Quantum computed moments correction to variational estimates

Harish J. Vallury1, Michael A. Jones1, Charles D. Hill1,2, and Lloyd C. L. Hollenberg1

1School of Physics, University of Melbourne, Parkville 3010, AUSTRALIA
2School of Mathematics and Statistics, University of Melbourne, Parkville 3010, AUSTRALIA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

The variational principle of quantum mechanics is the backbone of hybrid quantum computing for a range of applications. However, as the problem size grows, quantum logic errors and the effect of barren plateaus overwhelm the quality of the results. There is now a clear focus on strategies that require fewer quantum circuit steps and are robust to device errors. Here we present an approach in which problem complexity is transferred to dynamic quantities computed on the quantum processor – Hamiltonian moments, $\langle H^n\rangle$. From these quantum computed moments, an estimate of the ground-state energy can be obtained using the ``infimum'' theorem from Lanczos cumulant expansions which manifestly corrects the associated variational calculation. With higher order effects in Hilbert space generated via the moments, the burden on the trial-state quantum circuit depth is eased. The method is introduced and demonstrated on 2D quantum magnetism models on lattices up to $5\times 5$ (25 qubits) implemented on IBM Quantum superconducting qubit devices. Moments were quantum computed to fourth order with respect to a parameterised antiferromagnetic trial-state. A comprehensive comparison with benchmark variational calculations was performed, including over an ensemble of random coupling instances. The results showed that the infimum estimate consistently outperformed the benchmark variational approach for the same trial-state. These initial investigations suggest that the quantum computed moments approach has a high degree of stability against trial-state variation, quantum gate errors and shot noise, all of which bodes well for further investigation and applications of the approach.

► BibTeX data

► References

[1] F. Arute et al, ``Quantum supremacy using a programmable superconducting processor'', Nature 574, 505 (2019).https:/​/​doi.org/​10.1038/​s41586-019-1666-5.
https:/​/​doi.org/​10.1038/​s41586-019-1666-5

[2] L. C. L. Hollenberg, ``Fast quantum search algorithms in protein sequence comparisons: Quantum bioinformatics'', Phys. Rev. E5 7532 (2000). https:/​/​doi.org/​10.1103/​PhysRevE.62.7532.
https:/​/​doi.org/​10.1103/​PhysRevE.62.7532

[3] A. Aspuru-Guzik et al, ``Simulated quantum computation of molecular energies'', Science 309 1704 (2005). https:/​/​doi.org/​10.1126/​science.1113479.
https:/​/​doi.org/​10.1126/​science.1113479

[4] A. Kandala et al, ``Hardware-efficient variational quantum eigensolver for small molecules and quantum magnets'', Nature 549, 242 (2017). https:/​/​doi.org/​10.1038/​nature23879.
https:/​/​doi.org/​10.1038/​nature23879

[5] E. Farhi, J. Goldstone, S. Gutmann, ``A Quantum Approximate Optimization Algorithm'', arXiv:1411.4028 (2014). https:/​/​arxiv.org/​abs/​1411.4028.
arXiv:1411.4028

[6] P. Rebentrost, B. Gupt, and T. R. Bromley, ``Quantum computational finance: Monte Carlo pricing of financial derivatives'', Phys. Rev. A98 022321 (2018). https:/​/​doi.org/​10.1103/​PhysRevA.98.022321.
https:/​/​doi.org/​10.1103/​PhysRevA.98.022321

[7] S. Woerner and D. J. Egger, ``Quantum risk analysis'', npj Quantum Inf. 5 15 (2019). https:/​/​doi.org/​10.1038/​s41534-019-0130-6.
https:/​/​doi.org/​10.1038/​s41534-019-0130-6

[8] J. Biamonte et al, ``Quantum machine learning'', Nature 549 195 (2017). https:/​/​doi.org/​10.1038/​nature23474.
https:/​/​doi.org/​10.1038/​nature23474

[9] J. Preskill, ``Quantum Computing in the NISQ era and beyond'', Quantum 2 79 (2018). https:/​/​doi.org/​10.22331/​q-2018-08-06-79.
https:/​/​doi.org/​10.22331/​q-2018-08-06-79

[10] A. Peruzzo, ``A variatianal eigenvalue solver on a photonic quantum processor'', Nat. Commun. 5, 4213 (2014). https:/​/​doi.org/​10.1038/​ncomms5213.
https:/​/​doi.org/​10.1038/​ncomms5213

[11] J. R. McClean et al, ``Barren plateaus in quantum neural network training landscapes'', Nat. Commun. 9 4812 (2018). https:/​/​doi.org/​10.1038/​s41467-018-07090-4.
https:/​/​doi.org/​10.1038/​s41467-018-07090-4

[12] S. Wang et al, ``Noise-Induced Barren Plateaus in Variational Quantum Algorithms'', arXiv:2007.14384 (2020). https:/​/​arxiv.org/​abs/​2007.14384.
arXiv:2007.14384

[13] L. C. L. Hollenberg, ``Plaquette expansion in lattice Hamiltonian models'', Phys. Rev. D47 1640 (1993). https:/​/​doi.org/​10.1103/​PhysRevD.47.1640.
https:/​/​doi.org/​10.1103/​PhysRevD.47.1640

[14] L. C. L. Hollenberg and N. S. Witte, ``Analytic solution for the ground-state energy of the extensive many-body problem'', Phys. Rev. B54 16309 (1996). https:/​/​doi.org/​10.1103/​PhysRevB.54.16309.
https:/​/​doi.org/​10.1103/​PhysRevB.54.16309

[15] C. Lanczos, ``An iteration method for the solution of the eigenvalue problem of linear differential and integral operators'', J. Res. Nat. Bur. Stand. 45 255 (1950). https:/​/​doi.org/​10.6028/​jres.045.026.
https:/​/​doi.org/​10.6028/​jres.045.026

[16] S. McArdle, T. Jones, S. Endo, Y. Li, S. C. Benjamin, and X. Yuan, ``Variational ansatz-based quantum simulation of imaginary time evolution'', NPJ Quantum Information 5 1 (2019). https:/​/​doi.org/​10.1038/​s41534-019-0187-2.
https:/​/​doi.org/​10.1038/​s41534-019-0187-2

[17] M. Motta, C. Sun, A. T. Tan, M. J. O’Rourke, E. Ye, A. J. Minnich, F. G. Brandao, and G. K.-L. Chan, ``Determining eigenstates and thermal states on a quantum computer using quantum imaginary time evolution'', Nature Physics 16 205 (2020). https:/​/​doi.org/​10.1038/​s41567-019-0704-4.
https:/​/​doi.org/​10.1038/​s41567-019-0704-4

[18] K. Yeter-Aydeniz, R. C. Pooser, and G. Siopsis, ``Practical quantum computation of chemical and nuclear energy levels using quantum imaginary time evolution and Lanczos algorithms'', npj Quantum Information 6 1 (2020). https:/​/​doi.org/​10.1038/​s41534-020-00290-1.
https:/​/​doi.org/​10.1038/​s41534-020-00290-1

[19] P. Suchsland, F. Tacchino, M. H. Fischer, T. Neupert,P. Kl. Barkoutsos and I. Tavernelli, ``Algorithmic Error Mitigation Scheme for Current Quantum Processors'', arXiv:2008.10914 (2020). https:/​/​arxiv.org/​abs/​2008.10914.
arXiv:2008.10914

[20] S. Bravyi, D. P. DiVincenzo, R. I. Oliveira, B. M. Terhal, ``The Complexity of Stoquastic Local Hamiltonian Problems'', Quant. Inf. Comp. 8 0361 (2008). https:/​/​arxiv.org/​abs/​quant-ph/​0606140.
arXiv:quant-ph/0606140

[21] T. S. Cubitt and A. Montanaro, ``Complexity classification of local Hamiltonian problems'' SIAM J. Comput., 45 268 (2016). https:/​/​doi.org/​10.1137/​140998287.
https:/​/​doi.org/​10.1137/​140998287

[22] L. C. L. Hollenberg, D. C. Bardos and N. S. Witte, ``Lanczos cluster expansion for non-extensive systems'', Z. Phys. D38 249 (1996). https:/​/​doi.org/​10.1007/​s004600050089.
https:/​/​doi.org/​10.1007/​s004600050089

[23] E. A. Van Doorn, ``Representations and bounds for zeros of orthogonal polynomials and eigenvalues of sign-symmetric tri-diagonal matrices'', J. Approx. Th. 51 254 (1987). https:/​/​doi.org/​10.1016/​0021-9045(87)90038-4.
https:/​/​doi.org/​10.1016/​0021-9045(87)90038-4

[24] M. E. H. Ismail and X. Li, ``Bound on the extreme zeros of orthogonal ploynomials'' Proc. Am. Math. Soc. 115 131 (1992). https:/​/​doi.org/​10.2307/​2159575.
https:/​/​doi.org/​10.2307/​2159575

[25] L. C. L. Hollenberg and N. S. Witte, ``General nonperturbative estimate of the energy density of lattice Hamiltonians'', Phys. Rev. D50 3382 (1994). https:/​/​doi.org/​10.1103/​PhysRevD.50.3382.
https:/​/​doi.org/​10.1103/​PhysRevD.50.3382

[26] N. S. Witte and L. C. L. Hollenberg, ``Accurate calculation of ground-state energies in an analytic Lanczos expansion'', J. Phys-Cond. Mat. 9 2031 (1997). https:/​/​doi.org/​10.1088/​0953-8984/​9/​9/​016.
https:/​/​doi.org/​10.1088/​0953-8984/​9/​9/​016

[27] N. S. Witte, L. C. L. Hollenberg and Z. Weihong, ``Two-dimensional XXZ model ground-state properties using an analytic Lanczos expansion'', Phys. Rev. B55 10412 (1997). https:/​/​doi.org/​10.1103/​PhysRevB.55.10412.
https:/​/​doi.org/​10.1103/​PhysRevB.55.10412

[28] J. A. L. McIntosh and L. C. L. Hollenberg, ``Reaching the continuum limit in lattice gauge theory - without a computer'', Phys. Lett. B538 (2002). https:/​/​doi.org/​10.1016/​S0370-2693(02)01958-5.
https:/​/​doi.org/​10.1016/​S0370-2693(02)01958-5

[29] D. Horn and M. Weinstein, ``The t expansion: A nonperturbative analytic tool for Hamiltonian systems'', Phys. Rev. D30 1256 (1984). https:/​/​doi.org/​10.1103/​PhysRevD.30.1256.
https:/​/​doi.org/​10.1103/​PhysRevD.30.1256

[30] J. Cioslowski, ``Connected-moments expansion – a new tool for quantum many-body theory'', Physical Review Letters 58 83 (1987). https:/​/​doi.org/​10.1103/​PhysRevLett.58.83.
https:/​/​doi.org/​10.1103/​PhysRevLett.58.83

[31] K. Kowalski and B. Peng, ``Quantum simulations employing connected moments expansions'', arXiv:2009.05709 (2020). https:/​/​arxiv.org/​abs/​2009.05709.
arXiv:2009.05709

[32] V. Verteletskyi, T-C Yen, A. F. Izmaylov, ``Measurement optimization in the variational quantum eigensolver using a minimum clique cover'', J. Chem. Phys. 152 124114 (2020). https:/​/​doi.org/​10.1063/​1.5141458.
https:/​/​doi.org/​10.1063/​1.5141458

[33] Quantum User Interface tool (2018-2020) available at https:/​/​qui.research.unimelb.edu.au/​.
https:/​/​qui.research.unimelb.edu.au/​

[34] https:/​/​qiskit.org/​.
https:/​/​qiskit.org/​

[35] Y. Li and S. C. Benjamin, ``Efficient Variational Quantum Simulator Incorporating Active Error Minimization'', Phys. Rev. X7 021050 (2017). https:/​/​doi.org/​ 10.1103/​PhysRevX.7.021050.
https:/​/​doi.org/​10.1103/​PhysRevX.7.021050

[36] A. Kandala, K. Temme, A. D. Corcoles, A. Mezzacapo, J. M. Chow and J. M. Gambetta, ``Error mitigation extends the computational reach of a noisy quantum processor'', Nature 567 491 (2019). https:/​/​doi.org/​10.1038/​s41586-019-1040-7.
https:/​/​doi.org/​10.1038/​s41586-019-1040-7

[37] F. Aryte et al, ``Hartree-Fock on a superconducting qubit quantum computer'', Science 369, 1084 (2020). https:/​/​doi.org/​10.1126/​science.abb9811.
https:/​/​doi.org/​10.1126/​science.abb9811

[38] S. Endo, S. C. Benjamin, and Y. Li, ``Practical Quantum Error Mitigation for Near-Future Applications'', Phy. Rev. X8 031027 (2018). https:/​/​doi.org/​10.1103/​PhysRevX.8.031027.
https:/​/​doi.org/​10.1103/​PhysRevX.8.031027

[39] T. Xiang, J. Z. Lou, and Z. B. Su, ``Two-dimensional algorithm of the density-matrix renormalization group'', Phys. Rev. B64 104414 (2001). https:/​/​doi.org/​10.1103/​PhysRevB.64.104414.
https:/​/​doi.org/​10.1103/​PhysRevB.64.104414

[40] A. W. Cross, L. S. Bishop, S. Sheldon, P. D. Nation, and J. M. Gambetta, ``Validating quantum computers using randomized model circuits'', Phys. Rev. A, 100:032328 (2019). https:/​/​doi.org/​10.1103/​PhysRevA.100.032328.
https:/​/​doi.org/​10.1103/​PhysRevA.100.032328

[41] M. J. Bremner, R. Jozsa, and D. J. Shepherd, ``Classical simulation of commuting quantum computations implies collapse of the polynomial hierarchy''. Proc. R. Soc. A. 467 459 (2011). https:/​/​doi.org/​10.1098/​rspa.2010.0301.
https:/​/​doi.org/​10.1098/​rspa.2010.0301

[42] L. C. L. Hollenberg, M. P. Wilson and N. S. Witte, ``General nonperturbative mass-gap to order 1/​V'', Phys. Lett. B361 81 (1995). https:/​/​doi.org/​10.1016/​0370-2693(95)01049-V.
https:/​/​doi.org/​10.1016/​0370-2693(95)01049-V

[43] L. C. L. Hollenberg and M. Tomlinson, ``Staggered Magnetisation in the Heisenberg Antiferromagnet'', Aust. J. Phys., 47 137 (1994). https:/​/​doi.org/​10.1071/​PH940137.
https:/​/​doi.org/​10.1071/​PH940137

Cited by

On Crossref's cited-by service no data on citing works was found (last attempt 2021-01-26 11:01:30). On SAO/NASA ADS no data on citing works was found (last attempt 2021-01-26 11:01:30).