Multi-spin counter-diabatic driving in many-body quantum Otto refrigerators
1Institut für Theoretische Physik, Universität Innsbruck, Technikerstraße 21a, A-6020 Innsbruck, Austria
2Department of Physical Sciences, IISER Berhampur, Berhampur 760010, India
Published: | 2020-12-24, volume 4, page 377 |
Eprint: | arXiv:2008.09327v2 |
Doi: | https://doi.org/10.22331/q-2020-12-24-377 |
Citation: | Quantum 4, 377 (2020). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
Quantum refrigerators pump heat from a cold to a hot reservoir. In the few-particle regime, counter-diabatic (CD) driving of, originally adiabatic, work-exchange strokes is a promising candidate to overcome the bottleneck of vanishing cooling power. Here, we present a finite-time many-body quantum refrigerator that yields finite cooling power at high coefficient of performance, that considerably outperforms its non-adiabatic counterpart. We employ multi-spin CD driving and numerically investigate the scaling behavior of the refrigeration performance with system size. We further prove that optimal refrigeration via the exact CD protocol is a catalytic process.
► BibTeX data
► References
[1] Y. A. Çengel and M. A. Boles, Thermodynamics: An Engineering Approach, eighth ed. (McGraw-Hill Education, New York, 2015).
[2] R. Alicki, The quantum open system as a model of the heat engine, J. Phys. A 12, L103 (1979).
https://doi.org/10.1088/0305-4470/12/5/007
[3] R. Kosloff, A quantum mechanical open system as a model of a heat engine, J. Chem. Phys. 80, 1625 (1984).
https://doi.org/10.1063/1.446862
[4] R. Kosloff, Quantum Thermodynamics: A Dynamical Viewpoint, Entropy 15, 2100 (2013).
https://doi.org/10.3390/e15062100
[5] D. Gelbwaser-Klimovsky, W. Niedenzu, and G. Kurizki, Thermodynamics of Quantum Systems Under Dynamical Control, Adv. At. Mol. Opt. Phys. 64, 329 (2015).
https://doi.org/10.1016/bs.aamop.2015.07.002
[6] S. Vinjanampathy and J. Anders, Quantum thermodynamics, Contemp. Phys. 57, 1 (2016).
https://doi.org/10.1080/00107514.2016.1201896
[7] B. Karimi and J. P. Pekola, Otto refrigerator based on a superconducting qubit: Classical and quantum performance, Phys. Rev. B 94, 184503 (2016).
https://doi.org/10.1103/PhysRevB.94.184503
[8] R. Kosloff and Y. Rezek, The Quantum Harmonic Otto Cycle, Entropy 19 (2017), 10.3390/e19040136.
https://doi.org/10.3390/e19040136
[9] F. Binder, L. A. Correa, C. Gogolin, J. Anders, and G. Adesso, eds., Thermodynamics in the Quantum Regime (Springer, Cham, 2019).
https://doi.org/10.1007/978-3-319-99046-0
[10] S. Bhattacharjee and A. Dutta, Quantum thermal machines and batteries, (2020), arXiv:2008.07889 [quant-ph].
arXiv:2008.07889
[11] H. Bernien, S. Schwartz, A. Keesling, H. Levine, A. Omran, H. Pichler, S. Choi, A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D. Lukin, Probing many-body dynamics on a 51-atom quantum simulator, Nature 551, 579 (2017).
https://doi.org/10.1038/nature24622
[12] J.-y. Choi, S. Hild, J. Zeiher, P. Schauß, A. Rubio-Abadal, T. Yefsah, V. Khemani, D. A. Huse, I. Bloch, and C. Gross, Exploring the many-body localization transition in two dimensions, Science 352, 1547 (2016).
https://doi.org/10.1126/science.aaf8834
[13] P. Bordia, H. Lüschen, S. Scherg, S. Gopalakrishnan, M. Knap, U. Schneider, and I. Bloch, Probing Slow Relaxation and Many-Body Localization in Two-Dimensional Quasiperiodic Systems, Phys. Rev. X 7, 041047 (2017).
https://doi.org/10.1103/PhysRevX.7.041047
[14] J. V. Koski, V. F. Maisi, J. P. Pekola, and D. V. Averin, Experimental realization of a Szilard engine with a single electron, Proc. Natl. Acad. Sci. USA 111, 13786 (2014).
https://doi.org/10.1073/pnas.1406966111
[15] J. Roßnagel, S. T. Dawkins, K. N. Tolazzi, O. Abah, E. Lutz, F. Schmidt-Kaler, and K. Singer, A single-atom heat engine, Science 352, 325 (2016).
https://doi.org/10.1126/science.aad6320
[16] J. Klaers, S. Faelt, A. Imamoglu, and E. Togan, Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit, Phys. Rev. X 7, 031044 (2017).
https://doi.org/10.1103/PhysRevX.7.031044
[17] J. P. S. Peterson, T. B. Batalhão, M. Herrera, A. M. Souza, R. S. Sarthour, I. S. Oliveira, and R. M. Serra, Experimental Characterization of a Spin Quantum Heat Engine, Phys. Rev. Lett. 123, 240601 (2019).
https://doi.org/10.1103/PhysRevLett.123.240601
[18] D. von Lindenfels, O. Gräb, C. T. Schmiegelow, V. Kaushal, J. Schulz, M. T. Mitchison, J. Goold, F. Schmidt-Kaler, and U. G. Poschinger, Spin Heat Engine Coupled to a Harmonic-Oscillator Flywheel, Phys. Rev. Lett. 123, 080602 (2019).
https://doi.org/10.1103/PhysRevLett.123.080602
[19] J. Klatzow, J. N. Becker, P. M. Ledingham, C. Weinzetl, K. T. Kaczmarek, D. J. Saunders, J. Nunn, I. A. Walmsley, R. Uzdin, and E. Poem, Experimental Demonstration of Quantum Effects in the Operation of Microscopic Heat Engines, Phys. Rev. Lett. 122, 110601 (2019).
https://doi.org/10.1103/PhysRevLett.122.110601
[20] Y. Rezek, P. Salamon, K. H. Hoffmann, and R. Kosloff, The quantum refrigerator: The quest for absolute zero, EPL 85, 30008 (2009).
https://doi.org/10.1209/0295-5075/85/30008
[21] A. Levy and R. Kosloff, Quantum Absorption Refrigerator, Phys. Rev. Lett. 108, 070604 (2012).
https://doi.org/10.1103/PhysRevLett.108.070604
[22] Y. Yuan, R. Wang, J. He, Y. Ma, and J. Wang, Coefficient of performance under maximum ${\chi}$ criterion in a two-level atomic system as a refrigerator, Phys. Rev. E 90, 052151 (2014).
https://doi.org/10.1103/PhysRevE.90.052151
[23] R. Long and W. Liu, Performance of quantum Otto refrigerators with squeezing, Phys. Rev. E 91, 062137 (2015).
https://doi.org/10.1103/PhysRevE.91.062137
[24] O. Abah and E. Lutz, Optimal performance of a quantum Otto refrigerator, EPL 113, 60002 (2016).
https://doi.org/10.1209/0295-5075/113/60002
[25] W. Niedenzu, I. Mazets, G. Kurizki, and F. Jendrzejewski, Quantized refrigerator for an atomic cloud, Quantum 3, 155 (2019).
https://doi.org/10.22331/q-2019-06-28-155
[26] H. B. Callen, Thermodynamics and an introduction to thermostatistics (Wiley, New York, 1985).
[27] E. Arimondo, P. R. Berman, and C. C. Lin, eds., Advances in Atomic, Molecular, and Optical Physics, Adv. At. Mol. Opt. Phys., Vol. 62 (Academic Press, 2013) pp. 117 – 169.
[28] A. del Campo and K. Sengupta, Controlling quantum critical dynamics of isolated systems, Eur Phys J Spec Top 224, 189 (2015).
https://doi.org/10.1140/epjst/e2015-02350-4
[29] A. del Campo and K. Kim, Focus on Shortcuts to Adiabaticity, New J. Phys. 21, 050201 (2019).
https://doi.org/10.1088/1367-2630/ab1437
[30] D. Guéry-Odelin, A. Ruschhaupt, A. Kiely, E. Torrontegui, S. Martínez-Garaot, and J. G. Muga, Shortcuts to adiabaticity: Concepts, methods, and applications, Rev. Mod. Phys. 91, 045001 (2019).
https://doi.org/10.1103/RevModPhys.91.045001
[31] R. Kosloff and T. Feldmann, Discrete four-stroke quantum heat engine exploring the origin of friction, Phys. Rev. E 65, 055102 (2002).
https://doi.org/10.1103/PhysRevE.65.055102
[32] T. Feldmann and R. Kosloff, Quantum four-stroke heat engine: Thermodynamic observables in a model with intrinsic friction, Phys. Rev. E 68, 016101 (2003).
https://doi.org/10.1103/PhysRevE.68.016101
[33] T. Feldmann and R. Kosloff, Quantum lubrication: Suppression of friction in a first-principles four-stroke heat engine, Phys. Rev. E 73, 025107 (2006).
https://doi.org/10.1103/PhysRevE.73.025107
[34] M. Demirplak and S. A. Rice, Adiabatic Population Transfer with Control Fields, J. Phys. Chem. A, J. Phys. Chem. A 107, 9937 (2003).
https://doi.org/10.1021/jp030708a
[35] K. Takahashi, Transitionless quantum driving for spin systems, Phys. Rev. E 87, 062117 (2013a).
https://doi.org/10.1103/PhysRevE.87.062117
[36] X. Chen, A. Ruschhaupt, S. Schmidt, A. del Campo, D. Guéry-Odelin, and J. G. Muga, Fast Optimal Frictionless Atom Cooling in Harmonic Traps: Shortcut to Adiabaticity, Phys. Rev. Lett. 104, 063002 (2010).
https://doi.org/10.1103/PhysRevLett.104.063002
[37] X. Chen, E. Torrontegui, and J. G. Muga, Lewis-Riesenfeld invariants and transitionless quantum driving, Phys. Rev. A 83, 062116 (2011).
https://doi.org/10.1103/PhysRevA.83.062116
[38] K. Takahashi, Transitionless quantum driving for spin systems, Phys. Rev. E 87, 062117 (2013b).
https://doi.org/10.1103/PhysRevE.87.062117
[39] C. Jarzynski, Generating shortcuts to adiabaticity in quantum and classical dynamics, Phys. Rev. A 88, 040101 (2013).
https://doi.org/10.1103/PhysRevA.88.040101
[40] A. del Campo, Shortcuts to Adiabaticity by Counterdiabatic Driving, Phys. Rev. Lett. 111, 100502 (2013).
https://doi.org/10.1103/PhysRevLett.111.100502
[41] B. Damski, Counterdiabatic driving of the quantum Ising model, J. Stat. Mech. Theory Exp. 2014, P12019 (2014).
https://doi.org/10.1088/1742-5468/2014/12/p12019
[42] D. Sels and A. Polkovnikov, Minimizing irreversible losses in quantum systems by local counterdiabatic driving, Proc. Natl. Acad. Sci. USA 114, E3909 (2017).
https://doi.org/10.1073/pnas.1619826114
[43] P. W. Claeys, M. Pandey, D. Sels, and A. Polkovnikov, Floquet-Engineering Counterdiabatic Protocols in Quantum Many-Body Systems, Phys. Rev. Lett. 123, 090602 (2019).
https://doi.org/10.1103/PhysRevLett.123.090602
[44] A. Hartmann and W. Lechner, Rapid counter-diabatic sweeps in lattice gauge adiabatic quantum computing, New J. Phys. 21, 043025 (2019).
https://doi.org/10.1088/1367-2630/ab14a0
[45] A. d. Campo, J. Goold, and M. Paternostro, More bang for your buck: Super-adiabatic quantum engines, Sci. Rep. 4, 6208 EP (2014).
https://doi.org/10.1038/srep06208
[46] O. Abah and E. Lutz, Performance of shortcut-to-adiabaticity quantum engines, Phys. Rev. E 98, 032121 (2018).
https://doi.org/10.1103/PhysRevE.98.032121
[47] O. Abah and M. Paternostro, Shortcut-to-adiabaticity Otto engine: A twist to finite-time thermodynamics, Phys. Rev. E 99, 022110 (2019).
https://doi.org/10.1103/PhysRevE.99.022110
[48] L. Dupays, I. L. Egusquiza, A. del Campo, and A. Chenu, Superadiabatic thermalization of a quantum oscillator by engineered dephasing, Phys. Rev. Research 2, 033178 (2020).
https://doi.org/10.1103/PhysRevResearch.2.033178
[49] B. Çakmak and Ö. E. Müstecaplıoğlu, Spin quantum heat engines with shortcuts to adiabaticity, Phys. Rev. E 99, 032108 (2019).
https://doi.org/10.1103/PhysRevE.99.032108
[50] K. Funo, N. Lambert, B. Karimi, J. P. Pekola, Y. Masuyama, and F. Nori, Speeding up a quantum refrigerator via counterdiabatic driving, Phys. Rev. B 100, 035407 (2019).
https://doi.org/10.1103/PhysRevB.100.035407
[51] O. Abah, M. Paternostro, and E. Lutz, Shortcut-to-adiabaticity quantum Otto refrigerator, Phys. Rev. Research 2, 023120 (2020).
https://doi.org/10.1103/PhysRevResearch.2.023120
[52] A. Hartmann, V. Mukherjee, W. Niedenzu, and W. Lechner, Many-body quantum heat engines with shortcuts to adiabaticity, Phys. Rev. Research 2, 023145 (2020).
https://doi.org/10.1103/PhysRevResearch.2.023145
[53] J. I. Cirac and P. Zoller, Goals and opportunities in quantum simulation, Nat. Phys. 8, 264 (2012).
https://doi.org/10.1038/nphys2275
[54] I. M. Georgescu, S. Ashhab, and F. Nori, Quantum simulation, Rev. Mod. Phys. 86, 153 (2014).
https://doi.org/10.1103/RevModPhys.86.153
[55] A. Lucas, Ising formulations of many NP problems, Front. Phys. 2, 5 (2014).
https://doi.org/10.3389/fphy.2014.00005
[56] T. Albash and D. A. Lidar, Adiabatic quantum computation, Rev. Mod. Phys. 90, 015002 (2018).
https://doi.org/10.1103/RevModPhys.90.015002
[57] M. Kolodrubetz, D. Sels, P. Mehta, and A. Polkovnikov, Geometry and non-adiabatic response in quantum and classical systems, Phys. Rep. 697, 1 (2017).
https://doi.org/10.1016/j.physrep.2017.07.001
[58] A. del Campo, M. M. Rams, and W. H. Zurek, Assisted Finite-Rate Adiabatic Passage Across a Quantum Critical Point: Exact Solution for the Quantum Ising Model, Phys. Rev. Lett. 109, 115703 (2012).
https://doi.org/10.1103/PhysRevLett.109.115703
[59] S. Alipour, A. Chenu, A. T. Rezakhani, and A. del Campo, Shortcuts to Adiabaticity in Driven Open Quantum Systems: Balanced Gain and Loss and Non-Markovian Evolution, Quantum 4, 336 (2020).
https://doi.org/10.22331/q-2020-09-28-336
[60] R. Dann, A. Tobalina, and R. Kosloff, Fast route to equilibration, Phys. Rev. A 101, 052102 (2020).
https://doi.org/10.1103/PhysRevA.101.052102
[61] R. Dann, A. Tobalina, and R. Kosloff, Shortcut to Equilibration of an Open Quantum System, Phys. Rev. Lett. 122, 250402 (2019).
https://doi.org/10.1103/PhysRevLett.122.250402
[62] A. Das and V. Mukherjee, Quantum-enhanced finite-time Otto cycle, Phys. Rev. Research 2, 033083 (2020).
https://doi.org/10.1103/PhysRevResearch.2.033083
[63] J. R. Johansson, P. D. Nation, and F. Nori, QuTiP 2: A Python framework for the dynamics of open quantum systems, Comput. Phys. Commun. 184, 1234 (2013).
https://doi.org/10.1016/j.cpc.2012.11.019
[64] O. Abah and E. Lutz, Energy efficient quantum machines, EPL 118, 40005 (2017).
https://doi.org/10.1209/0295-5075/118/40005
[65] S. Campbell and S. Deffner, Trade-Off Between Speed and Cost in Shortcuts to Adiabaticity, Phys. Rev. Lett. 118, 100601 (2017).
https://doi.org/10.1103/PhysRevLett.118.100601
[66] Y. Zheng, S. Campbell, G. De Chiara, and D. Poletti, Cost of counterdiabatic driving and work output, Phys. Rev. A 94, 042132 (2016).
https://doi.org/10.1103/PhysRevA.94.042132
[67] A. Tobalina, I. Lizuain, and J. G. Muga, Vanishing efficiency of a speeded-up ion-in-Paul-trap Otto engine, EPL 127, 20005 (2019).
https://doi.org/10.1209/0295-5075/127/20005
[68] A. Manatuly, W. Niedenzu, R. Román-Ancheyta, B. Çakmak, Ö. E. Müstecaplıoğlu, and G. Kurizki, Collectively enhanced thermalization via multiqubit collisions, Phys. Rev. E 99, 042145 (2019).
https://doi.org/10.1103/PhysRevE.99.042145
[69] K. Funo, J.-N. Zhang, C. Chatou, K. Kim, M. Ueda, and A. del Campo, Universal Work Fluctuations During Shortcuts to Adiabaticity by Counterdiabatic Driving, Phys. Rev. Lett. 118, 100602 (2017).
https://doi.org/10.1103/PhysRevLett.118.100602
Cited by
[1] Nik O. Gjonbalaj, David K. Campbell, and Anatoli Polkovnikov, "Counterdiabatic driving in the classical β -Fermi-Pasta-Ulam-Tsingou chain", Physical Review E 106 1, 014131 (2022).
[2] Nathan M. Myers, Obinna Abah, and Sebastian Deffner, "Quantum thermodynamic devices: From theoretical proposals to experimental reality", AVS Quantum Science 4 2, 027101 (2022).
[3] Stefan Heusler, Wolfgang Dür, Malte S Ubben, and Andreas Hartmann, "Aspects of entropy in classical and in quantum physics", Journal of Physics A: Mathematical and Theoretical 55 40, 404006 (2022).
[4] Sourav Bhattacharjee and Amit Dutta, "Quantum thermal machines and batteries", The European Physical Journal B 94 12, 239 (2021).
[5] Giulia Piccitto, Michele Campisi, and Davide Rossini, "The Ising critical quantum Otto engine", New Journal of Physics 24 10, 103023 (2022).
[6] Rutian Huang, Xiao Geng, Xinyu Wu, Genting Dai, Liangliang Yang, Jianshe Liu, and Wei Chen, "Cryogenic Multiplexing Control Chip for a Superconducting Quantum Processor", Physical Review Applied 18 6, 064046 (2022).
[7] Lunan Li, Hai Li, Wenli Yu, Yaming Hao, Lei Li, and Jian Zou, "Shortcut-to-adiabaticity quantum tripartite Otto cycle", Journal of Physics B: Atomic, Molecular and Optical Physics 54 21, 215501 (2021).
[8] Tamiro Villazon, Pieter W. Claeys, Anatoli Polkovnikov, and Anushya Chandran, "Shortcuts to dynamic polarization", Physical Review B 103 7, 075118 (2021).
[9] Victor Mukherjee and Uma Divakaran, "Many-body quantum thermal machines", Journal of Physics: Condensed Matter 33 45, 454001 (2021).
[10] N. N. Hegade, P. Chandarana, K. Paul, Xi Chen, F. Albarrán-Arriagada, and E. Solano, "Portfolio optimization with digitized counterdiabatic quantum algorithms", Physical Review Research 4 4, 043204 (2022).
[11] Loris Maria Cangemi, Chitrak Bhadra, and Amikam Levy, "Quantum Engines and Refrigerators", arXiv:2302.00726, (2023).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-08 14:52:35) and SAO/NASA ADS (last updated successfully 2023-06-08 14:52:36). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.