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As the hardware technology for quantum com-
puting advances, its possible applications are ac-
tively searched and developed. However, such
applications still suffer from the noise on quan-
tum devices, in particular when using two-qubit
gates whose fidelity is relatively low. One way
to overcome this difficulty is to substitute such
non-local operations by local ones. Such sub-
stitution can be performed by decomposing a
non-local channel into a linear combination of
local channels and simulating the original chan-
nel with a quasiprobability-based method. In
this work, we first define a quantity that we call
channel robustness of non-locality, which quan-
tifies the cost for the decomposition. While this
quantity is challenging to calculate for a general
non-local channel, we give an upper bound for
a general two-qubit unitary channel by provid-
ing an explicit decomposition. The decompo-
sition is obtained by generalizing our previous
work whose application has been restricted to
a certain form of two-qubit unitary. This work
develops a framework for a resource reduction
suitable for first-generation quantum devices.

1 Introduction
We now have a programmable quantum device whose
dynamics cannot be simulated by a classical computer
within its runtime [1]. However, the capability of such
devices is rather limited because of the absence of the
quantum error correction. They are frequently referred
to as noisy intermediate scale quantum (NISQ) devices
[2]. There has been a substantial amount of research
efforts to develop useful applications of NISQ devices
in recent years [3–9]. The weakness of NISQ devices is
that the number of qubits, the fidelities of gates, and
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the connectivity are limited. The gate fidelities are es-
pecially restricted for two-qubit entangling gates. One
approach to circumvent such limitation is to use so-
called variational quantum algorithms. They employ
parametrized quantum circuits and optimize the param-
eters to perform a given task. In such algorithms, we
frequently construct the largest possible circuit allowed
on a device to maximize the advantage of the use of
quantum devices.

While this approach is promising as it can in prin-
ciple employ such circuits, such algorithms can still be
improved if one can perform further resource reduction.
For example, if we can reduce the number of qubits or
two-qubit gates required to obtain an output from a
certain quantum circuit, it would widen the range of
circuits that can be used for variational algorithms. To
this end, a few approaches have been proposed. One
is to decompose a large circuit into smaller ones by
“cutting” circuits using a tomography-like method [10].
Also, in Ref. [11], we have presented a method to “cut”
a certain non-local gate by decomposing it into a lin-
ear combination of local operations. These approaches
share the same property that the overhead for the de-
composition, which in this context is defined by the
number of circuit runs that is required to achieve a de-
sired accuracy of the output, scales exponentially to the
number of cuts performed.

They can be also understood as techniques for per-
forming a quasiprobability decomposition of quantum
channels. Quasiprobability distribution, which is de-
fined by a set of complex numbers {qi} satisfying∑
i qi = 1, have recently found a wide range of ap-

plications in the area of quantum computing such as
error mitigation for NISQ devices [12, 13] and classi-
cal simulation of near-Clifford quantum circuits [14–
18]. In particular, Refs. [12, 13, 17, 18] considered
a quasiprobability-based simulation of quantum chan-
nels; if a quantum channel Φ can be decomposed as
Φ =

∑
i ciΦi where Φi and ci are respectively a chan-
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nel and a complex coefficient, Φ can be simulated by
sampling Φi with probability proportional to |ci| and
processing the phase of ci with classical post-processing.
The overhead of simulating the channel Φ using this
decomposition is quantified by

∑
i |qi|. If we perform

such a decomposition multiple times, the overhead is
quantified by the product of

∑
i |qi|, thus leading to an

exponential overhead to the number of decomposition
performed. Refs. [12, 13] have developed techniques to
build inverse channels of noise channels using an experi-
mentally available set of quantum gates. As a technique
for a classical simulation, Refs. [17, 18] has considered a
quasiprobability decomposition of a non-Clifford chan-
nel into Clifford ones. In this context, we can view the
decomposition performed in Ref. [10] as a quasiproba-
bility decomposition of the identity channel into a mea-
surement and state-preparation channel, and one in Ref.
[11] as a quasiprobability decomposition of a non-local
unitary channel into local ones.

In this work, we first define a quantity that we call
channel robustness of non-locality in analog to the ro-
bustness of magic introduced in Ref. [15], which quanti-
fies the minimal possible overhead that can be achieved
for quasiprobabilistic simulation of a non-local channel
by local channels. While this quantity is difficult to cal-
culate in general, we show an analytic upper bound for
general two-qubit unitary channels by constructing an
explicit decomposition, generalizing the technique de-
veloped in Ref. [11]. Our previous work [11] has only
considered decomposition of non-local gates expressed
in the form of eiθA1⊗A2 for Hermitian operators satisfy-
ing A2

1 = I and A2
2 = I. In contrast, the decomposition

developed in this work performs the cut of a general
two-qubit gate in a single-step, leading to a substan-
tially reduced overhead. Besides the reduced cost, the
derivation of the decomposition is delivered more con-
structively than before which we believe is informative
for further optimizations of this approach. While lower
bounds of the defined robustness is also of theoretical
interest that can characterize quantumness of a non-
local channel, in this work, we focus on upper bounds
obtained by explicit decompositions which enable us to
actually simulate a nonlocal channel by local channels.
This work develops a theoretical framework for a re-
source reduction suitable for first-generation quantum
devices.

2 Decomposition of non-local channels
into local channels
2.1 Notation
We use the notation |ρ〉〉 to express a density matrix ρ
to stress that ρ can also be seen as a vector. Bold-font
symbols are to express a quantum channel correspond-
ing to a gate-like operation represented by a normal
font. For example, a unitary channel U acts on a state
|ρ〉〉 as U |ρ〉〉 = |UρU†〉〉 where U is a unitary matrix.
Inner product between two operators |A〉〉 and |B〉〉 is
defined as 〈〈A|B〉〉 = Tr(A†B).

2.2 Channel robustness of non-locality
In standard eperimental platforms including supercon-
ducting qubits and ion traps, it is often thought that
the arbitrary single-qubit rotation charactrized by an
axis n = (n1, n2, n3) and an angle θ, R(n, θ) =
exp [−iθ(

∑
α nασα)], and the single-qubit projective

measurements along any axis are somewhat easier op-
erations than two-qubit entangling operations. Experi-
mentally, the projective measurement is realized by ro-
tating the axis by R(n, θ) and performing the projective
measurement along z-axis. The quantum channelM(n)
corresponding to the projective measurement is a prob-
abilistic map; when applied to a state |ρ〉〉, it returns
a state Π(±n)|ρ〉〉/p+ with some probability p±, where
Π(±n) is a projector to an eigenstate of ±

∑
α nασα

with eigenvalue +1.
To implement Π(n) itself, we can define a probabilis-

tic map Π̂(n) that takes a state |ρ〉〉 to Π(n)|ρ〉〉/p+
with probability p+ and to |0〉〉 with probability p−
where |0〉〉 corresponds to the zero matrix. The map
to |0〉〉 means simply to ignore the case when the mea-
surement resulted in −1. However, just discarding the
−1 case is inefficient, especially when we also want
to perform Π(−n). To resolve this issue, we define
a probabilistic map Π̃(n, c+, c−) that takes a state ρ
to c±Π(±n)|ρ〉〉/p± with probability p±, where c± ∈
{0} ∪ {eiφ|φ ∈ [0, 2π]}. Let us define the expected
value of a random vector |σ〉〉 which becomes |σi〉〉 with
a probability pi as E[|σ〉〉] :=

∑
i pi|σi〉〉. Observe that

the following holds for any state ρ,

E[Π̃(n, c+, c−)|ρ〉〉] = c+Π(n)|ρ〉〉+ c−Π(−n)|ρ〉〉. (1)

We write E[Π̃(n, c+, c−)] = c+Π(n) + c−Π(−n) in
this sense and henceforth use the notation like this.
Π̃(n, c+, c−) includes the both of the cases which we
mentioned earlier; if we want to apply only Π(n) we
can set c− = 0, and we can also apply both of Π(±n)
simultaneously with different coefficients. The reason
we restrict |c±| = 1 is to assure

∣∣Tr[Π̃(n, c+, c−)ρ]
∣∣ ≤ 1
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for any state ρ and any realization of Π̃(n, c+, c−), thus
preventing the decomposition overhead to occur at this
stage.

With the above consideration, available local opera-
tions in practice, which we denote as Li, are the ones
that can be written as an arbitrary product of R(n, θ)
and Π̃(n) and their tensor products. We denote a set
of such possible Li by L. The most general form of de-
composition that we aim to build for a given non-local
quantum channel Φ is,

Φ =
∑
i

ciLi, (2)

where Li ∈ L.
Given a decomposition above, Φ can be “simulated”

in a Monte-Carlo manner by sampling Li with probabil-
ity proportional to |ci|. More concretely, let us define a
probabilistic map Φ̂ such that it becomes ci

|ci|Li with

probability pi = |ci|/W (Φ) where W (Φ) =
∑
i |ci|.

Then,

E[W (Φ)Φ̂] = W (Φ)×
∑
i

|ci|
W (Φ)

ci
|ci|
Li

= Φ, (3)

which shows that W (Φ)Φ̂ becomes equal to Φ when
executed for many times. This algorithm involves only
local operations with classical communication (LOCC).
However, note that the above protocol is not a simple
probabilistic mixture of LOCC as it multiplies the com-
plex coefficient ci/|ci| to each channel Li.

Let us now consider the overhead associated with the
decomposition. In many cases, the output from a quan-
tum system that is evolved with a channel Φ is an expec-
tation value of an observable O, which can be written
as 〈〈O|Φ|ρ〉〉. 〈〈O|Φ|ρ〉〉 is usually estimated by sampling
eigenvalues of O from the final state Φ|ρ〉〉. Let the sam-
pled S eigenvalues be {os}Ss=1. Normally, we construct

an estimator 〈̂O〉 as 〈̂O〉 = 1
S

∑
s os. Let us assume that

absolute value of eigenvalues of O is bounded by omax
and thus |os| ≤ omax. Then, by Hoeffding’s bound, we

can assure that |〈̂O〉 − 〈〈O|V |ρ〉〉| ≤ ε with probability
at least 1− δ if we take S = 2(omax/ε)2 ln[1/(2δ)].

The number of samples required to achieve the
same accuracy increases if one tries to simulate Φ
with Φ̂. Since E[W (Φ)Φ̂] = Φ, E[W (Φ)〈〈O|Φ̂|ρ〉〉] =
〈〈O|Φ|ρ〉〉We can construct an estimator 〈̂O〉

′
by 〈̂O〉

′
=

1
S

∑
sW (Φ)o′s where o′s is a sample drawn from Φ̂|ρ〉〉

with a single realization of Φ̂. The application of Φ̂
introduced in the last section involves many stochas-
tic processes; it means to stochastically apply Li with
probability pi, and Li itself is a stochastic map involv-
ing Π̃(n, c+, c−). However, in the end, any realization

of Φ̂ becomes a single-qubit operation that preserves
the magnitude of the trace of ρ or maps the state to
|0〉〉. Therefore, it is guaranteed that the absolute value
of a sample o′s obtained by measuring O of Φ̂|ρ〉〉 is
also bounded by omax. Again by Hoeffding’s bound,

|〈̂O〉
′
− 〈〈O|Φ|ρ〉〉| ≤ ε with probability at least 1 − δ if

we take S = 2(W (Φ)omax/ε)2 ln[1/(2δ)]. We can see
that W (Φ)2 amounts to the overhead of the decompo-
sition.

The above discussion leads us to define the following
quantity which we call the channel robustness of non-
locality,

W̃ (Φ) = min
{ci|Φ=

∑
i
ciLi, Li∈L}

∑
i

|ci|. (4)

W̃ (Φ) quantifies the minimum amount of cost when
we perform the simulation of a non-local channel Φ
by probabilistic application of the local, experimentally
feasible operations. W̃ (Φ) is submultiplicative, i.e.,

W̃ (Φ2Φ1) ≤ W̃ (Φ2)W̃ (Φ1), which is proved in Ap-
pendix. This allows us to upper-bound the overhead
caused by the decomposition of a chain of quantum
channels, ΦN · · ·Φ2Φ1 by

∏N
n=1 W̃ (Φn).

Note that if we change the available set of opera-
tions to some other ones from L, Eq. (4) quantifies the
overhead of the decomposition in that case. For exam-
ple, the overhead of the decomposition of the identity
gate presented in Ref. [10] can be quantified by setting
the available decomposition to be measure-and-prepare
channels. Another example is the decomposition of non-
Clifford circuits into stabilizer-preserving channels con-
sidered in Refs. [17, 18]. The cost for a family of the
error mitigation technique called probabilistic error can-
cellation [12, 13] is also in relation to this quantity; it
is quantified by substituting the target channel Φ with
an inverse of a noise channel.

As L consists of operations with continous parame-
ters, we can also define W̃ (Φ) using a integral instead
of a discrete sum. Formally, we can write,

W̃ (Φ) = min{
c|Φ=

∫
c(λ)L(λ)dλ, L(λ)∈L

}∫ |c(λ)|dλ, (5)

where λ denotes some continuous parameters that spec-
ifies an element in L.

The calculation of W̃ (Φ) for a general channel Φ is
challenging as it involves a complex minimization pro-
cedure. Nevertheless, in the next section, we give an
upper bound of W̃ (Φ) for a general two-qubit unitary
channel Φ by explicitly constructing a decomposition
using a complete but not overcomplete basis in L.
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2.3 Upper bound for two-qubit unitary channel
It is well-known [19, 20] that the non-local part of two-
qubit gates can always be written as,

U = exp
[
i

( 3∑
α=1

θασα ⊗ σα

)]

=
3∑

α=0
uασα ⊗ σα, (6)

where σ0 is the 2×2 identity operator, and σ1, σ2 and σ3
are Pauli x, y and z operators, respectively. θα is a real
parameter, and uα is a coefficient that is determined
from {θα}. It leads to the following expression of U ,

U |ρ〉〉 =
∑
α,α′

uαu
∗
α′ |(σα ⊗ σα)ρ(σα′ ⊗ σα′)〉〉. (7)

Note that
∑
α |uα|2 = 1 follows from the unitarity.

First, we expand the general two-qubit unitary de-
fined in Eq. (7) using |σβ〉〉 as a single-qubit basis vector
as follows:

〈〈σβ′ ⊗ σγ′ |U |σβ ⊗ σγ〉〉

=
∑
α,α′

uαu
∗
α′Tr [σβ′σασβσα′ ] Tr [σγ′σασγσα′)] . (8)

From this expression, it is clear that if we can construct
a single-qubit channel Uαα′ such that Uαα′ρ = σαρσα′

for any ρ, we can write the above as,

〈〈σβ′ ⊗ σγ′ |U |σβ ⊗ σγ〉〉

=
∑
α,α′

uαu
∗
α′〈〈σβ′ |Uαα′ |σβ〉〉〈〈σγ′ |Uαα′ |σγ〉〉

=
∑
α,α′

uαu
∗
α′〈〈σβ′ ⊗ σγ′ |U⊗2

αα′ |σβ ⊗ σγ〉〉. (9)

Therefore, we conclude U =
∑
α,α′ uαu

∗
α′U

⊗2
αα′ .

Now, we construct Uαα′ with available single-qubit
operations. Observe that,

σαρσα′ = 1
2 (σαρσα′ + σα′ρσα) + 1

2 (σαρσα′ − σα′ρσα) .
(10)

Let us define the following operators Aαα′,± and Bαα′,±
which can be implemented through single-qubit opera-
tions:

Aαα′,± = 1
2 (σα ± σα′) , (11)

Bαα′,± = 1
2 (σα ± iσα′) . (12)

The corresponding channels Aαα′,± and Bαα′,± act

on a single-qubit density matrix ρ like Aαα′,±ρA
†
αα′,±.

Building on Aαα′,± and Bαα′,±, we further define the
following channels:

Aαα′ = Aαα′,+ −Aαα′,−, (13)
Bαα′ = Bαα′,+ −Bαα′,−. (14)

With simple algebra, we can see that,

Aαα′ρ = 1
2 (σαρσα′ + σα′ρσα) , (15)

Bαα′ρ = 1
2i (σαρσα′ − σα′ρσα) . (16)

Therefore, Uαα′ can be written as,

Uαα′ = Aαα′ + iBαα′ . (17)

The above decomposition of Uαα′ leads us to the fol-
lowing decomposition of U :

U =
∑
αα′

uαu
∗
α′ (Aαα′ + iBαα′)⊗2

. (18)

Note that there are symmetries Aαα′ = Aα′α and
Bαα′ = −Bα′α. Using them, we rewrite the expres-
sion for later convenience,

U =
∑
α

|uα|2σ⊗2
α

+
∑
α<α′

(uαu∗α′ + uα′u∗α)
(
A⊗2
αα′ −B⊗2

αα′

)
+
∑
α<α′

i(uαu∗α′ − uα′u∗α) (Aαα′ ⊗Bαα′ +Bαα′ ⊗Aαα′) .

(19)

To calculate upper bound for W̃ (U), we need to for-
mulate Eq. (19) to fit in the form of Eq. (2). σα,
which constitutes the first term of the decomposition,
is trivially in L. Let us now consider Aαα′ . We note
that from the symmetry it suffices to consider the case
where α < α′. When α = 0, Aαα′,± becomes a projec-
tor Π(±n) where nα′′ = δα′α′′ . Therefore, Aαα′ takes
the form of Π̃(n, 1,−1), which means A0α′ ∈ L. For
α 6= 0, Aαα′,± is proportional to a single-qubit rotation
that swaps the α-axis and α′-axis. More concretely,
2Aαα′,± ∈ L for α 6= 0 and α < α′. As for Bαα′ ,
when α = 0, Bαα′,± becomes proportional to a single-
qubit rotation around α′-axis. Likewise to the previous
case, 2Bαα′,± ∈ Li. For α 6= 0, Bαα′,± can be imple-
mented by a projector followed by a flip; for example,
1
2 (σ1 + iσ2) = 1

2σ1(σ0 − σ3). With this observation, we
can see that the channel Bαα′ in this case can be writ-
ten as a product of Π̃ and σα which makes Bαα′ ∈ L
for α 6= 0 and α < α′.

Combining the above properties, we can calculate
W (U) =

∑
i |ci| for the decomposition given in Eq. (19)
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as,

W (U) = 1 +
∑
α 6=α′

(|uαu∗α′ + uα′u∗α|+ |uαu∗α′ − uα′u∗α|) ,

(20)

which gives an upper bound of W̃ (U). We note that the
operations used in the proposed decomposition, namely
σα (α ∈ {0, 1, 2, 3}), Aαα′ and Bαα′ with α < α′ are 16
linearly independent single-qubit channel and thus form
a complete basis in the space of single-qubit superop-
erators. This means W (U) is uniquely determined as
long as the same basis set is used.

2.4 Behaviour of W (U)
Here, we numerically investigate the behavior of W (U)
defined in Eq. (20), restricting the domain of {θα} in
which each point is not locally equivalent, meaning that
a two-qubit unitary represented by a point (θ1, θ2, θ3)
cannot be translated to another point in the domain by
transforming it with single-qubit unitaries, according to
Ref. [20]. In Fig. 1, we depict such a domain of {θα}
1. Note that there are exceptional local-equivalence in
the domain; every point A1A2A3 and OA2A3 is locally
equivalent to A′1A

′
2A
′
3 and OA′2A

′
3, respectively.

Since W (U) is symmetric to the reflection of θx, we
only investigate the tetrahedron OA1A2A3. In Fig. 2,
we show the behavior of W (U) on the surfaces and
edges of the domain. We numerically found that W (U)
is maximized at (θ1, θ2, θ3) ≈ (π/4, 0.202π, 0.136π)
which lies on the surface A1A2A3 with its value being
approximately 8.87. The behavior of W (U) seems to be
unrelated to other measures such as entangling power of
U [19, 21]; for example, while the point A1 corresponds
to controlled-σα gates which can produce the maximal
amount of entanglement and has W (U) = 3, A3 which
corresponds to the swap gate has W (U) = 7. Although
we believe the decomposition given in this work is close
to optimal, this counter-intuitive result might be caused
by the non-optimality.

3 Discussion
3.1 Comparison with gate-based decomposition
approach
If we can measure 〈ψ1|ψ2〉 for some fixed state |ψ1〉 and
|ψ2〉, we can directly utilize the fact that a two-qubit
gate is decomposed as

∑
α∈{I,x,y,z} uασα ⊗ σα. As

we discuss later, this measurement can be demanding

1It slightly differs from Ref. [20]. We shift half of the tetrahe-
dron presented in Fig. 2 of Ref. [20] corresponding to the region
θx ≥ π/4 to θx ≤ π/0 using the periodicity of θx.

𝜃3

𝜃1 𝜃2
𝑂𝐴1
𝐴2
𝐴3

𝐴1′
𝐴2′
𝐴3′

Figure 1: Domain of (θ1, θ2, θ3) in which a two-qubit uni-
tary represented by each point is not locally equivalent to
each other. In the figure, O = (0, 0, 0), A1 = (π/4, 0, 0),
A2 = (π/4, π/4, 0), A3 = (π/4, π/4, π/4), A′

1 = (−π/4, 0, 0),
A′

2 = (−π/4, π/4, 0) and A′
3 = (−π/4, π/4, π/4).

𝜃3

𝜃1 𝜃2
𝑂𝐴1

𝐴2
𝐴3

Figure 2: Behaviour of W (U) on the surface of the tetrahedron
OA1A2A3.
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for early days quantum computers. Let V be a se-
quence of gates consisting of alternating layers of single-
qubit and two-qubit gates. Note that any quantum cir-
cuit can be written in this form. V can be written as
V = DLSL · · ·D2S2D1S1 where Di’s and Si’s are two-
qubit and single-qubit gates, respectively. We assume

Di =
∑
α dαi

σ
(ai)
αi ⊗ σ

(bi)
αi where σ

(a)
α is a Pauli matrix

acting on the a-th qubit. Now, focusing on the i-th two-
qubit gate, we can express an expectation value of an
observable O at the end of the circuit as,

〈0|V †OV |0〉 =
∑
αi

d∗α′
i
dαi
〈0|V †i,α′

i
OVi,αi

|0〉 , (21)

where,

Vi,αi
= DLSL · · ·σ(ai)

αi
⊗ σ(bi)

αi
· · ·D2S2D1S1. (22)

This decomposition also allows us to perform a “vir-
tual” two-qubit gate on a quantum circuit in the sense
that, in Vi,αi

, the i-th two-qubit gate in V is replaced

by σ
(ai)
αi ⊗ σ

(bi)
αi which is a tensor product of local op-

erations. We can do this by the following algorithm.
Let us assume that O is written as O =

∑
i ciPi,

where Pi is a tensor product of Pauli operators. With
this assumption, we can evaluate 〈0|V †i,α′

i
OVi,αi

|0〉 by∑
k ck 〈0|V

†
i,α′

i
PkVi,αi |0〉. More concretely, we define

|ψi,αi
〉 = Vi,α′

i
|0〉 and |ψk,i,αi

〉 = PkVi,αi
|ψi,αi

〉 and
then measure 〈ψi,α′

i
|ψk,i,αi〉 which is possible by the as-

sumption. If we are to perform the sum of Eq. (21) in
a Monte-Carlo manner, we can sample α′i and αi with
a probability proportional to |d∗α′

i
dα′

i
|. This leads us

to define G(Di) :=
∑
α′

i
,αi
|d∗α′

i
dα′

i
| which quantifies the

overhead of the decomposition, that is, we need G(Di)2

times more samples to reach a desired error compared
to the decomposition-free case.

It is trivial that G(Di) is always smaller than W (Di).
Therefore, if we can measure 〈ψi,α′

i
|ψk,i,αi

〉, it is always
better to use this approach. For example, in a clas-
sical simulation we can easily calculate 〈ψi,α′

i
|ψk,i,αi

〉.
However, it is not the case for a quantum computer,
in particular for a NISQ device. Measurement of the
overlap 〈ψi,α′

i
|ψk,i,αi

〉, including its phase, is a demand-
ing task. One way of performing this task is to use
a controlled-Vi,αi

as mentioned in e.g. Refs. [16, 22],
which is unlikely to be implemented on a NISQ device
due to its complexity. The original motivation of this
work and our previous works [11, 23] has been to avoid
such complex operations. Note that the famous swap
test [24, 25] cannot be applied to this task since it can
only evaluate | 〈ψi,α′

i
|ψk,i,αi

〉 |2. Investigations on the

relation between W̃ (Di) and G(Di) are left for the fur-
ture work.

3.2 Comparison with the previous work
In the privous work [11], we have proposed the decom-
position for an gate in the form eiθA1⊗A2 for Hermitian
operators A1 and A2 satisfying A2

1 = I and A2
2 = I. It is

a special case of this work, which is recovered by setting
u0 = cos θ and uα = i sin θ for one chosen α ∈ {1, 2, 3}.
Therefore, the cost overhead of this special case is de-
termined by 1 + 2|u0u

∗
α− uαu∗0|, which takes maximum

at θ = π/4. If we are to decompose a general two-qubit

gate in the form of exp
[
i
(∑3

α=1 θασα ⊗ σα
)]

using

this technique, we decompose each of exp [iθασα ⊗ σα].
Then, the overhead is quantified by the product of
1+2|uIu∗α−uαuI |, which reaches its maximum 33 = 27
at θα = π/4 for all α. On the other hand, WU defined
in Eq. (20), which quantifies the overhead required by
the present approach, becomes 7, showing substantial
improvement.

While we believe that the decomposition given in this
work is close to optimal, there can be better decomposi-
tions with smaller WU . The search for optimal decom-
position will require some form of numerical search. In
the context of classical simulation of near Clifford cir-
cuits, Ref. [16] has performed such a search. However,
the optimization of the decomposition considered in this
work will be more complicated than the aforementioned
work, since the number of available operations is in-
finitely many as can be seen from Eq. (5). We believe
the decomposition proposed in this work can be a good
starting point of the optimization if it is not optimal
and leave it as future work.

4 conclusion
We have introduced a quantity called channel ro-
bustness of non-locality which quantifies the minimal
amount of overhead required for decomposing non-local
channels into local ones with a quasiprobability-based
method. While the calculation of the quantity for gen-
eral non-local channels is difficult due to the need for
a complicated optimization, we have successfully estab-
lished an upper bound for a general two-qubit unitary
channel. The upper bound is obtained by construc-
tively deriving an explicit decomposition. Its overhead
is substantially lowered compared to the previous work
[11]. While we believe the present decomposition is close
to optimal, there might be a better decomposition of
a general two-qubit channel than the one presented in
this work, which we leave as possible future work. This
formalism of decomposing an experimentally challeng-
ing channel into a linear combination of experimentally-
easy channels allows us to readily perform the decom-
position using a quantum device.
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A Submultiplicability of W̃ (Φ)
Lemma 1 Let Φ1 and Φ2 be any quantum channels and
Φ21 = Φ2Φ1. Then, W̃ (Φ21) ≤ W̃ (Φ2)W̃ (Φ1).

proof— Let

Φµ =
∑
i

cµiLµi (23)

and
∑
i |cµi| = W̃ (Φµ). Then, Φ21 can be decomposed

as,

Φ21 =
∑
ij

c2ic1jL2iL1j . (24)

Because L2iL1j ∈ L, the above gives a decomposition
of Φ21 in the form of Eq. 2. Therefore,

W̃ (Φ21) ≤
∑
ij

|c2ic1j |

=
∑
i

|c2i|
∑
j

|c1j |

= W̃ (Φ2)W̃ (Φ1). (25)

�
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