space for search algorithms
(although still growing exponentially with respect to sequence length).

More recently, there has been significant progress on developing direct synthesis methods which
are not based on search. For target single-qubit unitary gates that can be exactly produced by
Clifford+T base gate sequences, a method was developed that optimally and efficiently finds these
exact sequences directly [13]. This was later used as a subroutine in algorithms for optimal synthesis
of arbitrary single-qubit Z-rotations [14, 15]. Direct Clifford+T base gate synthesis methods for
Z-rotations have since been generalised to Clifford+cyclotomic (Z-rotation by π/n) sets of base
gates [16] and sets derived from totally definite quaternion algebras [17]. For arbitrary single-qubit
rotations (not necessarily Z-rotations) there has been a number of other approaches developed,
such as a randomised algorithm that uses the distribution of primes [18], asymptotically optimal
synthesis using ancilla qubits [19], and probabilistic quantum circuits with fallback [20].

It is common within the quantum compilation literature for synthesis algorithms to optimise
sequences based on minimising the total number of gates that require magic state injection. This
measure is well-suited to the Clifford+T set of base gates which are standard for gate synthesis
algorithms, since the T gate and its adjoint are the only gates with a significantly higher cost
than the Clifford gates. However, procedures exist for performing alternative gates to the T
gate that vary in implementation cost. Examples of such gates are found within the Clifford
hierarchy, which is an infinite discrete set of gates that are universal and can be performed on
certain error-correcting codes fault-tolerantly [21]. The resource cost of implementation typically
varies between orders of the hierarchy. Thus to accurately cost optimise sequences from such sets
of gates, the cost of each individual base gate should be considered. We investigate two different
approaches for implementing Z-rotation gates from the Clifford hierarchy and calculating their
resource costs. The first approach is based on a circuit that uses a catalyst Z-rotation state
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to implement two copies of its corresponding Z-rotation gate using a small number of T gates
while retaining the initial Z-rotation state [22, 23]. This circuit can enable the average resource
costs of implementing Z-rotation gates from the Clifford hierarchy to be expressed as T -counts.
Using this approach, costs could be calculated either by assuming that output gates are applied
directly to target qubits or by assuming that all output gates are first applied to |+〉 states to form
intermediate magic states, which can then be consumed to implement the corresponding gates onto
target qubits at any time. As an alternative to the Z-rotation catalyst circuit approach of gate
implementation, the second approach is to use the average number of raw magic states required
to directly distil and implement subsets of gates belonging to the Clifford hierarchy in surface
codes. The distillation costs have already been calculated by Campbell and O’Gorman [24] for
various levels of precision, the accumulated costs of distilling and then implementing the gates are
found within their supplementary materials. Although other factors relating to physical resources
are important to consider such as qubit count, circuit depth, magic state distillation methods, and
details of the error-correction implementation, the number of raw magic states can serve as a rough
approximation to the cost of implementing fault-tolerant logical gates on surface codes.

We introduce an algorithm, based on Dijkstra’s shortest path algorithm, that generates a
database of all cost-optimal sequences below a chosen maximum sequence cost where each sequence
produces distinct gates in PSU(2). The algorithm supports arbitrary universal sets of single-qubit
base gates with individually assigned cost values. The database can then be searched to find a
sequence approximating a specified target gate. We use this algorithm to compare the cost of cost-
optimal gate synthesis between the canonical Clifford+T base gate set and various sets of base gates
consisting of Clifford gates and Z-rotations from higher orders of the Clifford hierarchy. Each set of
logical base gates is compared by calculating how the average gate sequence cost for approximating
random target gates scales with respect to reaching target gate synthesis logical error rates. When
including Z-rotation base gates from higher orders of the Clifford hierarchy with T -counts assigned
using the Z-rotation catalyst approach, we find that the average cost-optimal sequence T -counts
can potentially be reduced by over 50% when output gates are directly applied to target qubits
and by over 30% when intermediate magic states are used. When using the alternative approach
of assigning costs from direct magic state distillation, we find that by including Z-rotation logical
base gates from the fourth order of the Clifford hierarchy, the average cost-optimal sequence costs
can be reduced by 30%. These cost reductions indicate that a significant amount of resources could
be saved by adapting current synthesis algorithms to include higher orders of the Clifford hierarchy
and to optimise sequences with respect to individual gate costs.

In the cases when costs are assigned using the Z-rotation catalyst method via intermediate
magic states or when assigned using direct magic state distillation, we observe that there is only a
small improvement to the average costs of synthesis when Z-rotations of orders higher than four
of the Clifford hierarchy are included as base gates. We investigate this behaviour by developing
a model to estimate the proportion of Z-rotation base gates from specified orders of the Clifford
hierarchy within sequences approximating random target gates, without needing to generate the
database of sequences. The proportions calculated in this manner closely fit results obtained using
the sequence generation algorithm to approximate uniformly distributed random target gates. The
parameters of the calculation include the maximum sequence cost and separate logical base gate
costs for each order of the Clifford hierarchy, which can be readily be extended to specify costs for
individual logical base gates.

Results
Base Gates From The Clifford Hierarchy
The Clifford hierarchy is an infinite discrete set of gates that are universal for the purposes of
quantum computation and can be fault-tolerantly performed on certain error-correcting codes.
Each order of the hierarchy is defined as

Cl := {U | UPU† ∈ Cl−1, ∀P ∈ P}, (1)

noting that C1 = P is the set of Pauli gates, C2 is the set of Clifford gates and C3 includes, among
others, the Pauli basis rotations by π/4 such as the T gate. Higher order gates typically correspond
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Figure 1: A Z-rotation catalyst circuit [22, 23]. The rotations Rz(2πk/2n) are elements of Tn (as shown in
Eq. 2) where k is an odd integer and n is a natural number. The circuit utilises a |Tn〉 state, a |T 〉 state, three
T3 gates and a Tn−1 gate to perform two Tn gates on two separate qubits while retaining the original |Tn〉 state.
The output Tn gates can either be applied directly to target qubits or |ψ0〉 and |ψ1〉 states can be first set to |+〉
states, so that the application of the Tn gates prepare two |Tn〉 states which can then be used to implement Tn

gates at any time and on any target qubit using teleportation circuits. However, this consumes on average an
additional half a Tn−1 gate for the implementation of each Tn gate. The two sets of grouped gates (outlined by
dashed lines) correspond to logical-AND computation and uncomputation circuits, which only requires a total
T -count of four to implement [23]. The circuit can be recursively applied until the Rz(2πk/2n−1) gate position
reduces down to a T3 gate which has a cost of 1. All costs are calculated by assuming that all target gates at
each recursive level of the circuit are used at some point (i.e. that no output gates are wasted).

to finer angle rotations.
In this work, we compare sets of single-qubit universal logical base gates consisting of Clifford

gates and Z-rotation gates from higher orders of the Clifford hierarchy. Although only higher order
Z-rotations are included, they can be readily converted to other gates in the same order of the
Clifford hierarchy by multiplying gates from lower orders. In particular, by multiplying Clifford
gates, other gates of the same order are generated for the same cost. For example Z.Rz(π/4) =
Rz(5π/4) and H.Rz(π/4).H = Rx(π/4) up to global phase, where H is the Hadamard gate and Z
is the Pauli-Z gate. These sets of logical base gates are compared with respect to the optimal
resource costs resulting from gate synthesis for random target gates. Each set of Z-rotation gates
from order 3 ≤ l ≤ 7 of the Clifford hierarchy, denoted Tl, can be written as

T3 :=
{
Rz

(
πk

4

)
∈ C3 | k ∈ {−1, 1}

}
,

T4 :=
{
Rz

(
πk

8

)
∈ C4 | k ∈ {−3,−1, 1, 3}

}
,

T5 :=
{
Rz

(
πk

16

)
∈ C5 | k ∈ {−7,−5, . . . , 5, 7}

}
,

T6 :=
{
Rz

(
πk

32

)
∈ C6 | k ∈ {−15,−13, . . . , 13, 15}

}
, and

T7 :=
{
Rz

(
πk

64

)
∈ C7 | k ∈ {−31,−29, . . . , 29, 31}

}
. (2)

The five sets of logical base gates used in our analysis are then constructed as

Set1 := C1 ∪ C2 ∪ T3,

Set2 := Set1 ∪ T4,

Set3 := Set2 ∪ T5,

Set4 := Set3 ∪ T6, and
Set5 := Set4 ∪ T7. (3)

Calculating precise resource costs of implementing each gate fault-tolerantly is an extensive
task that would need to consider a variety of factors such as qubit count, circuit depth, magic state
distillation methods and details of the error-correction implementation. As an approximation for
the cost of these logical gates we investigate two approaches of assigning costs to individual Tl

gates, where gates from C1 and C2 are assumed to be free since they can be implemented in a
relatively straightforward way. The first approach can associate the costs with the T -count, which
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(a) Direct application of Tl method

Average T -count per base gate
T3 1
T4 2.5
T5 3.25
T6 3.625
T7 3.8125

(b) Application of Tl via |Tl〉 method

Average T -count per base gate
T3 1
T4 3
T5 5
T6 7
T7 9

Table 1: The average number of T gates required to implement a single qubit Z-rotation gate from order l
of the Clifford hierarchy Tl using the Z-rotation catalyst approach. (a) The average T -count required to
implement Tl gates by directly applying them to target qubits. The T -counts are calculated using the expression
Cost[Tl] = 4− 3× 23−l as shown in Equation 5. (b) The average T -count required to implement Tl gates by
applying them via intermediate |Tl〉 states at every level of recursion (since the Z-rotation catalyst circuit is
recursively applied). The T -counts are calculated using the expression Cost[Tl] = 1 + 2 × (l − 3) as shown in
Equation 7.

Average raw magic state count per base gate
Base gate error rate µ 10−5 10−10 10−15 10−20

T3 5.1 36.2 70.4 120.1
T4 16.7 103.1 186.5 358.7
T5 34.8 172.7 333.2 635.8
T6 49.0 255.8 486.1 962.2
T7 64.7 344.8 671.5 1351.2

Table 2: The average raw magic state count required for distillation and implementation of corresponding logical
base gates, obtained from the supplementary materials of [24]. Each column contains the cost of distilling and
implementing a logical Z-rotation gate from order l of the Clifford hierarchy Tl to below a gate error rate µ
calculated using the diamond norm. The raw magic state physical level error is assumed to be 0.1%.

is used as the standard metric for measuring the costs of gate sequences within the gate synthesis
literature. This can be done by using a Z-rotation catalyst circuit shown in Fig. 1, which was
introduced in [23] and presented in more detail in [22]. The circuit is similar to a synthillation
parity-check circuit described in [25]. It utilises a |Tl〉 state and a small number of T gates to
perform two Tl gates on two different qubits while retaining the original |Tl〉 state. Costs can be
calculated by recursively applying this circuit, assuming that all output gates at each recursive
level are resourced (i.e. that no output gates are wasted). We calculate the costs using the Z-
rotation catalyst approach in two ways. The first assumes that output Tl gates are directly applied
to target qubits. The recurrence relation for the T -counts using this method can be obtained as

Cost [Tl] = 4 + Cost [Tl−1]
2 , (4)

where Cost[T3] = 1. Solving this results in the average number of T gates required to implement
a Tl gate to be expressed as

Cost [Tl] = 4− 3× 23−l, (5)
which is enumerated in Table 1a for 3 ≤ l ≤ 7. The second method of calculating the T -count
using the Z-rotation catalyst approach applies the Tl gates to |+〉 states, creating corresponding
intermediate |Tl〉 states, which are then consumed to implement the gates via teleportation circuits.
The recurrence relation for these costs can be obtained as

Cost [Tl] = 2 + Cost [Tl−1] , (6)

where Cost[T3] = 1, resulting in the expression

Cost [Tl] = 1 + 2× (l − 3) (7)

which is enumerated in Table 1b for 3 ≤ l ≤ 7. This second method is more expensive since the
teleportation circuit that consumes the |Tl〉 state to implement the Tl gate requires a Tl−1 correction
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gate to be applied 50% of the time. However, this method is more flexible in implementation since
the outputted |Tl〉 states can be used at any time to implement Tl gates onto any target qubits,
enabling more options when instruction scheduling. A realistic employment of the Z-rotation
catalyst approach would likely benefit from a combination of both direct application of Tl gates
and application via their intermediate |Tl〉 states. For the second approach of assigning resource
costs, we use the average number of raw magic states to implement fault-tolerant Tl gates from
direct magic state distillation procedures. Resource costs have already been calculated for Y -
rotation gates Ry(2π/2l) from the Clifford hierarchy by searching for optimal combinations of
various distillation protocols with respect to target gate synthesis error rates ε [24]. For integer
multiples Ry(2πk/2l), the distillation protocols can be performed identically, hence they can be
assigned the same cost. To follow convention, the Y -rotation gates are converted to Z-rotation
gates with the same cost using the relation Rz(θ) = HS†Ry(θ)SH, since H and S := Rz(π/2) have
zero cost due to being elements of C2. These resource costs vary between orders of the Clifford
hierarchy and are shown in Table 2.

Sequence Generation Algorithm
In this section, a sequence generation algorithm, based on Dijkstra’s algorithm, is developed that
generates a database of all cost-optimal single-qubit gate sequences below some maximum cost
using arbitrary sets of universal base gates which have individually assigned cost values. We use
this algorithm to help study the average cost of cost-optimal gate synthesis when including Z-
rotation gates from higher orders of the Clifford hierarchy as base gates. Due to the flexibility of
this algorithm, it could be used as a subroutine within other synthesis algorithms. For example, it
could be used as the base approximation step within the SK algorithm, enabling the SK algorithm
to consider individual base gate costs when synthesising target gates.

The sequence generation algorithm explores the space of sequence configurations using a tree
expansion as shown in Figure 2, where each node corresponds to a gate and each path from
the root node to any other node corresponds to a sequence of gates. Let Bn be an element
of PSU(2) corresponding to the base gate of node n in the sequence tree. A combined gate Sn

of node n is calculated by multiplying all nodes within the branch from the root down to n,
i.e. Sn := Bn0 · Bn1 . . . Bnk

, where ni is the ith node from the root node such that n0 is the
root and nk is node n. The Lie algebra generator of Sn in the Pauli basis is of the form of a
vector αnX + βnY + γnZ with real coefficients and can be written as (αn, βn, γn). Each vector
represents a point in a ball of radius π/2 over the Pauli bases X, Y and Z. Thus each point within
the ball is a geometrical location corresponding to a single-qubit gate.

The pseudocode for the algorithm is shown in Algorithm 1. It works by expanding nodes in a
sequence tree (see Figure 2). All leaf (end) nodes of the sequence tree are stored in a minimum heap
data structure which sorts the leaf nodes based on their corresponding sequence cost in increasing
order. This determines the order of nodes to expand. The tree begins as a single identity gate at
the root node which is added as the first element to the leaf node heap. At each iteration, the
leaf node with the lowest sequence cost, i, is taken from the heap, which for the first iteration
would be the identity gate node. The vector (αi, βi, γi) is calculated from the combined gate of the
corresponding node’s sequence. Before expanding a node in the sequence tree, we check whether
another node with the same combined gate vector has already been expanded, using a hashset data
structure. If the vector exists in the hashset, then the node is removed from the sequence tree and
the algorithm proceeds to the next iteration. This repeats until a unique vector is found. When
such a vector is found, it is added to the hashset for uniqueness checking in further iterations and
the corresponding node in the sequence tree is expanded by generating a child node for each base
gate. Each of these child nodes are added to the leaf node heap. To save computation time, adding
a child node to the sequence tree and the heap can be limited to when their corresponding vectors
are unique. Since vectors of sequences with lower costs are always added to the hashset before
those with higher costs, the hashset must only contain vectors corresponding to sequences with
the lowest cost among all sequences that produce equivalent combined gates. Thus, whenever a
vector is successfully added to the hashset, the corresponding sequence must be cost-optimal. The
cost-optimal vector and sequence pair can be stored in a data structure such as a k-d tree which
can be used to approximate target gates by geometrically searching for nearest neighbours in the
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Figure 2: An example of a sequence tree used to relate logical base gates, gate sequences and combined gates
for the sequence generation algorithm. A node n corresponds to a single-qubit base gate Bn and the root
node corresponds to the identity gate B0 = I. A gate sequence corresponding to n is the sequence of logical
base gates along the path from B0 to Bn. A combined gate Sn is calculated by multiplying all logical base
gates within the gate sequence in sequence order. In this example, B1, B2 and B3 are logical base gates where
B1 = B4 = B7 = B10, B2 = B5 = B8 = B11 and B3 = B6 = B9 = B12. In the sequence generation
algorithm, the leaf node with the lowest sequence cost is expanded by adding a child node as a new leaf node
for each gate in the set of logical base gates. All non-leaf nodes of the tree correspond to cost-optimal sequences
and they can be thought of as the cost-optimal sequence database generated by the algorithm. Although all
leaf nodes are depicted to be at the same depth in the tree, this is not always the case. At any point during
the sequence generation algorithm, a path of relatively expensive logical base gates may be much shorter than
a path of relatively cheap gates.

Algorithm 1 Cost-optimal sequence generation
1: procedure GenerateSequences(baseGates, maxCost)
2: sequenceDatabase ← new KdTree〈Node〉 . To store the cost-optimal sequences geometrically
3: sequenceTree ← new Tree〈Node〉 . To relate nodes, sequences and combined gates
4: sequenceTree.SetRoot(Identity gate) . Set the root node to the identity gate
5: sortedLeafNodes ← new MinHeap〈Node〉 . To order sequence tree leaf nodes based on sequence cost
6: uniqueVectors ← new Hashset〈Vector3〉 . To test whether sequences have the same combined gates
7: Add sequenceTree.root to sortedLeafNodes
8: while sortedLeafNodes not empty do
9: i ← sortedLeafNodes.Pop() . Obtains and removes the leaf node with lowest sequence cost
10: if sequenceTree.SequenceCost(i) > maxCost then
11: return sequenceDatabase . Complete! Ignore i and return cost-optimal sequences
12: end if
13: (αi, βi, γi) ← sequenceTree.GetVector(i)
14: if (αi, βi, γi) not in uniqueVectors then
15: Add i to sequenceDatabase . The node i corresponds to a cost-optimal sequence
16: Add (αi, βi, γi) to uniqueVectors
17: childNodes ← sequenceTree.GenerateChildren(i, baseGates)

. Add base gates as child nodes of i
18: for all j in childNodes do
19: (αj , βj , γj) ← sequenceTree.GetVector(j)
20: if (αj , βj , γj) not in uniqueVectors then
21: Add j to sortedLeafNodes
22: else
23: Remove j from sequenceTree . Vector corresponding to childNode j already found
24: end if
25: end for
26: end if
27: end while
28: end procedure
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(a) Sequences using the Z-rotation catalyst approach
with directly applied output gates
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(b) Sequences using the Z-rotation catalyst approach
with output gates applied via intermediate magic
states
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Figure 3: Cost-optimal sequence T -counts calculated using the Z-rotation catalyst approach plotted against
synthesised target gate error rates of ε. Each point is the result of averaging the T -count for implementing 5000
random target gate. The synthesis logical errors ε are calculated using the trace distance (shown in Equation 8).
The logical base gates for each set of base gates are specified in Equation 3. The corresponding linear best fit
values for both plots are shown in Table 3. (a) A plot of sequence costs where base gates are assigned costs by
assuming that all output gates are directly applied to target qubits. Base gate costs are calculated using Eq. 5
and enumerated in Table 1a. The reductions in scaling factors relative to Set1 are 34± 4%, 43± 2%, 49± 2%,
and 54 ± 3% for Set2, Set3, Set4, and Set5 respectively, where uncertainties correspond to 95% confidence
intervals. These correspond to synthesis cost savings in the limit of small ε. (b) A plot of sequence costs where
base gates are assigned costs by assuming that output gates are applied to |+〉 states to form the corresponding
intermediate magic states, gates are then applied by consuming the magic states via teleportation circuits. Base
gate costs are calculated using Eq. 7 and enumerated in Table 1b. The reductions in scaling factors relative to
Set1 are 29±3%, 31±3%, 31±4%, and 31±4% for Set2, Set3, Set4, and Set5 respectively, where uncertainties
correspond to 95% confidence intervals. These correspond to synthesis cost savings in the limit of small ε.

space of vectors.
There is a notable further optimisation that could be implemented into Algorithm 1. During

the procedure, all non-leaf nodes within the sequence tree correspond to cost-optimal sequences
with unique combined gate vectors, that is, each path starting at the root node and ending at any
non-leaf node is a shortest path to the sequence’s unique combined gate. To see how this could be
helpful, first assume that an existing sequence tree needs to grow to a new maximum cost, such
that the leaf nodes need to expand multiple times along the same branch. Instead of searching
through every combination of base gates as children for a leaf node, the sequence tree itself can
be used as a sieve by iterating child nodes from the root that are known to be shortest paths.
The tree already contains optimal paths up to a certain depth, so this information could be used
to help avoid the tree branches expanding in directions that produce nonoptimal paths to unique
combined gates.

In Algorithm 1, cost-optimal sequences and their corresponding vectors are stored in a k-d
tree which uses the Euclidean distance on the vectors to organise the data. Due to the periodic
nature of the vectors, there is a small chance of failure in the k-d tree when searching for nearest
neighbours to points close to the boundary. With computational overhead, the k-d tree may be
modified to help overcome this [26], or a more appropriate data structure such as a vantage point
tree [27, 28] may be used instead. In general, further alternative data structures may be used such
as the geometric nearest-neighbour access tree [29].

Synthesis Results
Algorithm 1 was computed using the sets of logical base gates described in Eq. 3 with the assignment
of costs obtained from the two approaches of implementing base gates, where values are shown in
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(a) Sequences with below µ = 10−5 logical base gate
error
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(b) Sequences with below µ = 10−10 logical base gate
error
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(c) Sequences with below µ = 10−15 logical base gate
error
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(d) Sequences with below µ = 10−20 logical base gate
error
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Figure 4: Cost-optimal sequence costs averaged over 5000 random target gates with respect to target gate
synthesis logical error rates ε. The logical base gates used are specified in Eq. 3 with cost values (shown in
Table 2) assigned as the average number of raw magic states required to distil and implement them to below
a specified logical gate error. The synthesis logical errors ε are calculated using the trace distance (shown in
Equation 8). Corresponding linear best fit values are shown in Table 4. The pattern of the data about the
lines of best fit for each logical base gate set are similar between plots because for each of the logical base gate
errors, the ratios of the base gate cost values between orders of the Clifford hierarchy are similar, hence the cost
optimal sequences will be comparable. (a) Synthesis using logical base gate costs associated with µ = 10−5

logical gate error. (b) Synthesis using logical base gate costs associated with µ = 10−10 logical gate error. (c)
Synthesis using logical base gate costs associated with µ = 10−15 logical gate error. (d) Synthesis using logical
base gate costs associated with µ = 10−20 logical gate error.
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Tables 1 and 2. A database was generated that is in the form of a k-d tree of cost-optimal sequences
up to some chosen maximum sequence cost. The sequences were organised in the k-d tree with
respect to the vectors corresponding to their combined gates. For a given target gate G, gate
synthesis was performed by searching for the lowest cost sequence among all nearest neighbours
of G up to a chosen synthesis error (distance), ε, between their combined gates and G. The errors
were computed using the trace distance defined as

dist(S,G) =
√

(2− |tr(S†G)|)/2, (8)

where S is a combined gate and G is the target gate. If such a sequence did not exist, then the
database was further generated to a higher cost and the process was repeated until a sequence was
found. Incrementally generating the cost-optimal sequence database in this manner helps avoid
over generation.

For each set of base gates with individual costs calculated for each approach of implementing
them, gate synthesis was performed on 5000 random target gates sampled from a uniform distri-
bution for a variety of synthesis error rates ε (calculated using Eq. 8 with respect to the sequences’
combined gates). Cost-optimal sequence T -counts calculated using the Z-rotation catalyst circuit
approach for the two methods of assigning base gate costs are plotted against synthesised target
gate error rates for each set of base gates in Figure 3. The corresponding linear best fit values for
each set of logical base gates and corresponding cost values are shown in Table 3. We can compare
the scaling factors of the fits between different sets of logical base gates to estimate changes in
average sequence costs as the synthesis error ε approaches zero. For the Z-rotation catalyst circuit
method that assumes all output gates are directly applied to target qubits (as opposed to using
intermediate magic states), we find cost savings relative to Set1 of 34± 3%, 42± 2%, 49± 2%, and
54 ± 3% for Set2, Set3, Set4, and Set5 respectively, where uncertainties correspond to 95% confi-
dence intervals. Data for a Set6 that includes T8 gates was also calculated, however no noticeable
improvement was found with sequence cost values being almost identical to Set5 resulting in a cost
saving of 52 ± 3% relative to Set1. For the Z-rotation catalyst circuit method that assumes all
output gates are applied to |+〉 states forming intermediate magic states before consuming them
to perform the corresponding Z-rotation gate, we find cost savings relative to Set1 of 29 ± 3%,
31±3%, 31±4%, and 31±4% for Set2, Set3, Set4, and Set5 respectively. These results show that if
gate synthesis includes higher order Clifford hierarchy Z-rotation gates as base gates implemented
using the Z-rotation catalyst approach, then a T -count saving of over 50% could potentially be
achieved. Cost-optimal sequence raw magic state counts calculated using direct base gate distil-
lation and implementation procedures are plotted against synthesised target error rates for each
combination of base gates and cost values in Figure 4. Each of the four plots correspond to differ-
ent resource costs of distilling and implementing the logical base gates with corresponding logical
errors µ = 10−5, 10−10, 10−15 and 10−20 calculated using the diamond norm. The corresponding
linear best fit values for each set of logical base gates are shown in Table 4 and corresponding
cost values are shown in Table 2 (physical error rate assumed to be 0.1% in all calculations). The
pattern of the data about their lines of best fit for each base gate set are similar between plots.
This is because for each of the logical base gate errors, the ratios of the logical base gate cost
values between orders of the Clifford hierarchy are similar, hence the cost optimal sequences will
be comparable. For logical base gate errors µ = 10−5, 10−10, 10−15 and 10−20, we find that Set2
provides 23±3%, 27±2%, 30±2% and 26±3% reductions in scaling factor respectively compared
to Set1. For µ = 10−10 and 10−15, we find that Set3 provides 30± 3% and 33± 2% reductions in
scaling factor respectively compared to Set1, which are both approximately a further 3% savings
compared to Set2. No further improvements are noticeable in our data for these assignments of
cost values. These results show that for any error-correction scheme with distillation costs assigned
according to Table 2, using Set2 (which includes T4 as logical base gates) instead of the standard
Set1, reduces the average resource cost scaling factor with respect to the synthesis negative log-
error, log(ε−1), by up to 30%. Additionally Set3 can provide up to a further 3% reduction when
compared to Set2. Each method of assigning individual base gate costs that were used in this work
indicated that the resource requirements of synthesis algorithms may be considerably improved
by including higher orders of the Clifford hierarchy as logical base gates and by optimising with
respect to the individual costs of implementing them.
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(a) Linear fits using Z-rotation catalyst method

Base Gates Scaling Factor Constant
Set1 10.46± 0.43 −8.83± 0.73
Set2 6.89± 0.22 −4.96± 0.36
Set3 6.05± 0.03 −4.17± 0.06
Set4 5.33± 0.06 −3.18± 0.11
Set5 4.84± 0.21 −2.46± 0.34

(b) Linear fits using Z-rotation catalyst method via
magic states

Base Gates Scaling Factor Constant
Set1 10.46± 0.43 −8.83± 0.73
Set2 7.47± 0.15 −5.39± 0.26
Set3 7.19± 0.12 −5.13± 0.21
Set4 7.21± 0.25 −5.16± 0.38
Set5 7.21± 0.25 −5.15± 0.39

Table 3: Linear best fits with a confidence level of 95% for cost-optimal sequence costs averaged over random
target logical gates with respect to the negative log-error, log(ε−1), for target gate synthesis calculated using
the trace distance (shown in Equation 8). The sequences are constructed using logical base gates with cost
values assigned according to Table 1. The corresponding plots are shown in Figure 3.

(a) Linear fits for Figure 4a for below µ = 10−5 logi-
cal base gate error

Base Gates Scaling Factor Constant
Set1 52.4± 1.3 −43.5± 2.2
Set2 40.6± 0.9 −30.7± 1.5
Set3 40.8± 1.8 −31.0± 2.6
Set4 40.8± 1.8 −31.0± 2.6
Set5 40.8± 1.8 −31.0± 2.6

(b) Linear fits for Figure 4b for below µ = 10−10

logical base gate error

Base Gates Scaling Factor Constant
Set1 371± 8 −308± 14
Set2 269± 7 −200± 11
Set3 258± 11 −189± 15
Set4 258± 11 −188± 15
Set5 258± 11 −188± 15

(c) Linear fits for Figure 4c for below µ = 10−15

logical base gate error

Base Gates Scaling Factor Constant
Set1 722± 15 −599± 27
Set2 503± 11 −370± 17
Set3 482± 10 −347± 16
Set4 488± 21 −355± 30
Set5 488± 21 −355± 30

(d) Linear fits for Figure 4d for below µ = 10−20

logical base gate error

Base Gates Scaling Factor Constant
Set1 1230± 30 −1020± 50
Set2 913± 24 −680± 39
Set3 893± 41 −661± 59
Set4 893± 41 −661± 59
Set5 893± 41 −661± 59

Table 4: Linear best fits with a confidence level of 95% for cost-optimal sequence costs averaged over random
target logical gates with respect to the negative log-error, log(ε−1), for target gate synthesis calculated using
the trace distance (shown in Equation 8). The sequences are constructed using logical base gates with cost
values assigned according to Table 2. The corresponding plots are shown in Figure 4.
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Modelling Gate Proportions
For the raw magic state approach of implementing base gates and the Z-rotation catalyst circuit
method that uses intermediate magic states, the logical base gate sets Set3, Set4 and Set5 (see
Eq. 3) were shown to provide only marginal resource savings for gate synthesis when compared
with Set2 (see Figs. 3b and 4), even though the sets contain many more logical base gates. To
investigate this behaviour we develop a model in Appendix A for determining the proportion of
sets of gates among all Tl gates where l ≥ 3 within cost-optimal sequences approximating random
target gates with specified gate costs. The proportions can provide insight into how the average
sequence cost changes with respect to which Tl base gates are included as logical base gates and
what cost values are assigned. For logical base gates with non-zero proportion within sequences
approximating target gates, we expect that by increasing their cost, their recalculated proportion
will decrease and the average cost of these sequences will increase. Furthermore, for sets of logical
base gates with relatively small proportions, the average sequence cost would only slightly increase
if the set were to be excluded compared to sets of base gates with larger proportions.

The model estimates the average proportion, pn, of Tn logical base gates among all Tl gates
where l ≥ 3 from within cost-optimal sequences approximating random target gates to within
sufficiently small synthesis errors ε. The construction is based on a unique canonical form [16] for
sequences of logical base gates and is defined as

c.t1.H.t2.H . . . tN .c
′, (9)

where c and c′ are Clifford gates, H is the Hadamard gate, tm is the mth positioned Z-rotation
gate from order three and above of the Clifford hierarchy, and M is the total number of tm gates
in the sequence. This canonical form has the property that arbitrary gate sequences with distinct
combined gates, where the sequences can consist of logical base gates from the Clifford gates
and Z-rotations from orders three and above of the Clifford hierarchy, can be reduced to distinct
sequences of this form. The gate proportion for Tn, denoted pn, can be calculated by averaging
the Tn logical gate count over all possible sequences in this canonical form that are below a chosen
maximum cost C (as detailed in Appendix A). That is,

pn =

bC/c3c∑
k3=0

b(C−c3k3)/c4c∑
k4=0

. . .

b(C−
L−1∑
j=3

cjkj)/cLc∑
kL=0

kn

(
L∑

i=3
ki

)
!

L∏
l=3

|Tl|kl

kl!

bC/c3c∑
k3=0

b(C−c3k3)/c4c∑
k4=0

. . .

b(C−
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cjkj)/cLc∑
kL=0

L∑
t=3

kt

(
L∑

i=3
ki

)
!

L∏
l=3

|Tl|kl

kl!

, (10)

where cj is the logical base gate implementation cost for Tj , kl is the number of Tl gates within
a particular sequence, |Tl| is the number of gates within Tl, and L is the order of the Clifford
hierarchy to include Z-rotation gates up to.

This calculation outputs values closely matching proportion results obtained using the sequence
generation algorithm for random target gates, as shown in Figure 5. Figure 5a shows the summed
proportions of all T4 gates among T3 ∪ T4 gates over a variety of T4 cost values for sequences
consisting of Set2 logical base gates. Figure 5b shows the summed proportions of all T5 gates
among T3 ∪ T4 ∪ T5 gates over a variety of T5 cost values for sequences consisting of Set3 logical
base gates. The other logical base gate costs are assigned values according to their distillation and
implementation cost with a maximum logical base gate error of µ = 10−15 as shown in Table 2.
These results suggest that increasing the logical base gate implementation cost of a set Tn drastically
lowers the proportion of them found within the database of cost-optimal sequences. Thus they
become less effective at reducing the average cost-optimal sequence costs since they are included
within sequences less often. This is a simpler calculation compared to actually performing gate
synthesis for many random target gates. The gate set proportions appears to give an indication for
how useful the gate subset is among the rest of the base gates. We suspect there is potential that
with some further research it could be used to help provide a quick approximation for how much
the average synthesis cost reduces when including a base gate subset with specified cost values.
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(a) Proportion of T4 gates among T3 ∪ T4 gates
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(b) Proportion of T5 gates among T3 ∪ T4 ∪ T5 gates
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Figure 5: This figure shows the summed proportions of logical base gates from sequences resulting from
the sequence generation algorithm and the proportions calculated using our model. The sequence generation
algorithm outputs cost-optimal sequences approximating random target gates to within ε = 0.03 synthesis
logical gate error under the trace distance (see Eq. 8), while the model outputs the proportion of a set of logical
base gates within the space of all cost-optimal sequences below a maximum cost that produce distinct combined
gates. Clifford gates are ignored in the calculations since they are assumed to have zero cost. Both plots show
that the model data closely fit the corresponding results from the sequence generation algorithm. The data show
that increasing the logical base gate distillation and implementation cost of a particular set Tn drastically lowers
the proportion of them found within the generated cost-optimal sequences. Thus the set Tn with increased costs
becomes less effective at reducing the average cost-optimal sequence costs, since they are found less frequently
within the sequences. Logical base gate costs are assigned according to Table 2 with a logical base gate error
of µ = 10−15 calculated using the diamond norm. The red, green and blue vertical lines (ordered left to right)
indicate the logical base gate distillation and implementation costs for T3, T4 and T5 respectively. (a) The
summed proportions of T4 logical base gates among T3 ∪T4 gates for cost-optimal sequences consisting of Set2
logical base gates. Logical base gates from T3 are fixed while the cost for T4 gates vary. (b) The summed
proportions of T5 logical base gates among T3 ∪ T4 ∪ T5 gates for cost-optimal sequences consisting of Set3
logical base gates. Logical base gates from T3 ∪ T4 are fixed while the cost for T5 gates vary.
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Discussion
We investigated the cost of sequences produced by cost-optimal single-qubit gate synthesis using
logical base gates from a combination of Clifford gates and Z-rotation gates from higher orders
of the Clifford hierarchy. An algorithm, based on Dijkstra’s algorithm, was used to generate a
database of cost-optimal sequences from arbitrary single-qubit universal sets of logical base gates
with individually assigned costs. As base gates, combinations of Clifford gates and Z-rotation
gates from various orders of the Clifford hierarchy were used with two approaches of implementing
them. The first uses a recursively applied Z-rotation catalyst circuit that utilises a temporary
ancilla qubit, a small number of T gates and a Z-rotation state to apply two Z-rotation gates of
the same angle on two separate qubits while retaining the original Z-rotation state. We calculate
average T -count costs for this approach using the following two methods: all output gates of the
catalyst circuits are applied directly to target qubits; and each output gate is first applied to a |+〉
state to form an intermediate magic state, which is then consumed to implement the corresponding
gate via a teleportation circuit. The second approach of implementing base gates is through magic
state distillation and implementation circuits that can assign costs as the average number of raw
magic states used to implement them in error-correction codes up to specified logical error rates.
After assigning base gate costs using each method, gate synthesis was performed by finding nearest
neighbours within the database of cost-optimal sequences in the Pauli vector space corresponding
to combined gates of sequences.

Using the Z-rotation catalyst approach with directly applied output gates to assign gate costs,
we found that by including the higher order Clifford hierarchy Z-rotation gates along with the
standard Clifford+T set of base gates, there was a reduction in synthesis cost when compared
to only using the Clifford+T base gate set. The average cost-optimal sequence T -counts reduced
by 34 ± 3%, 42 ± 2%, 49 ± 2%, and 54 ± 3% for the accumulative inclusion of the fourth, fifth,
sixth, and seventh orders respectively. When using the same approach but with all output gates
being applied via intermediate magic states, the average cost-optimal sequence T -counts reduced
by 29 ± 3%, 31 ± 3%, 31 ± 4%, and 31 ± 4% for the accumulative inclusion of the fourth, fifth,
sixth, and seventh orders respectively. Each average T -count calculated using the catalyst circuit
approach assumes that every output gate of all recursive levels of the circuit are resourced such
that no output gates are wasted. The procedure also assumes that there are sufficient numbers
of ancilla qubits and Z-rotation catalyst states for smooth implementation of the gate sequences
resulting from synthesis. A realistic employment of the approach would likely use a combination
of direct application of output gates and the use of intermediate magic states. This is because
direct application is cheaper with respect to T -count, however the intermediate magic states help
make the implementation more flexible since they can be consumed at any time to implement the
corresponding gate onto any target qubit. Nevertheless, these results show that there is potential
for the average T -count to decrease by over 50% when performing gate synthesis with higher order
Clifford hierarchy Z-rotation base gates that are implemented using this approach, when compared
to cost-optimal synthesis using only the Clifford+T base gate set.

By instead using the magic state distillation approach with base gate costs assigned as the
number of raw magic states, we found that including the fourth order Z-rotation gates from the
Clifford hierarchy along with the standard Clifford+T gate set decreased the average cost-optimal
sequence costs by up to 30 ± 2%. We observe a reduction of up to 33 ± 2% when additionally
including the Z-rotation gates from the fifth order. No noticeable improvement is observed when
additionally including higher order Z-rotation base gates up to the seventh order. Although these
savings are not quite as large as what may be possible with the Z-rotation catalyst approach, the
magic state distillation approach does not require an accessible collection of Z-rotation catalyst
states to be stored throughout the computation. The implementation circuit for the distilled Z-
rotation magic state does require the application of a double angled Z-rotation gate as a correction
50% of the time. However, this correction gate can ideally be generated as it is required, so that
every possible angled rotation does not need to be stored in advance. Also, the number of raw magic
states is only a rough approximation for the actual resource costs of implementation. A precise
calculation would be an extensive task that considers a variety of factors such as qubits count,
circuit depth, magic state distillation cost and details of the error-correcting implementation.

We investigated the lack of further improvement found when including Z-rotation gates from
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higher than the fourth order of the Clifford hierarchy when using the direct magic state distillation
approach and the Z-rotation catalyst circuit approach with output gates being applied via inter-
mediate magic states. A model was developed that estimates the proportion of logical base gates
within sequences approximating random target gates. This model assumes that each Z-rotation
gate from orders three and above of the Clifford hierarchy have equal proportions when assigned
equal cost values, that is, the gate operations have equal usefulness for approximating random tar-
get gates for the purposes of gate synthesis. The proportion estimations were shown to closely fit
the data obtained using the sequence generation algorithm on random target gates. This suggests
that the lack of observed cost reduction when using higher order logical base gates is due to there
being far less numbers of them at their assigned costs within all cost-optimal sequences generated
up to the chosen maximum sequence cost. Thus the frequency of the base gates being used for
synthesis of random target gates is low, leading to a low level of influence over the average resource
costs overall. The model provides a simple method, without needing to generate the full database
of sequences, for estimating these gate proportions with each order of the Clifford hierarchy being
assigned individual cost values.
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Appendix

A Model for Gate Proportions
Here we develop the theory for estimating the average proportion pn of logical base gates among
all Tl gates (where l ≥ 3) with specified costs within cost-optimal sequences approximating random
target gates synthesised to within an error threshold of ε. We begin by assuming that each logical
base gate in T3 ∪T4 . . . TL for L ≥ 3 has equal proportions if they were to have equal costs, that is,
the gate operations are equally effective for the purposes of gate synthesis. This can be justified

Accepted in Quantum 2021-01-20, click title to verify. Published under CC-BY 4.0. 16

https://doi.org/10.1109/TC.2015.2409842
https://doi.org/10.1063/1.4927100
https://doi.org/10.1103/PhysRevLett.110.190502
https://doi.org/10.1103/PhysRevLett.110.190502
https://doi.org/10.1103/PhysRevA.91.052317
https://doi.org/10.1103/PhysRevA.91.052317
https://doi.org/10.1038/46503
https://doi.org/10.22331/Q-2019-04-30-135
https://doi.org/10.22331/Q-2018-06-18-74
https://doi.org/10.22331/Q-2018-06-18-74
https://doi.org/10.1088/2058-9565/1/1/015007
https://doi.org/10.1088/2058-9565/1/1/015007
https://doi.org/10.22331/Q-2018-03-14-56
https://doi.org/10.1016/J.JOCS.2017.10.019
https://doi.org/10.1016/J.JOCS.2017.10.019
https://doi.org/10.1016/0020-0190(91)90074-r
https://doi.org/10.1103/PhysRevA.87.052332


Figure A.1: The proportions of individual logical base gates with equally assigned costs (synthesis logical level
error 0.03 using the trace distance). The number of gates within each set doubles for increasing order where
T3 contains two gates (see Equation 2). This plot indicates that the logical base gates are almost equivalently
useful in approximating random target gates using cost-optimal gate synthesis.

by the data in Figure A.1. The figure shows that when each logical base gate is given equal costs,
the sequence generation algorithm generates a database of gate sequences with each gate having
approximately the same proportions, where the proportions slowly decrease for increasing order.
We do not expect these proportions to significantly change for larger sequence costs (or smaller
synthesis error thresholds ε) since the logical base gate proportions are approximately constant for
sufficiently large maximum sequence costs. This can be seen in Fig. A.2 for the case of T5 logical
base gates from within Set3 generated by the sequence generation algorithm for random target
gates.

Assume we have a database of cost-optimal gate sequences that have been generated up to a
chosen maximum cost with individually assigned implementation costs for each set of logical base
gates Tl where l ≥ 3. We will calculate the proportion of Tn gates among all sequences within
the database. For simplicity, let logical gates from any set Tl for l ≥ 3 be called t gates. Using
a unique canonical form [16] for sequences consisting of the Clifford gates and combinations of Tl

gates, arbitrary gate sequences can be reduced to the form

c.t1.H.t2.H . . . tM .c′, (11)

where c and c′ are Clifford gates, tm is the mth positioned t gate in the sequence, and M is the
t-count. For a particular sequence, let the number of t gates from Tl be denoted by kl. It follows
that each sequence consisting of gates from up to order L of the Clifford hierarchy satisfies (noting
that c0 = c1 = 0)

L∑
l=3

clkl ≤ C, (12)

where cl is the cost assigned to logical gates from Tl and C is the maximum cost of the database of
gate sequences. It will be useful to denote the number of t gates from order l to L of the Clifford
hierarchy as

Kl :=
L∑

i=l

ki, (13)

noting that K3 is the t-count, M that appears in Eq. 11.
The aim is to calculate the proportion of Tn gates among all gates in sequences within the

database. We begin by counting the total number of possible sequences that can be formed given
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Figure A.2: The proportion of T5 logical base gates among T3∪T4∪T5 gates calculated using the combinatorial
model for all cost-optimal sequences below a maximum sequence cost that produce distinct combined gates.
The logical base gate cost values are assigned according to Table 2 for a logical base gate error threshold of
µ = 10−15 under the diamond norm. This plot shows that the proportion of T5 gates becomes approximately
constant for sufficiently large maximum sequence costs.

a set of t gate counts {kl}|L3 . Then the total number of possible sequences can be summed by
iterating through every combination of possible sets {kl}|L3 that satisfy Eq. 12 with their assigned
base gate costs. Once this expression is determined, it can be extended to calculate the number of
Tn gates and the total number of gates, which can then be used to calculate the proportions. For
sequences of t-count K3, the number of permutations of kl gates within K3 gate locations is

(#Permutations(kl,K3)) :=
(
K3

kl

)
= K3!

(K3 − kl)!kl!
. (14)

Let |Tl| be the number of distinct Z-rotation gates within order l of the Clifford hierarchy, for
example, |T3| = 2 since T3 = {T, T †} (up to global phase). Then for each permutation, there are
|Tl|kl unique combinations of assigned Tl logical base gates within the permutation. Thus, the
total number of configurations for kl number of gate locations with |Tl| variations in a sequence of
t gate count K3 is

γ(kl, |Tl|,K3) := |Tl|kl
K3!

(K3 − kl)!kl!
. (15)

After assigning gates to kl locations, there are K3 − kl locations remaining within the sequence.
The strategy from here is to iteratively count the total number of configurations from l = 3 to L by
updating the number of remaining locations at each step, which now updates as Kl+1 = Kl − kl.
So for the second iteration, the number of configurations of kl+1 gates with |Tl+1| variations within
remaining locations Kl+1 of a given configuration from the assigned kl number of Tl gates is
γ(kl+1, |Tl+1|,Kl+1), leading to a total of γ(kl, |Tl|,Kl)γ(kl+1, |Tl+1|,Kl+1) configurations for kl

and kl+1 numbers of Tl and Tl+1 gates respectively in sequences of t-count Kl. Thus the total
number of configurations for a set of t gate counts k = {k3, k4, . . . , kL} in sequences of t-count K3

Accepted in Quantum 2021-01-20, click title to verify. Published under CC-BY 4.0. 18



(containing t gates up to order L of the Clifford hierarchy) is

Γ(k) :=
L∏

l=3
γ(kl, |Tl|,Kl) =

L∏
l=3
|Tl|kl

Kl!
(Kl − kl)!kl!

(16)

= K3!K4! . . .KL!
K4! . . .KL!(KL − kL)!

L∏
l=3

|Tl|kl

kl!
= K3!

L∏
l=3

|Tl|kl

kl!
(17)

=
(

L∑
i=3

ki

)
!

L∏
l=3

|Tl|kl

kl!
. (18)

To count the total number of sequences, we sum over all configurations for each assignment of k
satisfying Equation 12. We begin by determining the maximum allowable values for each kl with
respect to already specified lower order t gate counts {kj}|l−1

3 . The maximum possible value for
k3 is bC/c3c. Given a specified k3, the maximum value for k4 is b(C − c3k3)/c4c. By continuing
this pattern, given a set of t gate counts {k3, k4, . . . , kl−1}, the maximum value for kl is

max(kl) = b(C −
l−1∑
j=3

cjkj)/cic. (19)

So now the total number of sequence configurations with logical base gate costs c and maximum
sequence cost C can be calculated as

ζ(c, C) :=
∑

{k | c·k≤C}

Γ(k)

=
bC/c3c∑
k3=0

b(C−c3k3)/c4c∑
k4=0

. . .

b(C−
L−1∑
j=3

cjkj)/cLc∑
kL=0

(
L∑

i=3
ki

)
!

L∏
l=3

|Tl|kl

kl!
. (20)

Since the number of Tl logical gates within a particular sequence is kl, the total number of Tl gates
within all possible sequences below the maximum cost C is calculated by multiplying kl to each
term in the summation, the total number of gates can be calculated in a similar way. Thus, the
proportion of Tn gates can be calculated as the weighted sum

pn =

∑
{k | c·k≤C}

knΓ(k)

∑
{k | c·k≤C}

L∑
t=3

ktΓ(k)
(21)

=

bC/c3c∑
k3=0

b(C−c3k3)/c4c∑
k4=0

. . .

b(C−
L−1∑
j=3

cjkj)/cLc∑
kL=0

kn

(
L∑

i=3
ki

)
!

L∏
l=3

|Tl|kl

kl!

bC/c3c∑
k3=0

b(C−c3k3)/c4c∑
k4=0

. . .

b(C−
L−1∑
j=3

cjkj)/cLc∑
kL=0

L∑
t=3

kt

(
L∑

i=3
ki

)
!

L∏
l=3

|Tl|kl

kl!

. (22)
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