The Multi-round Process Matrix

Timothée Hoffreumon and Ognyan Oreshkov

Centre for Quantum Information and Communication (QuIC), École polytechnique de Bruxelles, CP 165, Université libre de Bruxelles, 1050 Brussels, Belgium.

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

We develop an extension of the process matrix (PM) framework for correlations between quantum operations with no causal order that allows multiple rounds of information exchange for each party compatibly with the assumption of well-defined causal order of events locally. We characterise the higher-order process describing such correlations, which we name the multi-round process matrix (MPM), and formulate a notion of causal nonseparability for it that extends the one for standard PMs. We show that in the multi-round case there are novel manifestations of causal nonseparability that are not captured by a naive application of the standard PM formalism: we exhibit an instance of an operator that is both a valid PM and a valid MPM, but is causally separable in the first case and can violate causal inequalities in the second case due to the possibility of using a side channel.

Quantum communication protocols involve several parties that send and receive quantum systems on which they perform operations. These protocols usually assume a well-defined causal ordering of the operations of the parties. The process matrix (PM) framework relaxes the assumption that separate operations must always occur in a definite order. In this framework, there can be situations in which the correlations established between separate parties cannot be understood as arising from a probabilistic mixture of different orderings of their operations. For example, in a communication between two parties, where the parties apply one operation each, there can be more exotic scenarios than Alice acting either before or after Bob. Such scenarios in which the operations of the parties do not have definite causal order are called causally nonseparable processes. Processes of this kind have been conjectured to be relevant at the intersection of quantum mechanics and gravity, but some are also known to admit experimental realizations with known physics in terms of operations delocalized in time.

In its original formulation, the PM framework assumes that each party is restricted to a single round of information exchange, where the party receives a quantum system in, applies an operation on it, and sends a quantum system out. Practical communication protocols, however, generally involve multiple rounds of information exchange between the parties, who can use local memory and condition the operations they apply at a given time on information obtained in the past.

In this article, we extend the PM framework by relaxing the assumption of each party having only one round of information exchange with the others. In the multi-round process matrix (MPM) framework, the parties can receive and send multiple times while storing information in a local memory under the assumption of well-defined causal order of the events in each laboratory. We characterize the set of MPMs via handy mathematical conditions expressed in terms of superoperator projectors, and show that any MPM is an affine (but not necessarily convex) combination of MPMs describing fixed causal order between the operations of the parties. We also formulate a notion of causal nonseparability for the MPM building upon the one for the PM. Even though every MPM turns out to be formally equivalent to a PM on more parties, we find that there are multi-round manifestations of causal nonseparability that are not captured by a naïve application of the standard PM formalism. Specifically, we provide an example of an operator that is causally separable if considered as a PM but causally nonseparable if considered as an MPM. This demonstrates how the ability of the parties to use local memory between their successive operations, which underlies the MPM framework, can activate nontrivial effects.

► BibTeX data

► References

[1] Alastair A. Abbott, Christina Giarmatzi, Fabio Costa, and Cyril Branciard. Multipartite causal correlations: Polytopes and inequalities. Phys. Rev. A, 94: 032131, 2016. 10.1103/​physreva.94.032131.
https:/​/​doi.org/​10.1103/​physreva.94.032131

[2] Alastair A. Abbott, Julian Wechs, Fabio Costa, and Cyril Branciard. Genuinely multipartite noncausality. Quantum, 1: 39, 2017. 10.22331/​q-2017-12-14-39.
https:/​/​doi.org/​10.22331/​q-2017-12-14-39

[3] John-Mark A. Allen, Jonathan Barrett, Dominic C. Horsman, Ciarán M. Lee, and Robert W. Spekkens. Quantum common causes and quantum causal models. Phys. Rev. X, 7: 031021, 2017. 10.1103/​PhysRevX.7.031021.
https:/​/​doi.org/​10.1103/​PhysRevX.7.031021

[4] Mateus Araújo, Philippe Allard Guérin, and Ämin Baumeler. Quantum computation with indefinite causal structures. Phys. Rev. A, 96: 052315, 2017. 10.1103/​physreva.96.052315.
https:/​/​doi.org/​10.1103/​physreva.96.052315

[5] Mateus Araújo, Fabio Costa, and Časlav Brukner. Computational advantage from quantum-controlled ordering of gates. Phys. Rev. Lett., 113: 250402, 2014. 10.1103/​PhysRevLett.113.250402.
https:/​/​doi.org/​10.1103/​PhysRevLett.113.250402

[6] Mateus Araújo, Cyril Branciard, Fabio Costa, Adrien Feix, Christina Giarmatzi, and Časlav Brukner. Witnessing causal nonseparability. New Journal of Physics, 17 (10): 1–28, 2015. 10.1088/​1367-2630/​17/​10/​102001.
https:/​/​doi.org/​10.1088/​1367-2630/​17/​10/​102001

[7] Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov. Quantum causal models. arXiv:quant-ph/​1906.10726, 2019.
arXiv:1906.10726

[8] Jonathan Barrett, Robin Lorenz, and Ognyan Oreshkov. Cyclic quantum causal models. arXiv:quant-ph/​2002.12157, 2020.
arXiv:2002.12157

[9] Ämin Baumeler and Stefan Wolf. The space of logically consistent classical processes without causal order. New Journal of Physics, 18 (1): 013036, 2016. 10.1088/​1367-2630/​18/​1/​013036.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​1/​013036

[10] Ämin Baumeler, Fabio Costa, Timothy C. Ralph, Stefan Wolf, and Magdalena Zych. Reversible time travel with freedom of choice. Classical and Quantum Gravity, 36 (22): 224002, 2019. 10.1088/​1361-6382/​ab4973.
https:/​/​doi.org/​10.1088/​1361-6382/​ab4973

[11] Alessandro Bisio and Paolo Perinotti. Theoretical framework for higher-order quantum theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 475 (2225): 20180706, 2019. 10.1098/​rspa.2018.0706.
https:/​/​doi.org/​10.1098/​rspa.2018.0706

[12] Časlav Brukner. Quantum causality. Nature Physics, 10 (4): 259–263, 2014. 10.1038/​nphys2930.
https:/​/​doi.org/​10.1038/​nphys2930

[13] Esteban Castro-Ruiz, Flaminia Giacomini, and Časlav Brukner. Dynamics of Quantum Causal Structures. Phys. Rev. X, 8: 011047, 2018. 10.1103/​PhysRevX.8.011047.
https:/​/​doi.org/​10.1103/​PhysRevX.8.011047

[14] Giulio Chiribella. Perfect discrimination of no-signalling channels via quantum superposition of causal structures. Phys. Rev. A, 86: 040301, 2011. 10.1103/​PhysRevA.86.040301.
https:/​/​doi.org/​10.1103/​PhysRevA.86.040301

[15] Giulio Chiribella, Giacomo Mauro D'Ariano, and Paolo Perinotti. Theoretical framework for quantum networks. Phys. Rev. A, 80 (2), 2009. 10.1103/​PhysRevA.80.022339.
https:/​/​doi.org/​10.1103/​PhysRevA.80.022339

[16] Giulio Chiribella, Giacomo Mauro D’Ariano, and Paolo Perinotti. Informational derivation of quantum theory. Phys. Rev. A, 84 (1), 2011. 10.1103/​physreva.84.012311.
https:/​/​doi.org/​10.1103/​physreva.84.012311

[17] Giulio Chiribella, Giacomo Mauro D'Ariano, Paolo Perinotti, and Benoit Valiron. Quantum computations without definite causal structure. Phys. Rev. A, 88: 022318, 2013. 10.1103/​PhysRevA.88.022318.
https:/​/​doi.org/​10.1103/​PhysRevA.88.022318

[18] Man-Duen Choi. Completely positive linear maps on complex matrices. Linear Algebra and its Applications, 10 (3): 285–290, 1975. 10.1016/​0024-3795(75)90075-0.
https:/​/​doi.org/​10.1016/​0024-3795(75)90075-0

[19] Timoteo Colnaghi, Giacomo Mauro D'Ariano, Stefano Facchini, and Paolo Perinotti. Quantum computation with programmable connections between gates. Physics Letters, Section A: General, Atomic and Solid State Physics, 376 (45): 2940–2943, 2012. 10.1016/​j.physleta.2012.08.028.
https:/​/​doi.org/​10.1016/​j.physleta.2012.08.028

[20] Adrien Feix, Mateus Araújo, and Časlav Brukner. Quantum superposition of the order of parties as a communication resource. Phys. Rev. A, 92: 052326, 2015. 10.1103/​PhysRevA.92.052326.
https:/​/​doi.org/​10.1103/​PhysRevA.92.052326

[21] Adrien Feix, Mateus Araújo, and Časlav Brukner. Causally nonseparable processes admitting a causal model. New Journal of Physics, 18 (8): 083040, 2016. 10.1088/​1367-2630/​18/​8/​083040.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​8/​083040

[22] Kaumudibikash Goswami, Christina Giarmatzi, Michael Kewming, Fabio Giarmatzi, Cyril Branciard, Jacqueline Romero, and Andrew G. White. Indefinite Causal Order in a Quantum Switch. Phys. Rev. Lett., 121: 090503, 2018. 10.1103/​PhysRevLett.121.090503.
https:/​/​doi.org/​10.1103/​PhysRevLett.121.090503

[23] Philippe Allard Guérin, Adrien Feix, Mateus Araújo, and Časlav Brukner. Exponential Communication Complexity Advantage from Quantum Superposition of the Direction of Communication. Phys. Rev. Lett., 117: 100502, 2016. 10.1103/​PhysRevLett.117.100502.
https:/​/​doi.org/​10.1103/​PhysRevLett.117.100502

[24] Philippe Allard Guérin and Časlav Brukner. Observer-dependent locality of quantum events. New Journal of Physics, 20 (10): 103031, 2018. 10.1088/​1367-2630/​aae742.
https:/​/​doi.org/​10.1088/​1367-2630/​aae742

[25] Lucien Hardy. Towards quantum gravity: a framework for probabilistic theories with non-fixed causal structure. Journal of Physics A: Mathematical and Theoretical, 40 (12): 3081–3099, 2007. 10.1088/​1751-8113/​40/​12/​S12.
https:/​/​doi.org/​10.1088/​1751-8113/​40/​12/​S12

[26] Israel N. Herstein. Topics in algebra. Open University set book. Wiley, 1975. ISBN 978-0-471-00258-1. URL https:/​/​books.google.be/​books?id=LJRxPQAACAAJ.
https:/​/​books.google.be/​books?id=LJRxPQAACAAJ

[27] Fumio Hiai and Dénes Petz. Introduction to matrix analysis and applications. Springer Science & Business Media, 2014. ISBN 978-3-319-04149-0. 10.1007/​978-3-319-04150-6.
https:/​/​doi.org/​10.1007/​978-3-319-04150-6

[28] Timothée Hoffreumon. Processes with indefinite causal structure in quantum theory: the multi-round process matrix. Master's thesis, Université Libre de Bruxelles, 2019. http:/​/​quic.ulb.ac.be/​_media/​publications/​2019_mfe_timothee_hoffreumon.pdf.
http:/​/​quic.ulb.ac.be/​_media/​publications/​2019_mfe_timothee_hoffreumon.pdf

[29] Andrzej Jamiołkowski. Linear transformations which preserve trace and positive semidefiniteness of operators. Reports on Mathematical Physics, 3 (4): 275–278, 1972. 10.1016/​0034-4877(72)90011-0.
https:/​/​doi.org/​10.1016/​0034-4877(72)90011-0

[30] Ding Jia. Correlational quantum theory and correlation constraints. arXiv:quant-ph/​2001.03142, 2020.
arXiv:2001.03142

[31] Aleks Kissinger and Sander Uijlen. A categorical semantics for causal structure. In 2017 32nd Annual ACM/​IEEE Symposium on Logic in Computer Science (LICS), pages 1–12, 2017. 10.1109/​LICS.2017.8005095.
https:/​/​doi.org/​10.1109/​LICS.2017.8005095

[32] Hlér Kristjánsson, Giulio Chiribella, Sina Salek, Daniel Ebler, and Matthew Wilson. Resource theories of communication. New Journal of Physics, 22 (7): 073014, 2020. 10.1088/​1367-2630/​ab8ef7.
https:/​/​doi.org/​10.1088/​1367-2630/​ab8ef7

[33] Jean-Philippe W. Maclean, Katja Ried, Robert W. Spekkens, and Kevin J. Resch. Quantum-coherent mixtures of causal relations. Nature Communications, 8: 1–10, 2017. 10.1038/​ncomms15149.
https:/​/​doi.org/​10.1038/​ncomms15149

[34] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information. Cambridge University Press, 2009. 10.1017/​cbo9780511976667.
https:/​/​doi.org/​10.1017/​cbo9780511976667

[35] Ognyan Oreshkov. Time-delocalized quantum subsystems and operations: on the existence of processes with indefinite causal structure in quantum mechanics. Quantum, 3: 206, 2019. 10.22331/​q-2019-12-02-206.
https:/​/​doi.org/​10.22331/​q-2019-12-02-206

[36] Ognyan Oreshkov and Nicolas J. Cerf. Operational quantum theory without predefined time. New Journal of Physics, 18 (7): 073037, 2016. 10.1088/​1367-2630/​18/​7/​073037.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​7/​073037

[37] Ognyan Oreshkov and Christina Giarmatzi. Causal and causally separable processes. New Journal of Physics, 18 (9): 1–36, 2016. 10.1088/​1367-2630/​18/​9/​093020.
https:/​/​doi.org/​10.1088/​1367-2630/​18/​9/​093020

[38] Ognyan Oreshkov, Fabio Costa, and Časlav Brukner. Quantum correlations with no causal order. Nature Communications, 3: 1–13, 2012. 10.1038/​ncomms2076.
https:/​/​doi.org/​10.1038/​ncomms2076

[39] Paolo Perinotti. Causal structures and the classification of higher order quantum computations. Tutorials, Schools, and Workshops in the Mathematical Sciences, page 103–127, 2017. 10.1007/​978-3-319-68655-4_7.
https:/​/​doi.org/​10.1007/​978-3-319-68655-4_7

[40] Dénes Petz. Complementarity in quantum systems. Reports on Mathematical Physics, 59 (2): 209–224, 2007. 10.1016/​S0034-4877(07)00010-9.
https:/​/​doi.org/​10.1016/​S0034-4877(07)00010-9

[41] Robert Piziak, Patrick L. Odell, and R. Hahn. Constructing projections on sums and intersections. Computers and Mathematics with Applications, 37 (1): 67–74, 1999. 10.1016/​S0898-1221(98)00242-9.
https:/​/​doi.org/​10.1016/​S0898-1221(98)00242-9

[42] Christopher Portmann, Christian Matt, Ueli Maurer, Renato Renner, and Bjorn Tackmann. Causal boxes: Quantum information-processing systems closed under composition. IEEE Transactions on Information Theory, page 1–1, 2017. 10.1109/​tit.2017.2676805.
https:/​/​doi.org/​10.1109/​tit.2017.2676805

[43] Lorenzo M. Procopio, Amir Moqanaki, Mateus Araújo, Fabio Costa, Irati Alonso Calafell, Emma G. Dowd, Deny R. Hamel, Lee A. Rozema, Časlav Brukner, and Philip Walther. Experimental superposition of orders of quantum gates. Nature Communications, 6: 1–10, 2015. 10.1038/​ncomms8913.
https:/​/​doi.org/​10.1038/​ncomms8913

[44] Lorenzo M. Procopio, Francisco Delgado, Marco Enríquez, Nadia Belabas, and Juan Ariel Levenson. Communication Enhancement through Quantum Coherent Control of N Channels in an Indefinite Causal-Order Scenario. Entropy, 21 (10): 1012, 2019. 10.3390/​e21101012.
https:/​/​doi.org/​10.3390/​e21101012

[45] Giulia Rubino, Lee A. Rozema, Adrien Feix, Mateus Araújo, Jonas M. Zeuner, Lorenzo M. Procopio, Časlav Brukner, and Philip Walther. Experimental verification of an indefinite causal order. Science Advances, 2017a. 10.1126/​sciadv.1602589.
https:/​/​doi.org/​10.1126/​sciadv.1602589

[46] Giulia Rubino, Lee A. Rozema, Francesco Massa, Mateus Araújo, Magdalena Zych, Časlav Brukner, and Philip Walther. Experimental entanglement of temporal orders. arXiv:quant-ph/​1712.06884, 2017b.
arXiv:1712.06884

[47] Ralph Silva, Yelena Guryanova, Anthony J. Short, Paul Skrzypczyk, Nicolas Brunner, and Sandu Popescu. Connecting processes with indefinite causal order and multi-time quantum states. New Journal of Physics, 19 (10): 103022, 2017. 10.1088/​1367-2630/​aa84fe.
https:/​/​doi.org/​10.1088/​1367-2630/​aa84fe

[48] Márcio M. Taddei, Ranieri V. Nery, and Leandro Aolita. Quantum superpositions of causal orders as an operational resource. Phys. Rev. Research, 1: 033174, 2019. 10.1103/​PhysRevResearch.1.033174.
https:/​/​doi.org/​10.1103/​PhysRevResearch.1.033174

[49] Germain Tobar and Fabio Costa. Reversible dynamics with closed time-like curves and freedom of choice. Classical and Quantum Gravity, 37 (20): 205011, 2020. ISSN 1361-6382. 10.1088/​1361-6382/​aba4bc.
https:/​/​doi.org/​10.1088/​1361-6382/​aba4bc

[50] Julian Wechs, Alastair A. Abbott, and Cyril Branciard. On the definition and characterisation of multipartite causal (non)separability. New Journal of Physics, 21 (1): 013027, 2019. 10.1088/​1367-2630/​aaf352.
https:/​/​doi.org/​10.1088/​1367-2630/​aaf352

[51] Kejin Wei, Nora Tischler, Si-Ran Zhao, Yu-Huai Li, Juan Miguel Arrazola, Yang Liu, Weijun Zhang, Hao Li, Lixing You, Zhen Wang, Yu-Ao Chen, Barry C. Sanders, Qiang Zhang, Geoff J. Pryde, Feihu Xu, and Jian-Wei Pan. Phys. Rev. Lett., 122: 120504, Mar 2019. 10.1103/​PhysRevLett.122.120504.
https:/​/​doi.org/​10.1103/​PhysRevLett.122.120504

[52] Magdalena Zych, Fabio Costa, Igor Pikovski, and Časlav Brukner. Bell’s theorem for temporal order. Nature Communications, 10 (1), 2019. ISSN 2041-1723. 10.1038/​s41467-019-11579-x.
https:/​/​doi.org/​10.1038/​s41467-019-11579-x

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-03-04 10:45:31). On SAO/NASA ADS no data on citing works was found (last attempt 2021-03-04 10:45:32).