Quantum computed moments correction to variational estimates

Harish J. Vallury1, Michael A. Jones1, Charles D. Hill1,2, and Lloyd C. L. Hollenberg1

1School of Physics, University of Melbourne, Parkville 3010, AUSTRALIA
2School of Mathematics and Statistics, University of Melbourne, Parkville 3010, AUSTRALIA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Updated version: The authors have uploaded version v3 of this work to the arXiv which may contain updates or corrections not contained in the published version v2. The authors left the following comment on the arXiv:
10 pages, 5 figures


The variational principle of quantum mechanics is the backbone of hybrid quantum computing for a range of applications. However, as the problem size grows, quantum logic errors and the effect of barren plateaus overwhelm the quality of the results. There is now a clear focus on strategies that require fewer quantum circuit steps and are robust to device errors. Here we present an approach in which problem complexity is transferred to dynamic quantities computed on the quantum processor – Hamiltonian moments, $\langle H^n\rangle$. From these quantum computed moments, an estimate of the ground-state energy can be obtained using the ``infimum'' theorem from Lanczos cumulant expansions which manifestly corrects the associated variational calculation. With higher order effects in Hilbert space generated via the moments, the burden on the trial-state quantum circuit depth is eased. The method is introduced and demonstrated on 2D quantum magnetism models on lattices up to $5\times 5$ (25 qubits) implemented on IBM Quantum superconducting qubit devices. Moments were quantum computed to fourth order with respect to a parameterised antiferromagnetic trial-state. A comprehensive comparison with benchmark variational calculations was performed, including over an ensemble of random coupling instances. The results showed that the infimum estimate consistently outperformed the benchmark variational approach for the same trial-state. These initial investigations suggest that the quantum computed moments approach has a high degree of stability against trial-state variation, quantum gate errors and shot noise, all of which bodes well for further investigation and applications of the approach.

► BibTeX data

► References

[1] F. Arute et al, ``Quantum supremacy using a programmable superconducting processor'', Nature 574, 505 (2019).https:/​/​doi.org/​10.1038/​s41586-019-1666-5.

[2] L. C. L. Hollenberg, ``Fast quantum search algorithms in protein sequence comparisons: Quantum bioinformatics'', Phys. Rev. E5 7532 (2000). https:/​/​doi.org/​10.1103/​PhysRevE.62.7532.

[3] A. Aspuru-Guzik et al, ``Simulated quantum computation of molecular energies'', Science 309 1704 (2005). https:/​/​doi.org/​10.1126/​science.1113479.

[4] A. Kandala et al, ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets'', Nature 549, 242 (2017). https:/​/​doi.org/​10.1038/​nature23879.

[5] E. Farhi, J. Goldstone, S. Gutmann, ``A Quantum Approximate Optimization Algorithm'', arXiv:1411.4028 (2014). https:/​/​arxiv.org/​abs/​1411.4028.

[6] P. Rebentrost, B. Gupt, and T. R. Bromley, ``Quantum computational finance: Monte Carlo pricing of financial derivatives'', Phys. Rev. A98 022321 (2018). https:/​/​doi.org/​10.1103/​PhysRevA.98.022321.

[7] S. Woerner and D. J. Egger, ``Quantum risk analysis'', npj Quantum Inf. 5 15 (2019). https:/​/​doi.org/​10.1038/​s41534-019-0130-6.

[8] J. Biamonte et al, ``Quantum machine learning'', Nature 549 195 (2017). https:/​/​doi.org/​10.1038/​nature23474.

[9] J. Preskill, ``Quantum Computing in the NISQ era and beyond'', Quantum 2 79 (2018). https:/​/​doi.org/​10.22331/​q-2018-08-06-79.

[10] A. Peruzzo, ``A variatianal eigenvalue solver on a photonic quantum processor'', Nat. Commun. 5, 4213 (2014). https:/​/​doi.org/​10.1038/​ncomms5213.

[11] J. R. McClean et al, ``Barren plateaus in quantum neural network training landscapes'', Nat. Commun. 9 4812 (2018). https:/​/​doi.org/​10.1038/​s41467-018-07090-4.

[12] S. Wang et al, ``Noise-Induced Barren Plateaus in Variational Quantum Algorithms'', arXiv:2007.14384 (2020). https:/​/​arxiv.org/​abs/​2007.14384.

[13] L. C. L. Hollenberg, ``Plaquette expansion in lattice Hamiltonian models'', Phys. Rev. D47 1640 (1993). https:/​/​doi.org/​10.1103/​PhysRevD.47.1640.

[14] L. C. L. Hollenberg and N. S. Witte, ``Analytic solution for the ground-state energy of the extensive many-body problem'', Phys. Rev. B54 16309 (1996). https:/​/​doi.org/​10.1103/​PhysRevB.54.16309.

[15] C. Lanczos, ``An iteration method for the solution of the eigenvalue problem of linear differential and integral operators'', J. Res. Nat. Bur. Stand. 45 255 (1950). https:/​/​doi.org/​10.6028/​jres.045.026.

[16] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, ``Variational ansatz-based quantum simulation of imaginary time evolution'', NPJ Quantum Information 5 1 (2019). https:/​/​doi.org/​10.1038/​s41534-019-0187-2.

[17] M. Motta, C. Sun, A. T. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. Brandao, and G. K.-L. Chan, ``Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution'', Nature Physics 16 205 (2020). https:/​/​doi.org/​10.1038/​s41567-019-0704-4.

[18] K. Yeter-Aydeniz, R. C. Pooser, and G. Siopsis, ``Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms'', npj Quantum Information 6 1 (2020). https:/​/​doi.org/​10.1038/​s41534-020-00290-1.

[19] P. Suchsland, F. Tacchino, M. H. Fischer, T. Neupert,P. Kl. Barkoutsos and I. Tavernelli, ``Algorithmic Error Mitigation Scheme for Current Quantum Processors'', arXiv:2008.10914 (2020). https:/​/​arxiv.org/​abs/​2008.10914.

[20] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, B. M. Terhal, ``The Complexity of Stoquastic Local Hamiltonian Problems'', Quant. Inf. Comp. 8 0361 (2008). https:/​/​arxiv.org/​abs/​quant-ph/​0606140.

[21] T. S. Cubitt and A. Montanaro, ``Complexity classification of local Hamiltonian problems'' SIAM J. Comput., 45 268 (2016). https:/​/​doi.org/​10.1137/​140998287.

[22] L. C. L. Hollenberg, D. C. Bardos and N. S. Witte, ``Lanczos cluster expansion for non-extensive systems'', Z. Phys. D38 249 (1996). https:/​/​doi.org/​10.1007/​s004600050089.

[23] E. A. Van Doorn, ``Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices'', J. Approx. Th. 51 254 (1987). https:/​/​doi.org/​10.1016/​0021-9045(87)90038-4.

[24] M. E. H. Ismail and X. Li, ``Bound on the extreme zeros of orthogonal ploynomials'' Proc. Am. Math. Soc. 115 131 (1992). https:/​/​doi.org/​10.2307/​2159575.

[25] L. C. L. Hollenberg and N. S. Witte, ``General nonperturbative estimate of the energy density of lattice Hamiltonians'', Phys. Rev. D50 3382 (1994). https:/​/​doi.org/​10.1103/​PhysRevD.50.3382.

[26] N. S. Witte and L. C. L. Hollenberg, ``Accurate calculation of ground-state energies in an analytic Lanczos expansion'', J. Phys-Cond. Mat. 9 2031 (1997). https:/​/​doi.org/​10.1088/​0953-8984/​9/​9/​016.

[27] N. S. Witte, L. C. L. Hollenberg and Z. Weihong, ``Two-dimensional XXZ model ground-state properties using an analytic Lanczos expansion'', Phys. Rev. B55 10412 (1997). https:/​/​doi.org/​10.1103/​PhysRevB.55.10412.

[28] J. A. L. McIntosh and L. C. L. Hollenberg, ``Reaching the continuum limit in lattice gauge theory - without a computer'', Phys. Lett. B538 (2002). https:/​/​doi.org/​10.1016/​S0370-2693(02)01958-5.

[29] D. Horn and M. Weinstein, ``The t expansion: A nonperturbative analytic tool for Hamiltonian systems'', Phys. Rev. D30 1256 (1984). https:/​/​doi.org/​10.1103/​PhysRevD.30.1256.

[30] J. Cioslowski, ``Connected-moments expansion – a new tool for quantum many-body theory'', Physical Review Letters 58 83 (1987). https:/​/​doi.org/​10.1103/​PhysRevLett.58.83.

[31] K. Kowalski and B. Peng, ``Quantum simulations employing connected moments expansions'', arXiv:2009.05709 (2020). https:/​/​arxiv.org/​abs/​2009.05709.

[32] V. Verteletskyi, T-C Yen, A. F. Izmaylov, ``Measurement optimization in the variational quantum eigensolver using a minimum clique cover'', J. Chem. Phys. 152 124114 (2020). https:/​/​doi.org/​10.1063/​1.5141458.

[33] Quantum User Interface tool (2018-2020) available at https:/​/​qui.research.unimelb.edu.au/​.

[34] https:/​/​qiskit.org/​.

[35] Y. Li and S. C. Benjamin, ``Efficient Variational Quantum Simulator Incorporating Active Error Minimization'', Phys. Rev. X7 021050 (2017). https:/​/​doi.org/​ 10.1103/​PhysRevX.7.021050.

[36] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow and J. M. Gambetta, ``Error mitigation extends the computational reach of a noisy quantum processor'', Nature 567 491 (2019). https:/​/​doi.org/​10.1038/​s41586-019-1040-7.

[37] F. Aryte et al, ``Hartree-Fock on a superconducting qubit quantum computer'', Science 369, 1084 (2020). https:/​/​doi.org/​10.1126/​science.abb9811.

[38] S. Endo, S. C. Benjamin, and Y. Li, ``Practical Quantum Error Mitigation for Near-Future Applications'', Phy. Rev. X8 031027 (2018). https:/​/​doi.org/​10.1103/​PhysRevX.8.031027.

[39] T. Xiang, J. Z. Lou, and Z. B. Su, ``Two-dimensional algorithm of the density-matrix renormalization group'', Phys. Rev. B64 104414 (2001). https:/​/​doi.org/​10.1103/​PhysRevB.64.104414.

[40] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, ``Validating quantum computers using randomized model circuits'', Phys. Rev. A, 100:032328 (2019). https:/​/​doi.org/​10.1103/​PhysRevA.100.032328.

[41] M. J. Bremner, R. Jozsa, and D. J. Shepherd, ``Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy''. Proc. R. Soc. A. 467 459 (2011). https:/​/​doi.org/​10.1098/​rspa.2010.0301.

[42] L. C. L. Hollenberg, M. P. Wilson and N. S. Witte, ``General nonperturbative mass-gap to order 1/​V'', Phys. Lett. B361 81 (1995). https:/​/​doi.org/​10.1016/​0370-2693(95)01049-V.

[43] L. C. L. Hollenberg and M. Tomlinson, ``Staggered Magnetisation in the Heisenberg Antiferromagnet'', Aust. J. Phys., 47 137 (1994). https:/​/​doi.org/​10.1071/​PH940137.

Cited by

[1] Michael A. Jones, Harish J. Vallury, Charles D. Hill, and Lloyd C. L. Hollenberg, "Chemistry beyond the Hartree–Fock energy via quantum computed moments", Scientific Reports 12 1, 8985 (2022).

[2] Jules Tilly, P. V. Sriluckshmy, Akashkumar Patel, Enrico Fontana, Ivan Rungger, Edward Grant, Robert Anderson, Jonathan Tennyson, and George H. Booth, "Reduced density matrix sampling: Self-consistent embedding and multiscale electronic structure on current generation quantum computers", Physical Review Research 3 3, 033230 (2021).

[3] Harish J. Vallury, Michael A. Jones, Gregory A. L. White, Floyd M. Creevey, Charles D. Hill, and Lloyd C. L. Hollenberg, "Noise-robust ground state energy estimates from deep quantum circuits", Quantum 7, 1109 (2023).

[4] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand, Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-Chuan Kwek, and Alán Aspuru-Guzik, "Noisy intermediate-scale quantum algorithms", Reviews of Modern Physics 94 1, 015004 (2022).

[5] Francisco Escudero, David Fernández-Fernández, Gabriel Jaumà, Guillermo F. Peñas, and Luciano Pereira, "Hardware-Efficient Entangled Measurements for Variational Quantum Algorithms", Physical Review Applied 20 3, 034044 (2023).

[6] Harish J. Vallury and Lloyd C. L. Hollenberg, 2023 IEEE International Conference on Quantum Computing and Engineering (QCE) 295 (2023) ISBN:979-8-3503-4323-6.

[7] Joseph C. Aulicino, Trevor Keen, and Bo Peng, "State preparation and evolution in quantum computing: A perspective from Hamiltonian moments", International Journal of Quantum Chemistry 122 5, e26853 (2022).

[8] Philipp Frey and Stephan Rachel, "Realization of a discrete time crystal on 57 qubits of a quantum computer", Science Advances 8 9, eabm7652 (2022).

[9] Bujiao Wu, Jinzhao Sun, Qi Huang, and Xiao Yuan, "Overlapped grouping measurement: A unified framework for measuring quantum states", Quantum 7, 896 (2023).

[10] Kazuhiro Seki and Seiji Yunoki, "Quantum Power Method by a Superposition of Time-Evolved States", PRX Quantum 2 1, 010333 (2021).

[11] Ting Zhang, Jinzhao Sun, Xiao-Xu Fang, Xiao-Ming Zhang, Xiao Yuan, and He Lu, "Experimental Quantum State Measurement with Classical Shadows", Physical Review Letters 127 20, 200501 (2021).

[12] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant, Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson, "The Variational Quantum Eigensolver: A review of methods and best practices", Physics Reports 986, 1 (2022).

[13] Daniel Claudino, "The basics of quantum computing for chemists", International Journal of Quantum Chemistry 122 23, e26990 (2022).

[14] Tianren Gu, Xiao Yuan, and Bujiao Wu, "Efficient measurement schemes for bosonic systems", Quantum Science and Technology 8 4, 045008 (2023).

[15] Daniel Claudino, Bo Peng, Nicholas P Bauman, Karol Kowalski, and Travis S Humble, "Improving the accuracy and efficiency of quantum connected moments expansions*", Quantum Science and Technology 6 3, 034012 (2021).

[16] Bo Peng and Karol Kowalski, "Variational quantum solver employing the PDS energy functional", Quantum 5, 473 (2021).

[17] Michael A. Jones, Harish J. Vallury, and Lloyd C.L. Hollenberg, "Ground-state-energy calculation for the water molecule on a superconducting quantum processor", Physical Review Applied 21 6, 064017 (2024).

[18] Floyd M. Creevey, Charles D. Hill, and Lloyd C. L. Hollenberg, "GASP: a genetic algorithm for state preparation on quantum computers", Scientific Reports 13 1, 11956 (2023).

[19] Kazuhiro Seki and Seiji Yunoki, "Spatial, spin, and charge symmetry projections for a Fermi-Hubbard model on a quantum computer", Physical Review A 105 3, 032419 (2022).

[20] Philippe Suchsland, Francesco Tacchino, Mark H. Fischer, Titus Neupert, Panagiotis Kl. Barkoutsos, and Ivano Tavernelli, "Algorithmic Error Mitigation Scheme for Current Quantum Processors", Quantum 5, 492 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-18 11:40:19) and SAO/NASA ADS (last updated successfully 2024-06-18 11:40:20). The list may be incomplete as not all publishers provide suitable and complete citation data.