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As increasingly impressive quantum information
processors are realized in laboratories around the
world, robust and reliable characterization of these
devices is now more urgent than ever. These diag-
nostics can take many forms, but one of the most
popular categories is tomography, where an underly-
ing parameterized model is proposed for a device and
inferred by experiments. Here, we introduce and im-
plement efficient operational tomography, which uses
experimental observables as these model parameters.
This addresses a problem of ambiguity in represen-
tation that arises in current tomographic approaches
(the gauge problem). Solving the gauge problem en-
ables us to efficiently implement operational tomog-
raphy in a Bayesian framework computationally, and
hence gives us a natural way to include prior in-
formation and discuss uncertainty in fit parameters.
We demonstrate this new tomography in a variety of
different experimentally-relevant scenarios, including
standard process tomography, Ramsey interferome-
try, randomized benchmarking, and gate set tomog-
raphy.
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1 Introduction
Quantum computing offers the potential for signif-
icant advantages across a wide range of important
problems. Establishing a rigorous understanding
of the costs involved in producing enterprise-scale
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quantum computers is a critical part of current de-
cision making. This need has driven efforts to more
precisely estimate the costs of different algorithms
across different applications, such as in quantum
chemistry simulations [1]. However, these resource
estimations depend critically on the quality of the
qubits used, i.e., the accuracy with which one can
perform quantum gates and measurements. The
collection of procedures used for detecting and de-
bugging faulty operations on quantum computers
is known as quantum characterization, verification,
and validation (QCVV). Through QCVV, scientists
and engineers working on quantum hardware can
hope to diagnose errors and certify performance, in
turn improving qubit design and operation.

One goal of QCVV is to learn what actually hap-
pens when we attempt to apply a target unitary op-
erator U , a procedure broadly known as quantum to-
mography. Using the language of open quantum sys-
tems, we can hypothesize that there is some chan-
nel Λ that, if we knew it, would allow us to predict
what happens when we apply U to any state. The
problem then becomes determining how should we
best learn Λ given experimental evidence from our
quantum device. The tomography problem has been
approached in a wide variety of ways [2–12]. The
various procedures generally learn Λ by (repeatedly)
preparing a variety of input states {ρi}, sending each
through the application of U , and then measuring
a variety of effects {Ej}. In some cases, the use of
auxiliary qubits as a reference can eliminate the need
to vary over input states [13]. However, these latter
approaches are mainly useful for reasoning mathe-
matically about tomography [4] and offer limited ex-
perimental applicability. Hence, we will focus on the
more typical case in this work.

While valid, this rests critically on the assumption
that we know what each of {ρi} and {Ej} are. In
practice, each state ρi and each measurementEj may
be subject to its own physical errors, and these may
in turn be objects that we would like to learn. Worse
still, we often prepare states by performing a partic-
ular privileged state preparation procedure ρ?, and
then applying unitary evolution operators {Vi} to ob-
tain ρi := Viρ?V

†
i . Similarly, measurements are often

effected by transforming a particular privileged mea-
surement under unitary evolution.

Once we include the experimental consideration
that the channels we would like to study are the
same ones that we use to prepare and measure our
devices, we are forced to ensure that we learn the
channels describing our system in a self-consistent
manner. We cannot learn a channel Λ entirely inde-
pendently of the experimental context in which Λ oc-
curs, but must describe that channel such that we can
predict its action in a larger experiment. This self-
consistency requirement then forces us to face an-
other difficulty: we can always transform the entire

description of an experiment in a consistent fashion,
such that there is no observable difference whatso-
ever. For instance, the states |0〉 and |1〉 are in essence
just labels for two levels of a quantum system; there
is no observable impact to our calling them |♥〉 and
|♦〉, |]〉 and |[〉, or even |1〉 and |0〉.

That we can rename |0〉 to |1〉 and vice versa illus-
trates one way to formally describe the challenge im-
posed by self-consistency. In particular, if we per-
form an experiment whose outcomes are described
by Born’s rule as Tr(EΛ[ρ]), then for any unitary
map U the experiment Tr(UEU † · UΛ[U † · UρU † ·
U ]U †) has the exact same outcome distribution, and
thus cannot be distinguished from our original de-
scription. That is, we cannot decide if we have
(ρ,E, Λ) or if we have (UρU †,UEU †,UΛU †).

Taking a step back, something seemingly ridicu-
lous has happened: we asked merely for a descrip-
tion of how one component of our quantum device
operates, and arrived at a seemingly fundamental
limit to what knowledge we can ever gather about
our device. After all, UρU † and ρ seem to be very dif-
ferent preparation procedures! Recently, gate set to-
mography (GST) [14, 15] has been used as a means to
solve this conundrum by explicitly including the ef-
fects of this apparent ambiguity into estimation pro-
cedures. With GST, we perform inference on the
entire gate set, state preparation, and measurement
procedure based on empirical frequencies from re-
peated experiments. This inference procedure can
be quite sophisticated in practice, with carefully de-
signed experiments to tease out very slight channel
imperfections. Over the past several years, GST has
been demonstrated experimentally on a wide variety
of platforms [15–28], predominately using the soft-
ware package pyGSTi [29, 30].

Of course, gate set tomography also has draw-
backs, suffering from a conceptual difficulty known
as the gauge problem [17, 31, 32]. While gauge-
invariant scoring metrics have been used in the past
[15] (as we do in the present work), we note that
the underlying representation of the gate set used
to carry out GST is gauge-variant. Specifically, GST
eschews any notion of a fixed reference frame in
favor of a gauge group that specifies how to trans-
form a valid estimate of an error model into a fam-
ily of related error models which give identical ex-
perimental predictions. While such gauge transfor-
mations do not impact the predictions made by such
a model, they do impact the particular channels re-
ported at the end of the inference procedure, and
some commonly reported metrics on channels are
not gauge-invariant. In practice, one gauge-fixes re-
sulting channels to some external reference frame,
but this procedure requires nonlinear optimization
whose global convergence is not guaranteed. Finally,
a procedure for systematically including prior infor-
mation in GST has not yet been put forward, which
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could potentially result in massive savings if devel-
oped.

In this paper, we introduce operational quantum
tomography (OQT), which is a general (operational)
framework that allows us to reason about a host of
different tomographic procedures (including GST) in
a manifestly gauge-independent manner. In addi-
tion to resolving the gauge problem, OQT allows us
to naturally include prior information in GST within
Bayesian inference, which was computationally pro-
hibitive previously due to the the gauge fixing pro-
cedure.

OQT is enabled by using a new, manifestly gauge-
invariant, representation of our gate set. This repre-
sentation is inspired by linear-inversion gate set to-
mography [15]; we term this the operational represen-
tation. After introducing the operational representa-
tion and explaining how it resolves the gauge prob-
lem, we discuss how to implement OQT numerically
within a Bayesian framework while including prior
information. We then detail the performance of this
technique by tracking prediction loss, a useful and
gauge-invariant measure of the quality of our ability
to predict the outcome of future experiments, across
a suite of experimentally relevant problems: Ramsey
interferometry, quantum process tomography, and
randomized benchmarking. We close by showing
how dynamics of quantum systems may, in general,
be described using the operational representation.

2 Gate set tomography and the oper-
ational representation

2.1 GST formalism
As described in the introduction, quantum state and
process tomography make strong assumptions about
our ability to perform state preparation and mea-
surement (SPAM). Tomographic reconstructions of
states and processes that are made assuming perfect
SPAM will be inconsistent with the true, noisy oper-
ations. A key advantage of GST is that it produces
self-consistent estimates by simultaneously character-
izing SPAM along with other processes.

Here we briefly review GST, following Refs. [14,
15, 17], restricting our attention to the simplest case
with a single state preparation and a single, two-
outcome measurement. To start, suppose that we
have the ability to prepare an (unknown) state ρ, per-
form an (unknown) two-outcome measurement E,
and perform some number n additional (unknown)
operations {G0, . . . Gn−1}. We think about such a
system as a box with labeled buttons, as depicted
in Figure 1, where each button denotes an operation
we can perform. Hence, we have a button for state
preparation (bρ), measurement (bE), and buttons for
each other operation labeled by elements of the set

B := {b0, . . . , bn−1}, where we abbreviate bi = bGi
for notational convenience. A light on the box turns
on or stays off to indicate the outcome of the mea-
surement.

Within this formalism, all experiments we can per-
form are of the form:

1. Press bρ to begin the experiment.

2. Sequentially press zero or more buttons from the
set {b0, . . . , bn−1}.

3. Press bE to end the experiment.

4. Record whether the light turned on.

Our goal is to compute the likelihood of observ-
ing the light given a particular sequence of buttons.
Within a quantum model, we do this by expressing
the actions of buttons as super-operators, which are
linear operators that take density matrices to density
matrices. Formally, let H = Cd be a Hilbert space
of finite dimension d. Then, we denote by L(H) the
space of linear functions H → H, and denote by
T(H) the space of linear functions L(H) → L(H).
Since T(H) is a space of linear functions, elements of
T(H) can be written down as linear operators acting
on vectors in L(H). We denote vectors in L(H) by
“super-kets”, e.g. |ρ〉〉; covectors for L(H) are “super-
bras” and correspond to measurements, e.g., 〈〈E|.

As an example, if d = 2, then ρ can be represented
as a 2× 2 matrix, which we can instead arrange as a
4×1 column vector |ρ〉〉 ∈ C4. In this case, we can rep-
resent elements from T(H) as 4× 4 matrices, which
act linearly (by multiplication) on super-kets. 1 We
assign to each button bi a super-operator Gi ∈ T(H)
(which we represent as a matrix acting on Cd2

). If
ΛGi is a quantum channel acting on a density matrix
ρ, then Gi is the operator such that Gi|ρ〉〉 = |ΛGi [ρ]〉〉.

We refer to the set of button presses between appli-
cations of SPAM as a sequence. We denote the set of
possible sequences as S, which contains the empty
sequence, as well as every possible combination of
button presses. Sequences compose under concate-
nation. 2 For two sequences s, t ∈ S:

(bs0 , . . . , bsm−1) + (bt0 , . . . , btm′−1) =

(bs0 , . . . , bsm−1 , bt0 , . . . , btm′−1). (1)

We will also write |s| to mean the length of s, such
that |s + t| = |s|+ |t|.

1This is because, if vec(A) denotes the vectorization of
matrix A (by column-stacking), then vec(ABC) = (CT ⊗
A)vec(B). As a density matrix ρ evolves by similarity trans-
formation (or a sum over them), |ρ〉〉 evolves by matrix multi-
plication.

2The set of experimental sequences S is a monoid under ad-
dition; that is, S is closed under concatenation, and has the
empty sequence of buttons () as an additive identity. We note
that S does not contain inverses, since we cannot make a se-
quence of buttons shorter by pressing more buttons.
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Figure 1: An example of a quantum device modeled as a
black box with buttons. Buttons are labeled by the actions
they perform, for example prepare state ρ, apply operation
Gi, and take measurement E. A light on top of the box turns
on or stays off to indicate the result of the measurement.

Using the assignment of super-operators to but-
tons, we can compute the likelihood of experimental
outcomes.

Definition 1. Let s = (bs0 , bs1 , . . . bsm−1) be a se-
quence of m button presses from the buttons on our
box. The likelihood of the light turning on after per-
forming s, the sequence probability, is given by the
Born rule:

Pr(light|(bρ, bs0 , . . . , bsm−1 , bE)) =
〈〈E|Gsm−1Gsm−2 · · ·Gs0 |ρ〉〉. (2)

This shows that, were we to learn the explicit form
of |ρ〉〉, 〈〈E|, {Gi}, we would be able to predict the
results of any future experiment. Nevertheless, as
we already touched on in the introduction, super-
operators suffer from a gauge problem, making many
numerically distinct sets of super-operators oper-
ationally equivalent. (In the language of super-
operators, {|ρ〉〉, 〈〈E|, {Gi}} is gauge-equivalent to
{B|ρ〉〉, 〈〈E|B−1, {BGiB−1}} for any appropriately-
sized invertible matrix B.) In the next section,
we clarify this notion within the context of linear-
inversion GST.

2.2 Linear inversion GST
The simplest GST inference procedure to learn
|ρ〉〉, 〈〈E|, {Gi} is linear-inversion GST (LGST). For
any GST protocol, one first chooses a set of fidu-
cial sequences, f = { fi}, which act as a “reference
frame” for analysis of the experiments. 3 Fidu-
cial sequences are typically short sequences of but-

3It is sometimes necessary to pick distinct preparation and
measurement fiducial sets; our results extend to those situa-
tions as well.

ton presses, and as a set they must be information-
ally complete (which will be formally defined below,
with a consequence being that the set of fiducials has
at least d2 elements).

We use the set of fiducial sequences to construct
the following scalar quantities:

Ẽi = 〈〈E|Fi|ρ〉〉,
F̃ij = 〈〈E|FiFj |ρ〉〉, (3)

G̃
(k)
ij = 〈〈E|FiGkFj |ρ〉〉,

where Fi is the super-operator obtained by mul-
tiplying together the super-operators for the con-
stituent buttons in a fiducial sequence fi. In prin-
ciple, the entries of these matrices are the proba-
bilities of the light turning on for the given experi-
ments. Hence, by repeating the experiments, we ap-
proximate these probabilities via the empirically ob-
served frequencies. Defining A =

∑
j |j〉〉〈〈E|Fj and

B =
∑
j Fj |ρ〉〉〈〈j|, where the |j〉〉 are basis states of the

spaceH⊗H, we can recover the desired |ρ〉〉, 〈〈E|, and
{Gk} according to:

|ρ〉〉 = BF̃−1Ẽ

〈〈E| = ẼTB−1 (4)
Gk = BF̃−1G̃(k)B−1

We further note that, by definition, F̃ = AB. We re-
quire that F̃ has rank of at least d2, where d is the di-
mension of the qubit Hilbert space. If dim(F̃ ) > d2,
then the pseudo-inverse is used instead of the nor-
mal inverse. This rank criterion (rank(F̃ ) = d2) is
what provides our definition of informational com-
pleteness in this context. It provides a check of the
choice of fiducials, which can be useful if good ini-
tial guesses of the gates are not known. Such a set of
fiducials can even be chosen ‘on the fly’ by perform-
ing experiments until one can construct an invertible
F̃ .

2.3 Gauge and the operational representation
In the above section, one might be troubled that we
did not actually recover the literal values Gk, ρ, and
E. Rather, they are now complicated by the presence
of the gauge transformation B - the “true” super-
operators Gk, ρ,E are all gauge-dependent quanti-
ties. However, the gauge B itself is not accessible ex-
perimentally. This is because the observed sequence
probabilities are totally independent of gauge:

Tr
(
|ρ〉〉〈〈E|Gsm−1 · · ·Gs0

)
=

Tr
(
B−1|ρ〉〉〈〈E|BB−1Gsm−1B · · ·B

−1Gs0B
)

(5)

More formally, let us begin by making a mapping
between button sequences and super-operators. We
assign an element of T(H), the space of linear oper-
ators on H, to each sequence s ∈ S using a mapping
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Φ : S → T(H),

Φ((bs0 , . . . , bsm−1)) = Gs. (6)

In general, the mapping Φ between button sequences
and channels can arbitrary, especially in the presence
of non-Markovian errors, but in this work we will
consider the special case in which Φ is a homomor-
phism between the monoids S and T(H) 4,

Φ((bs0 , . . . , bsm−1)) := Gsm−1 · · ·Gs0 . (7)

This mapping is not unique, but can be specified by
the outputs of Φ for each single-button sequence,
Φ((b0)) = Gb0 , Φ((b1)) = Gb1 , and so forth. Con-
sidering this special case, we can think of SPAM as a
special button bSPAM such that

Φ((bSPAM)) = |ρ〉〉〈〈E|. (8)

Making this identification, we can then use Φ to re-
cover the probabilities in (2) by taking the trace of
Φ(s) for each sequence s ∈ S , so long as we adopt
the convention that s begins with bSPAM,

Pr(light|s; Φ) = Tr(Φ(s)). (9)

The problem of inferring the properties of our box
is equivalent to identifying which Φ maps from but-
ton sequences to super-operators in a manner that
correctly predicts experimental outcomes according
to (2). Following this motivation, we define that two
mappings Φ, Φ′ : S → T(H) are gauge-equivalent
(Φ ∼ Φ′) if and only if they yield the same sequence
probabilities for all elements of S. The term “gauge”
used to describe the equivalence class∼ is motivated
by the observation that

Φ ∼ Φ′ if and only if there exists B ∈ GL(Cd2
)

such that for all s ∈ S : Φ(s) = BΦ′(s)B−1. (10)

We say that the equivalence class [Φ] :=
{Φ′ ∈ Hom(S, T(H)) such that Φ′ ∼ Φ} of gauge-
equivalent Φ is the gauge orbit. It is easy to identify
one such Φ (just choose any invertible matrix of ap-
propriate dimension), but it is expensive to compute
an entire equivalence class of distinct ones.

Choosing a gauge to represent a gate set is typi-
cally accomplished through nonlinear optimization,

4Note that T(H) is monoid under multiplication rather
than concatenation. In general, T(H) fails to be a group,
as we cannot invert general quantum operations due to de-
coherence. (Decohering channels are invertible, as long as
they are full rank, but these inverses are not completely pos-
itive, and are therefore unphysical.) We can then view Φ as
a homomorphism from button sequences to super-operators,
since Φ(s + t) = Φ(t)Φ(s) and Φ(()) = 1. Since we have
listed sequences left-to-right rather than right-to-left, Φ is for-
mally a homomorphism from button sequences to the oppo-
site monoid of super-operators, defined by the opposite prod-
uct A·opB := BA, but we ignore this detail as a notational
convenience.

in which a gauge is sought that transforms the es-
timated gate set to be as close as possible (by some
metric) to an ideal “target” gate set. This allows for
computation of gauge-variant metrics between the
estimate and the target (e.g., diamond distance, fi-
delity). In practice, these procedures can work rea-
sonably well [17], but they scale inefficiently, are
not guaranteed to be numerically stable, and are not
guaranteed to not get stuck in a local extremum.
Thus, as a practical matter, we would like to identify
a set of parameters that is necessary and sufficient to
identify gauge orbits without having to actually per-
form a gauge optimization. That is, we seek to pa-
rameterize and perform inference on the set of gauge
orbits directly:

G(B,H) := Hom(S, T(H))/∼ = {[Φ]}, (11)
where A/∼ is the factor set of A defined by the rela-
tion ∼ as the set of equivalence classes A/∼ := {[a] :
a ∈ A}.

When it is clear from context which button set and
Hilbert space are used to define our box, we will omit
them for brevity, writing that G = G(B,H). We say
that each member of G(B,H) is a gate set, such that
identifying which member of G(B,H) was used to
generate a data record is gate set tomography. When
it is clear from context, we will also refer to sets of
super-operators G = {G0, . . . ,Gk−1, |ρ〉〉, 〈〈E|} as gate
sets, with the implicit understanding that we are in-
terested in the gauge orbit [G] (equivalence class un-
der ∼) of G.

We call any such representation of G(B,H) oper-
ational, since it is a complete description of all op-
erational experiments that we can perform on our
box, under the promise that the box is described by
some model over H. In fact, we have already seen
an especially convenient operational representation:
Ẽ, F̃ , {G̃(k)}. They are a set of gauge-independent
values (as they are directly experimentally observ-
able), and are unique to a particular gate set for a
given choice of fiducials. They also yield the same
measurement probabilities as their gauge-dependent
counterparts. To see this, consider some sequence of
button presses (bρ, bs0 , . . . bsm−1 , bE). The sequence
probability is:

Pr(light|(bρ, bs0 , . . . , bsm−1 , bE))
= 〈〈E|Gsm−1 · · ·Gs0 |ρ〉〉
= Tr

(
|ρ〉〉〈〈E|Gsm−1 · · ·Gs0

)
= Tr

(
B−1|ρ〉〉〈〈E|BB−1Gsm−1B · · ·B

−1Gs0B
)

= Tr
(
F̃−1ẼẼTF̃−1G̃(sm−1) · · · F̃−1G̃(s0)

)
.

This leads to the remarkable fact that when we learn
Ẽ, F̃ , {G̃(k)}, we can predict the outcome of any future
experiments. Note that this statement is distinct from
performing LGST: we can use Ẽ, F̃ , {G̃(k)} as our un-
derlying model, while updating it via more sophisti-
cated experiments.
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Figure 2: Pipeline for linear inversion gate set tomography (LGST). A set of fiducial sequences is chosen; we perform the
specified experiments and record how many times the light turned on. Following the linear inversion step in (4), we can
reconstruct a copy of the super-operators for each button. However, the results we obtain will be expressed in an unknown
gauge which is one of infinitely many in the gauge orbit.

3 Implementation
Having thus established that learning the opera-
tional representation of a gate set allows us to pre-
dict its behavior, we are left with the question of
how to learn operational representations from data
records. In this section, we describe our implemen-
tation of operational quantum tomography, based on
Bayesian inference. In particular, we implement the
inference numerically using the particle filter, or se-
quential Monte Carlo (SMC) approach, a standard
technique for carrying out Bayesian inference com-
putationally [33].

3.1 Bayesian inference: obtaining posteriors
from evidence
As applied to quantum information, Bayesian infer-
ence is a formalism for describing our knowledge
about a quantum system given classical data ob-
served from it. In particular, Bayesian inference rep-
resents our state of knowledge at any given point
in a characterization protocol by a distribution of
the form Pr(hypothesis|data), where “hypothesis”
describes some hypothesis that we can use to pre-
dict the future behavior of our quantum system, and
“data” is the set of observations made of that system.

In the special case that data = {} (that is, before
we have made any observations), we write our state
of knowledge as Pr(hypothesis), also known as our
prior distribution. For example, in traditional Ramsey
interferometry, our hypothesis might consist of the
assumption that the system evolves under a Hamil-
tonian of the form H = ωσz/2 for some ω. We may
assign a prior distribution over ω such as

Pr(ω) =
{

1/ωmax ω ∈ [0,ωmax]

0 otherwise,
(12)

representing that we are equally willing to believe
that ω has any value in the interval [0,ωmax].

Since distributions of the form
Pr(hypothesis|data) represent our state of knowl-
edge at any point during an experimental procedure,
equipped with such a distribution, we can answer
questions such as “what is the best hypothesis to
report given what we have learned from our quan-
tum system?”. Returning to the Ramsey example,
we may want to report an estimate ω̂ such that
the the squared error (ω̂ − ω)2 is minimized on
average. As summarized in Appendix A, this is
achieved by reporting the Bayesian mean estimate
ω̂BME := Eω [ω|data] =

∫
ωPr(ω|data)dω.

We are thus left with the problem of finding our
state of knowledge at some point in an experimen-
tal procedure given our most recent observation, and
given our previous state of knowledge; that is, of
how to update our state of knowledge to reflect new
information. To do so, we rely on Bayes’ rule, which
states that

Pr(hypothesis|data) ∼
Pr(data|hypothesis)×Pr(hypothesis), (13)

where Pr(hypothesis) is our prior distribution, and
∼ indicates equality up to renormalization. In-
tuitively, this rule tells us that a hypothesis is
reweighted according to how plausible it is for
a given observation to arise given that hypothe-
sis. To perform this update, we must simulate
Pr(data|hypothesis), known as the likelihood function
for our quantum system. Put differently, we can only
learn properties of a system whose effects can be sim-
ulated. We cannot learn about a parameter that has
no effect on the outcomes of system, or whose effects
we cannot simulate.

It is for this reason that, in the rest of the paper,
we take our hypothesis to be the operational repre-
sentation of some quantum system. In particular, the
operational representation is a minimal set of param-
eters required to simulate the behavior of that sys-
tem, such that any parameter beyond the operational
representation cannot have any effect on our predic-
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tions. For example, we can never learn gauge param-
eters from experimental observations, as they have
no effect on the likelihood function for any measure-
ment that we could perform 5.

3.2 Numerical approach: sequential Monte
Carlo
So far, we have regarded Bayesian inference in the
abstract, without reference to or concern for how one
might implement an inference procedure in practice.
A practitioner interested in using Bayes’ rule will
find it difficult to work with (13) directly, as the nor-
malization suppressed by the use of ∼ notation con-
verges exponentially quickly to 0 with the amount
of data considered, exacerbating numerical precision
issues. Moreover, any choice of discretization in-
formed by the prior is not likely to be terribly useful
as the posterior shrinks in width.

In lieu of these considerations, a number of differ-
ent computational algorithms have been developed
that offer a Bayesian practitioner a range of different
options. For instance, rejection sampling techniques
such as the Metropolis–Hastings algorithm [34], as
well as more sophisticated modern algorithms such
as Hamiltonian Monte Carlo [35] and NUTS [36], al-
low for obtaining samples from a posterior distri-
bution with reasonable computational effort. These
algorithms have been used in quantum information
to solve otherwise intractable problems such as the
estimation of randomized benchmarking parameters
[37].

For application to online experimental protocols,
however, it is often useful to adopt an algorithm that
works in a streaming fashion. This allows for sam-
ples from a posterior distribution to be drawn at any
point in an experimental procedure, such that adap-
tive decisions such as stopping criteria or experiment
design can be made easily. Critical to realizing this
capability is that the cost of an algorithm can depend
only approximately linearly on the amount of data
taken. This restriction motivates the use of filter-
ing algorithms, which update an approximation of
a prior given incoming data to yield a new approxi-
mation of the resulting posterior. The Kalman filter,
for example, is a Bayesian filter for the special case in
which the prior and posterior are both normal, and
in which the likelihood is a linear model perturbed
by normally distributed noise [38].

In this paper, we adopt the particle filter [33], also
known as the sequential Monte Carlo approxima-
tion. Particle filters are applicable to a very broad
range of likelihood functions, and give rich diagnos-

5This argument shows that the use of operational represen-
tations can be motivated by appeal to the likelihood principle,
which informally states that all inference — whether or not car-
ried out using Bayesian reasoning — must depend on a system
only through its likelihood function.

tic data to assist in understanding their execution.
The QInfer library [39] provides a useful implemen-
tation of particle filters for quantum information ap-
plications, and this library is used throughout the
rest of the work.

Particle filters work by representing the distribu-
tion over some random variable x as a weighted sum
of δ-distributions at each step,

Pr(x) ≈
∑
i

wiδ(x− xi), (14)

where {wi} are non-negative real numbers summing
to 1, and where {xi} are different hypotheses about
x. Each hypothesis xi is called a particle, and is said to
have a corresponding weight wi. Numerical stability
is achieved by periodically moving each particle to
concentrate discretization on regions of high poste-
rior density [40]. Examples of this in operation can be
seen in videos at https://youtu.be/aUkBa1zMKv4 and
https://youtu.be/4EiD8JcCSlQ.

3.3 Setting priors over the operational repre-
sentation
Within a Bayesian framework, we begin with a state-
ment about our beliefs before starting an experiment.
We write this down formally as a prior distribution,
which gives us a mathematical description of our
prior knowledge. In absence of any data from a par-
ticular experimental run, a prior distribution π as-
signs a probability π(x) to each object of interest x
(e.g., the elements of the operational representation).

In experimental QCVV, we typically express our
beliefs in terms of gauge-dependent formalisms (e.g.,
super-operators). Here, we need to translate these
prior distributions into a prior over the operational
representation, which is gauge-independent. Fortu-
nately, we can easily sample from the prior distribu-
tion over the operational representation induced by a
distribution over a gauge-dependent representation.
Upon choosing a set of fiducial sequences, we pro-
ceed to:

1. State the prior over some gauge-dependent rep-
resentation (e.g., parameters in super-operators).

2. Draw a sample from the gauge-dependent prior.

3. Convert the gauge-dependent sample to the op-
erational representation by applying LGST.

4. Return this as the sample from the gauge-
independent prior.

As a concrete example, suppose we intuit that
a particular button should perform single-qubit Z-
rotation gates. We can write these in a familiar,
gauge-dependent way by expressing them as super-
operators in some matrix basis, Rz(θ) (in our imple-
mentation, we use the Pauli basis). Now suppose
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that we suspect this button over-rotates about Z by
an angle δθ that is somewhere between 0 and π/10.
To generate samples from this prior expressed in the
operational representation according to this belief,
we first choose samples of δθ uniformly at random
from 0 to π/10. Next, we use these sampled angles
to synthesize corresponding channels for each mem-
ber of the gate set, i.e. Rz(θ + δθ). A prior distri-
bution in terms of superoperators can be constructed
in a similar manner for each button on the box. To-
gether, we use them to compute the frequencies for
each element of the operational representation using
the linear-inversion step of (4).

3.4 Informational completeness and germ sen-
sitivity
In addition to choosing a prior distribution, we must
also choose a set of fiducial sequences to fix a refer-
ence frame. Any choice will yield a valid operational
representation, in the sense that we can populate an
Ẽ, F̃ , and {G̃(k)}with the outcome frequencies of the
experiments. However, an additional requirement of
the fiducial sequences is that they must be informa-
tionally complete. As we will see, the definition of this
is dynamic.

Consider for a moment standard quantum state to-
mography, where we prepare (perfectly) some un-
known state, and can execute perfect measurements.
In the case of a single qubit, it is well known that
measuring σx, σy , and σz is sufficient to fully recon-
struct the state [41]. These measurements span the
Bloch sphere, and we say that they are information-
ally complete.

In GST, a similar notion holds. However, we do
not know a priori how the measurement and opera-
tion buttons are oriented relative to an external ref-
erence frame. For instance, if someone provides us
with a box with buttons labeled σx, σy , σz , we do
not know what they actually do. They may be noisy
implementations of these operations, they may be
completely different operations, or, they may even
do nothing at all. Naively using these buttons to ex-
ecute measurements is therefore not guaranteed to
give us something informationally complete, even if
the labels suggest they should.

In GST, we can check for informational complete-
ness using the matrix F̃ in the operational represen-
tation. Recall that this is constructed using experi-
ments performed by applying pairs of the fiducial
sequences. When we initialize the operational rep-
resentation from the prior over super-operators, we
must compute F̃−1. If the fiducial sequences are
poorly chosen, F̃ may be ill-conditioned, or even sin-
gular.

Definition 2. A set of fiducial sequences f ⊂ S is
informationally complete for a gate set G if F̃ =

∑
ij〈〈E|FiFj |ρ〉〉|i〉〉〈〈j| has rank of at least d2, where

d is the dimension of the qubit Hilbert space. Here,
Fi = Φ[ fi] and |ρ〉〉〈〈E| = Φ[SPAM] for some Φ ∈ G.

Note that since we can conjugate by B in Defini-
tion 2, we can choose any Φ ∈ G that is convenient
for evaluating F̃ — if we can find a Φ such that a set
of fiducial sequences is informationally complete, it
must also be complete for all Φ′ ∈ [Φ].

An issue that arises as a consequence of the choice
of fiducials is that it is possible to find values across
Ẽ, F̃ , {G̃(k)} that are identical. For example, if one of
the fiducials is the empty sequence, then Ẽ0 = F̃00,
Ẽ1 = F̃01 = F̃10, and so forth. Were we to perform
a SMC update step on the full set of matrix entries,
the entries that are constrained to be identical will be
perturbed in different ways, leading to inconsistent
outcomes.

To remedy this, we first perform a preprocessing
step that eliminates redundant entries, producing a
minimal set of model parameters on which we can
perform inference. Mappings are employed to trans-
form the minimal set back to full Ẽ, F̃ , {G̃(k)}, and
vice versa, throughout. Learning this minimal set
of parameters is then sufficient to characterize the
entire system. This trimming procedure also has
the benefit of substantially reducing the number of
model parameters required, speeding up the infer-
ence process.

Beyond fiducial selection, we have considerable
freedom in the selection of the particular experi-
ments we perform. The best choice of experiments
depends on our particular learning objective. For
most of our demonstrations in this work, we fix a to-
tal number of experiments, a minimum/maximum
sequence length, and then produce sequences of in-
creasing lengths between the bounds. In some imple-
mentations of GST, one designs a small collection of
short button sequences known as “germs”, such that
by taking appropriate powers of germs one can am-
plify coherent errors to gain optimal information as
the number of experiments is increased. Such a pat-
tern of germs is called “amplificationally complete”
[17], and can reduce the total number of experiments
required. We take this approach in our implementa-
tion of GST, and take care to identify the experiments
we carry out in all of our examples.

3.5 Constraints on gates and gate sets
If we represent inferred channels with super-
operators (as is customary in quantum process to-
mography), the allowed form of the matrices is not
arbitrary. Rather, physical constraints such as posi-
tivity and trace preservation of density matrices re-
strict the allowed structure. When generalizing to
GST, the problem of identifying when a gate set is
valid is complicated by the introduction of the gauge.
The elements of a gate set might not, in a particular
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representation, be CPTP, but are gauge equivalent to
a CPTP representation. Performing inference on an
operational representation introduces a similar chal-
lenge: how do we ensure that an operational repre-
sentation corresponds to a gate set that makes phys-
ical sense?

Analogous to the case in GST, we need a condition
that is simultaneously satisfied by all the gates in the
gate set. For the operational representation, an ob-
vious first test is to check whether all the entries are
in the interval [0, 1]. Since entries in the operational
representation correspond to sequence probabilities,
this is a necessary physical constraint. This is not a
sufficient condition, though, as the probabilities for
any possible future experiment must be constrained
in the same way. This leads us to the following defi-
nition:

Definition 3 (Positivity). An estimate of a gate set
Ĝ = {Ĝ0, . . . , Ĝn−1, |ρ̂〉〉, 〈〈Ê|} is positive if for all Ŝ ∈
{Ĝ0, . . . , Ĝn−1}?, where {·}? is the Kleene-closure6,
we have that both 〈〈Ê|Ŝ|ρ̂〉〉 ≥ 0 and 〈〈1− Ê|Ŝ|ρ̂〉〉 ≥ 0.

Other than by converting to the operational repre-
sentation a standard (gauge-variant) representation
which is explicitly positive (in some gauge), it is un-
clear how one can create operational representations
that are positive by construction. However, it is pos-
sible to ensure that inference begins from a point
where this is true through our choice of prior distri-
bution. As described in Section 3.3, when we set a
prior distribution, we begin with a gauge-dependent
prior. When we do this, we express each gate of the
gate set in the same gauge that we have chosen. We
can then guarantee by construction that each mem-
ber of the gate set has characteristics such as com-
plete positivity, to ensure they will always produce
valid outcome probabilities.

As inference proceeds, however, checking for
properties such as complete positivity is practically
difficult. This is because to check such proper-
ties, one needs to perform a gauge-fixing procedure,
which we wish to avoid for aforementioned reasons.
Such a procedure is not impractical to do once at the
end of an inference procedure, but it is at each update
step during Bayesian inference.

One workaround to this is to ensure at the very
least all the values in the operational representation
are positive. Though this of course doesn’t guaran-
tee true positivity, we found in practice that negative
values of the likelihood function appear regularly,
and these must be handled appropriately in order for
the sequential Monte Carlo updates to succeed. As a
workaround, we simply clip the output of the likeli-
hood function so that any negative ‘likelihoods’ are

6The Kleene closure S? of a set S = {s0, s1, . . . }
is given by the set of all finite-length strings over
S, S? = {(), (s0), (s1), . . . , (s0, s0), (s0, s1), . . . , (s1, s0), . . . ,
(s0, s0, s0), . . . }.

set to 0, and any positive likelihoods greater than 1
are set to 1.

An alternate way to approach model validity is to
choose a set of validation experiments. In plausible
experimental settings, one has a specific application
(and hence gate sequence) in mind. We can then de-
cide if a model is valid for a particular set of gate
sequences by checking if it produces a proper likeli-
hood for all the validation experiments, a notion that
we call operational positivity.

Definition 4 (Operational positivity). An estimate of
a gate set Ĝ = {Ĝ0, . . . , Ĝn−1, |ρ̂〉〉, 〈〈Ê|} is opera-
tionally positive on a set Ŝtest ⊆ {Ĝ0, . . . , Ĝn−1}? if
for all Û ∈ Ŝtest both 〈〈Ê|Û |ρ̂〉〉 ≥ 0 and 〈〈1− Ê|Û |ρ̂〉〉 ≥
0.

From these definitions, positivity implies opera-
tional positivity but the converse need not be true.
Operational positivity is a useful concept because it
is both easy to test and also of practical relevance
when one wishes to check particular applications. In
our work, we make extensive use of operational posi-
tivity, since whenever the sequential Monte Carlo in-
ference procedure resamples particles, it is necessary
to avoid negative predicted probabilities.

4 Prediction Loss
Once we have obtained a posterior distribution
Pr(x|data) over the operational representation x of
our gate set from some sequence of experiments,
we are typically interested in extracting diagnos-
tic and benchmarking information. To do so in a
manner consistent with the gauge, one could con-
sider gauge fixing procedures, which consist of op-
timization problems that pick out particular gauge-
dependent representations of a gate set that we can
then use to report traditional metrics [17].

For instance, if we intend a priori that the bx, by, bz
buttons should be describable by unitary transfor-
mations e−iπσx/2, e−iπσy/2, and e−iπσz/2, respec-
tively, we may wish to report gauge-dependent met-
rics such as the diamond norm by fixing to a gauge
that best agrees with this description. By taking the
best case over members of the gate set in that gauge
we can construct statements such as “there exists a
gauge-dependent description of our gates such that
with posterior probability at least (1− α), the agree-
ment between each gate and their action in a partic-
ular chosen frame is no worse than ε.”

Unfortunately, this gauge-fixing procedure can be
cumbersome to implement (especially across many
hypotheses), is not guaranteed to work (i.e., find the
optimum gauge given a target gate set) and is open
to multiple interpretations. As an alternative, we in-
stead will score our predictions on a set of experi-
ments of interest. To do this, we recall that a gate
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set G is sufficient to predict the outcome of any hypo-
thetical experiment we may wish to perform within
the GST framework by 4. We thus take a data-driven
approach to the problem and choose a set of button
sequences Svalidate that we are interested in correctly
predicting. Concretely, let ps := Pr(light|s) for each
s ∈ Svalidate be a parameter that we are interested in
estimating. If we predict p̂s for ps, then we can con-
sider the quadratic loss

Ls(p̂s, ps) = (p̂s − ps)
2 . (15)

We call this a prediction loss for the sequence s, since
it rewards estimators that can accurately predict the
outcome of future experiments. The quadratic loss
is by no means unique, and there are other suitable
choices, such as the Kullback-Liebler divergence.

Since each prediction loss function is Bregman for
each s, the Bayesian mean estimator (BME), where
we average over the prediction made for each gate
set in the support of our posterior, is optimal [42] 7.
That is, to minimize loss we choose as our estimator

p̂s = EG [Pr(light|G; s)|data] . (16)

Intuitively, we predict the outcome of measuring the
sequence s for each hypothesis G, and then take the
average.

This gives us much better predictive capability
than restricting ourselves to using a single estimated
gate set to predict all future experiments. As we val-
idate with longer and longer sequences than those
in the training set that we used to obtain our poste-
rior in the first place, our posterior uncertainty in ps
will necessarily grow, as can be seen from the method
of hyperparameters [44]. This is not reflected if we
pick a single gate set, but is immediately included in
the Bayesian mean estimator (16), which will tend to
hedge towards 1/2 as sequences grow in length.

5 Examples
In this section, we demonstrate the versatility of
our framework by applying it to many common
QCVV protocols. This includes replicating the re-
sults of other state-of-the-art techniques, such as
long-sequence gate set tomography [17] and ran-
domized benchmarking. A discussion of applica-
tions of OQT to quantum state tomography can be
found in Appendix B.

—————————–

5.1 Ramsey interferometry
Single-qubit operations are often implemented by
applying electromagnetic pulses to induce rotations

7For a more detailed discussion of the role of Bregman esti-
mators in tomography, we refer the reader to the work of Kueng
and Ferrie [43].

about the Bloch sphere. The basis of such methods is
the intrinsic Rabi oscillation frequency of the system,
which tells us the likelihood of measuring the qubit
in its |0〉 or |1〉 state at a given time. Knowledge of
the Rabi frequency allows us to adjust the pulse du-
ration in order to obtain exactly the superpositio nwe
desire.

Typically, one learns this frequency by means of
either Rabi or Ramsey interferometry. In Ramsey in-
terferometry (depicted in Figure 3), a qubit is pre-
pared in state |0〉 and then a Rx

(
π
2
)

pulse is ap-
plied. The qubit is left to evolve under the Hamilto-
nian H = ωt

2 σz for some time t, after which another
Rx
(
π
2
)

pulse is applied, followed by measurement in
the computational basis. The likelihood of obtaining
the measurement outcome |0〉 is given by

Pr(0|ω; t) = | 〈0|Rx
(π

2

)
e−iωtσz/2Rx

(π
2

)
|0〉|2

= cos2
(
ωt

2

)
(17)

However, in a given implementation, it is likely that
the Rx(π2 ) pulse is not perfect and the resultant state
will be slightly over- or under-rotated, yielding an
incorrect estimate of ω. Our goal is to learn not only
ω, but also the precise rotation angle so that we can
compensate for this discrepancy by adjusting the du-
ration of the pulse.

First, we translate Ramsey interferometry into the
operational framework language (a box with but-
tons). In this case, there are four buttons. The first
two are for SPAM - the button bρ prepares the |0〉
state, and bE performs a measurement in the compu-
tational basis. The third button bRx performs Rx(π2 ),
and the final button bδt waits for a discrete time δt
(free evolution). By applying bδt a total of n times,
we can wait time t = n · δt.

Next, we choose a prior distribution from which
to sample to begin Bayesian inference. For conve-
nience, these priors are summarized in Table 1. As
explained in Section 3.3, our prior is defined initially
in a gauge-dependent way, which is then used to in-
duce a prior distribution on the gauge-independent
operational representation. The initial Rx

(
π
2
)

are
sampled from a distribution that encompasses over-
and under-rotation: we choose rotations of the form
Rx
(
π
2 ± δθ

)
, where δθ is a deviation sampled from

a normal distribution with mean 0 and a small vari-
ance σ2 = 10−3. As δt is meant to indicate evolution
around the z axis, we sample from Rz(θ) with θ cho-
sen uniformly from between 0 and 1.

For both the state preparation and measurement
priors, we apply depolarization to the ideal state |0〉.
When acting on a density matrix ρ, depolarization of
strength p, 0 ≤ p ≤ 1, sends

ρ→ (1− p)ρ+ p

3 (XρX + Y ρY + ZρZ) . (18)

Accepted in Quantum 2020-10-12, click title to verify. Published under CC-BY 4.0. 10



. . .

Figure 3: Depiction of Ramsey interferometry as a pulse diagram, and as a button sequence in the OQT framework.

Button label Prior Example values
ρ 1/

√
2
(

1 0 0 1
)

, depolarized with p ∈ U(0, 0.1) p = 0.038311
Rx Rx (π/2 + ε) , ε ∈ N (0, 10−3) ε = −0.003824
δt Rz(ω · δt), ω ∈ U(0, 1) ω = 0.346754, δt = 1
E 1/

√
2
(

1 0 0 1
)

, depolarized with p ∈ U(0, 0.1) p = 0.023933

Fiducial seqs. {(·), (Rx), (Rx, Rx), (Rx, δt, Rx)}
Training exps. (Rx, (δt)n, Rx) n = 2, . . . , 49
Testing exps. (Rx, (δt)n, Rx) n = 50, . . . , 100

Table 1: OQT parameter specification for Ramsey interferometry. Example values correspond to those used in the plots
and provided example notebook. Button sequences are represented as lists, where the buttons are applied from left to right,
and application of SPAM is implicit in the training and testing experiments. Button labels are abbreviated as bRx

→ Rx for
notational simplicity.

The associated Bloch vector then transforms accord-
ing to [41]:

(ax, ay, az)→ ((1− p)ax, (1− p)ay, (1− p)az). (19)

Here all super-operators are expressed in the Pauli
basis, where applying depolarization to super-
operator G sends

G→


1 0 0 0
0 1− p 0 0
0 0 1− p 0
0 0 0 1− p

G. (20)

For the priors, we assume that depolarization occurs
with strength p chosen from the uniformly at random
between 0 and 0.1, denoted U(0, 0.1).

The last step is to choose a set of
fiducial sequences. We choose f =
{(·), (bRx), (bRx , bRx), (bRx , bδt, bRx)}. These
sequences are read from left to right; the first is
the empty sequence, and application of SPAM is
implicit in all sequences. This choice is not unique,
and we picked some that performed well in practice.
Using these fiducials to construct an operational
representation results in 27 parameters, which is
reduced due to duplication from the 52 that are
expected from counting the full Ẽ, F̃ , and G̃k.

We initialized a SMC cloud with 10000 particles,
and performed Bayesian inference over these param-
eters by feeding in simulated experimental data for
sequences of the form (bRx , (bδt)

n, bRx) for n =

2, . . . 49. The ‘true’ values of the parameters that gen-
erated the data were randomly sampled from the
prior distribution, with specific parameters given in
Table 1. See the supplementary materials for the im-
plementation.

In Figure 4 we plot the likelihood as calculated
over the posterior distribution, and compare to the
true likelihood (in this case, the set of model pa-
rameters that was used to produce the experimen-
tal data). We see that our inference has learned this
operational representation, and produces compara-
ble likelihoods even out to sequences that are double
the length of those we trained with. Using Figure 4,
it is possible to fit a curve of the form cos2(ωt/2)
and extract an estimate for the value of ω. We ob-
tain ω̂ = 0.345905, a roughly 0.6% difference from
the true value ω = 0.346754 as noted in Table 1.

Instead, we can judge the quality of the recon-
struction by plotting prediction loss, as shown in the
right panel of Figure 4. The amount of quadratic loss
is small in the absolute sense, and clearly worsens
with experiment length, with the peaks increasing
quadratically. To build upon Section 4, we include
in the supplementary materials a similar plot using
the KL divergence.

We can also visually examine the loss by plotting
trajectories of different particles sampled from the
posterior. Shown in Figure 5 are the trajectories of
50 such particles, with likelihoods computed out to
sequences of up to n = 300 presses of bδt. As one
might expect, we can see that the trajectories begin
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Figure 4: (Top) Likelihood vs sequence length for the true
gate set compared to the gate set obtained by taking the
mean over the posterior distribution. The mean posterior
matches closely up to the testing point, and then begins to
diverge. Fitting the curve produced ω̂ = 0.345905, which is
a roughly 0.6% difference from the true value. (Bottom)
The divergence can be quantified using a prediction loss.
Shown here is the quadratic loss, (p̂s − ps)

2. While small, it
increases steadily as the sequence length increases.

to ‘spread’ significantly past the n = 100 point. The
spread can also be quantified and visualized in the
manner of Figure 6, in which we have plotted the dif-
ference between the likelihoods of all particles of the
posterior and the true likelihoods at each sequence
length. We can see that the mean deviation from the
likelihood increases as the spread in possible values
becomes greater at longer sequence length.

While Ramsey interferometry is an arguably sim-
ple characterization procedure, it is perhaps the most
surprising successful application of OQT we have ex-
plored. The same task would not be possible in the
traditional GST formalism if one is limited to per-
forming only Ramsey-type experiments, namely two
Rx(

π
2 ) pulses separated by some amount of time.

Circuits of that form are not rich enough to generate
all the sequences required by GST. While one can con-
struct an informationally complete fiducial set using
only compositions of Rx(π2 ) and Rz(δt) gates, there
will always be GST-required circuits that do not fol-
low the Ramsey circuit form. (For example, GST will
require at least one circuit that requires three appli-

cations of Rx(π2 ); such a circuit is not allowed if one
is only performing Ramsey circuits, all of which have
only two applications of Rx(π2 ).) Even though such
circuits appear in the operational representation, our
prior information allows us to not perform them if
we so choose; this highlights the value of being able
to incorporate prior information into a characteriza-
tion protocol. Since the entire prior distribution is
created computationally, we can still perform OQT
even in cases where we are not able to physically per-
form a set of experiments that corresponds to every
sequence in the operational representation.

5.2 Long-sequence gate set tomography
We next compare OQT to long-sequence GST,
where carefully designed sequences are used to self-
consistently fit both SPAM and an unknown gate set
[17]. Long-sequence GST uses the linear-inversion
step of LGST as a starting point, and then proceeds
with a longer maximum-likelihood estimation over
experiments with progressively longer sequences of
gates. Once the procedure finishes, a final gauge
fixing is often used to compare the resulting super-
operators to expected super-operators.

In [17], long-sequence GST was performed on ex-
perimental data from a trapped-ion qubit on which
we could perform three operations: Gi, Gx =
Rx
(
π
2
)
, and Gy = Ry

(
π
2
)
. Thus including SPAM,

our box has five buttons.
The linear inversion step in [17] was originally

performed using 6 fiducials. However, choosing
the same 6 fiducials here results in a 6 × 6 F̃ that
has rank 4. The reason to include those extra fidu-
cials is to increase stability, since LGST then rep-
resents an overdetermined system of linear equa-
tions. In OQT, we can still include these extra ex-
periments in our analysis, but since the fiducials are
used directly to define our model parameters, we
need to pick a subset of of size 4 (we choose f =
{(·), (bGx), (bGy ), (bGx , bGx)}).

We perform OQT using the set of experiments in-
cluded in the supplementary material of [17]. These
experiments have the form ( fi, (gk)L, fj), where gk
are ‘germ’ sequences that are specified in Table 2.
The particular germs were chosen in [17] because
they are amplificationally complete. From these experi-
ments, we do not include those of the form ((bGx)

n),
((bGy )

n), and ((bGi)
n) for n = 1, 2, 4, . . . 8192 in our

training data set – these are kept as a testing set.
The choice of prior plays a particularly important

role here, due to the inherently noisy nature of a
physical system. We choose a very general prior,
based on convex combinations of the ideal super-
operators with ones chosen uniformly at random.
For both ρ and E, we take a combination of the form

ρ′ = (1− ε)ρ+ εσ, ε = 10−4, σ ∈ GinibDM(2).
(21)
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Figure 5: The trajectories of 50 particles sampled from the posterior operational representation for Ramsey interferometry. We
see an increased spread at higher sequence lengths, which is highlighted later in Figure 6.
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Figure 6: As the sequence length increases, the spread of likelihoods increases as well. Shown in this violin plot is the
distribution of ’relative likelihood’ for particles in the posterior distribution at each sequence length, i.e. (p̂s − ps).

GinibDM(2) denotes the Ginibre distribution, the
uniform distribution over single-qubit density matri-
ces. Such states are sampled by computing

σ =
XX†

Tr(XX†)
, Xij = a+ bi, a, b ∈ N (0, 1), (22)

where here X is a 2 × 2 matrix. We take a similar
approach forGi,Gx, andGy by adding Ginibre noise
to the ideal super-operators:

G′ = (1− ε)G+ εΛ, ε = 10−4, Λ ∈ BCSZ(2).
(23)

Here, Λ is a super-operator chosen from the uniform
distribution over CPTP super-operators, known as
the BCSZ distribution [45], denoted by BCSZ(2).

The choice of ε was informed by a combination
of the experimental data and a grid search. Observ-
ing Figure 1c in [17], we note that likelihoods in the
(ideally) definite-outcome testing experiments start
to significantly decay at around 104 gates, hence we
intuit that ε should be around 10−4. This was later
confirmed using a grid search. We ran OQT using
a cloud of 10,000 particles for 192 different combi-
nations of ε’s. We set ε the same for Gi,Gx,Gy at

{10−m, 2 ·10−m, 4 ·10−m, 8 ·10−m} form = 5, 4, 3.
For SPAM, we also choose ε the same for ρ and E,
and explore the range {10−m, 2 ·10−m, 4 ·10−m, 8 ·
10−m} for m = 5, 4, 3, 2.

The quality of each pairing of εwas determined by
(a) whether or not the SMC updater succeeded with-
out all particle weights going to zero, and (b) the sum
of the total variation distance over the testing experi-
ments. For a given sequence s, let p(s,R) and p(s, E)
be the experimental probabilities for a given recon-
struction R and the experimental data E . The total
variation distance (TVD) between the two probabil-
ity distributions is:

TVD(s,R, E) = |p(s,R)− p(s, E)|. (24)

Bayesian inference ran to completion8 for ε of the
gates in the range 4 · 10−5 up to 2 · 10−4. For these

8We note that the larger values of ε for which inference did
not complete in this case may still yield results if the number
of particles is increased, given that the noisy super-operators
obtained with smaller ε will still be in the support of the prior.
This highlights the trade-offs one can explore between time,
computational resources, and the strength of our assumptions
about the buttons.
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Table 2: OQT parameters for long-sequence GST on trapped-ion data. Button labels are abbreviated bGx
→ Gx for

simplicity here when specifying button sequences. All priors involve adding random noise to the original super-operators using
the Ginibre distribution over qubits for ρ and E (denoted here by GinibDM(2)), and the Ginibre distribution for the super-
operators (denoted by BCSZ(2)). The set of training experiments is the same as in Blume-Kohout et al. [17], however as
denoted below we have removed a subset of these for testing.

Button label Prior Example values
ρ (1− ε) |0〉 〈0|+ εσ, σ ∈ GinibDM(2) ε = 10−4

Gx (1− ε)Rx(π2 ) + εΛ, Λ ∈ BCSZ(2) ε = 10−4

Gy (1− ε)Ry(π2 ) + εΛ, Λ ∈ BCSZ(2) ε = 10−4

Gi (1− ε)1+ εΛ, Λ ∈ BCSZ(2) ε = 10−4

E (1− ε) |0〉 〈0|+ εσ, σ ∈ GinibDM(2) ε = 10−4

Fiducial seqs. {(·), (Gx), (Gy), (Gx,Gx)}
Training exps. ( fi, (gk)Lk , fj) for all fiducials

and 11 germs gk ∈ {(Gx), (Gy),
(Gi,Gx,Gy), (Gx,Gy,Gi), (Gx,Gi,Gy),
(Gx,Gi,Gi), (Gy,Gi,Gi), (Gx,Gx,Gi,Gy),
(Gx,Gy,Gy,Gi), (Gx,Gx, Gy,Gx,Gy,Gy)}
(unique sequences only, with testing se-
quences removed)

Lk =
{⌊

2m
|gk|

⌋}
,m = 1, ..., 13

Testing exps. ((Gx)n), ((Gy)n), and ((Gi)n) n = 1, 2, 4, ..., 8192

values, inference was successful over essentially the
full range of SPAM values. However the sum of total
variation distances was notably lower for gate ε =
10−4, and SPAM ε between 10−5 and 10−4, reaching
a minimum of 10−4 during one full sweep of the grid
search.

Results for OQT run with the parameters of Ta-
ble 2 are plotted in Figure 7. The left column of
plots compares the likelihoods predicted for the test
sequences from the OQT posterior distribution to
the likelihoods of the ’perfect’ gate, the experimental
counts, and the gate set reconstructed in [17] using
the pyGSTi software package. We see that OQT pro-
duces results that are competitive with its contem-
poraries without the need to perform MLE. This is
quantified in the right column that plots the varia-
tion distance for the same set of experiments. The
total TVD for the OQT posterior is 0.724, and that of
the pyGSTi reconstruction is 0.961.

5.3 Randomized benchmarking

Like GST, OQT equips us to make predictions about
the outcome of any future experimental sequences.
Hence, as has been done before using GST [17], we
can use OQT to perform randomized benchmarking
(RB). To do so, we perform OQT to learn the genera-
tors of the Clifford group. Then, using samples taken
from the obtained posterior, we will apply RB type
sequences and compute the survival probability.

5.3.1 Background for randomized benchmarking

RB makes use of random elements of the Clifford
group, which for one qubit is constructed using two
generators, C = 〈H,S〉, where

H =
1√
2

(
1 1
1 −1

)
, and S =

(
1 0
0 i

)
. (25)

Up to a phase, C contains 24 elements.
A traditional RB experiment seeks to characterize

the errors present in our Clifford gates. We begin by
preparing a known state ρψ , and then apply a ran-
domly chosen sequence of Clifford elements. This is
followed by applying the element that is the inverse
of the group element formed by the sequence (not
just performing the sequence backwards). We then
measure our system using the measurement opera-
tor Eψ corresponding to our initial state.

If there are no errors in the Clifford gates, the ac-
tion of the sequence and its inverse would cancel,
leaving the state exactly as we found it. When there
are errors, however, we can compute what is termed
the survival probability of the original state. As the se-
quences increase in length, the survival probability
decays, as errors accumulate. Typically, one plots a
“decay curve” of the form

P (m) = (A−B)pm +B, (26)

where m is the sequence length, and where P (m) is
the mean survival probability over all sequences of
length m. That is, we define that

P (m) := Es∈s. t.|s|=m [Pr(0|[Φ]; s)] . (27)
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Figure 7: (Left) Comparison of OQT posterior likelihoods obtained using parameters in Table 2 to ideal likelihoods, pyGSTi
reconstruction, and experimental data for the trapped-ion data of [17]. The testing experiments consist of exponentially longer
sequences of repeated button presses, Gk

x and Gk
i . (Right) Total variation distance of pyGSTi and OQT reconstructions for

the same gate sequences. Here we see that the OQT results vary from those of pyGSTi for Gx and Gy, but give comparable
results for Gi. The total TVD for OQT across all testing experiments is lower, at 0.724, while that of pyGSTi is 0.961.

We note that since probabilities are not directly ob-
servable, and can only be estimated, caution must
be taken when estimating P (m) or interpreting es-
timates obtained in an ad hoc fashion.

Keeping this caution in mind, the form (26) for
the expectation value of the survival probability over
sequences of length m was derived analytically by
Magesan et al. [46], where it was noted that the pa-
rameter p contains information about the average fi-
delity of our Clifford elements. In particular,

p =
dFave(Λ)− 1

d− 1 , (28)

where d is the dimension of the Hilbert space under
consideration (d = 2 for a single qubit RB experi-
ment), where Fave(Λ) is the average gate fidelity of the
channel Λ, and where Λ is the average error in im-
plementing each member of the Clifford group. In
particular, Λ takes on the gauge-dependent form

Λ = EU∼C [(U
† • )ΛU ], (29)

where (U † • ) is the ideal action of U †, and ΛU is a
super-operator representing the actual implementa-
tion of U .

Despite the large literature on RB [46–60], both
the experimental implementation and statistical in-
terpretation are challenging. Since RB is frequently
used to assess suitability for quantum error correc-
tion applications, this is troubling. Since the tech-
nique that we describe here indirectly performs RB
through ex post facto simulation, we are less vulner-
able to some of these challenges. More details on this
can be found in Appendix C.

5.3.2 Performing RB using OQT

To perform RB using OQT, we need a box with 4 but-
tons: ρψ,Eψ, bH , and bS . As RB is robust to SPAM er-
rors, we assume for simplicity that SPAM is perfect.
That is, we focus on learning H and S. Our first step
is to choose an appropriate prior over H and S: we
pick one that represents our belief that errors in each
generator are due to both systematic over-rotations
and Ginibre noise. To apply over-rotation to the
Hadamard, we begin with its super-operator repre-
sentation GH = H ⊗ H . Mathematically, this can
also be written as H ⊗H = e

iπ
2 (H⊗1−1⊗H), which

we recognize as just evolution for the time π/2 under
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Table 3: OQT parameters for randomized benchmarking. Button labels are abbreviated bH → H and bS → S for simplicity
when specifying button sequences.

Button label Prior Example values
ρψ 1/

√
2
(

1 0 0 1
)

Perfect
H (1− ε)GH(δθH) + εΛH , δθH ∈ N (0, 0.0015), ΛH ∈ BCSZ(2) Eqs. (30),(34);

ε = 10−3

S (1− ε)Rz(π/2+ δθS)+ εΛS , δθS ∈ N (0, 0.0015), ΛS ∈ BCSZ(2) Eq. (34);
ε = 10−3

Eψ 1/
√

2
(

1 0 0 1
)

Perfect

Fiducial seqs. {(·), (H), (H,S,H), (S,H,S)}
Training exps. 100 random RB sequences of increasing length n n = 40, . . . 60
Testing exps. 100 random RB sequences at each of 87 logarithmically spaced n n = 10, . . . , 252

the Lindbladian L = (1⊗H −HT ⊗ 1). We perturb
the evolution time slightly to write

GH(δθ) = ei(
π
2 +δθ)(H⊗1−1⊗H)

= cos2(δθ)H ⊗H + sin2(δθ)1⊗ 1+
i

2 sin(2δθ) (1⊗H −H ⊗ 1) . (30)

An S gate is simply a Rz
(
π
2
)

gate, so in line with
the previous examples, we choose a distribution
Rz
(
π
2 + δθ

)
where δθ is normally distributed with

mean 0 and variance σ2
θ .

We then add Ginibre noise to both H and S by
sampling random super-operators from the BCSZ
distribution, such that the sampled super-operators
will have the form

GH → (1− ε)GH (δθH) + εΛH and (31)

GS → (1− ε)Rz
(π

2 + δθS

)
+ εΛS . (32)

For the presented example, we chose ε = 10−3,
and δθH , δθS ∈ N (0,σ2 = 0.0015). With respect to
the choice of σ2, it can be shown that a channel over-
rotated by δθ has fidelity F = 2

3 + 1
3 cos(2δθ). Fideli-

ties on the order of 0.999 are typical of qubits today,
and so assuming that δθ corresponds roughly to the
standard deviation, we choose σ2 = 0.0015. As we
are assuming the addition of Ginibre noise, the ac-
tual fidelity of our operations will be slightly lower
than this.

To generate data, we chose a ‘true’ version of GH
and GS by sampling from the prior. The sampled
parameters, as listed in the supplementary materials,

are

δθH = −0.007798, δθS = −0.047391, (33)

ΛH =


1 0 0 0

0.435103 −0.120449 −0.297836 0.062722
−0.314789 0.032982 −0.089239 0.080124
0.188424 0.101214 −0.284711 0.142465



ΛS =


1 0 0 0

−0.256911 0.53382 0.265858 0.104777
−0.018402 −0.178172 0.565879 0.061297
−0.187707 −0.349921 −0.279835 0.450564


where the super-operators ΛH , ΛS are expressed in
the Pauli basis.

With this prior distribution, we initialized a cloud
of 10000 particles. Bayesian inference was performed
to learn GH and GS by training with 100 RB se-
quences of length 40 to 60, using an equal number of
sequences at each length. We then tested the model
using 87 sequence lengths logarithmically spaced
from the range from 10 to 252, using 100 random se-
quences at each length. For each particle in the poste-
rior distribution, we compute the survival probabil-
ity for each sequence (the same set of sequences was
used for each particle). For each particle we can then
fit to a curve of the form P (m) = (A−B)pm +B to
obtain the traditional set of RB fit parameters. The
parameters A,B are constrained to be between 0 and
1, and p to be between −0.5 and 1. The fit is a least-
squares fit weighted by variance, since at every se-
quence length the survival probability is averaged
over 100 different sequences.

The mean survival probability is shown in Fig-
ure 8. At each length, the mean is computed first
for each particle over the set of 100 sequences, and
then a weighted average over these means is taken
using the particle weights in the posterior distribu-
tion. Since each particle yields a set of (A,B, p),
we can also compute the weighted mean of these
parameters, shown as the solid blue line in Fig-
ure 8. The mean fit parameters are (A,B, p) =
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Figure 8: RB decay curve for our learned Clifford group, with
95% credible interval. The survival probability of the y-axis
represents the average over RB sequences of a fixed length;
the mean survival probability on the plot is the survival prob-
ability at length m averaged over 100 experiments, on which
we then take the weighted average over the full posterior dis-
tribution. We fit a curve for each particle, and display here
the curve that is the weighted average of the fit parameters.
The fit has the form P (m) = (A−B)pm +B, with mean
parameters (A,B, p) = (0.999916, 0.481494, 0.991119), and
thus average gate set fidelity 0.995560. The ‘true’ average
gate set fidelity falls within the computed credible interval of
[0.995304, 0.996115].

(0.999916, 0.481494, 0.991119) The mean value of p
can be used to compute an average gate set fidelity
of (1 + p)/2 = 0.995560. Using the same testing ex-
periments, we can compute the RB decay rate for the
‘true’ gate set that generated the data. We obtain a
‘true’ value of 0.995337.

We can plot the 95% credible interval over all RB
parameters using the Bonferroni correction [61, 62].
This interval is shown in Figure 8 as dotted lines. We
obtain for p the interval [0.990608, 0.992230], corre-
sponding to fidelities of [0.995304, 0.996115], which
neatly contains the ‘true’ value of 0.995337. Details
and additional plots are available in the supplemen-
tary materials.

6 Quantum mechanics in an opera-
tional representation
The previous examples showed a wide range of
different characterization tasks that can be imple-
mented within an operational representation. How-
ever, a further foundational question is what the lim-
its of this formalism are, and whether or not all of
quantum mechanics can be understood within our
formalism. One of the fundamental challenges about
the gateset tomography model that we inherit is that
the description of the gateset is entirely discrete. That
is to say that the device in question contains a set of
buttons. However, quantum dynamics is naturally
continuous. Therefore, understanding quantum dy-

namics within the language of GST is challenging.
Here, we will show that we can think of such con-
tinuous dynamics as yielding an equation of motion
for the gateset of a quantum system. This not only
shows that operational GST is general enough to de-
scribe all of quantum mechanics, but also provides
a new way of modelling quantum dynamics using
only gauge-independent parameters (i.e. observable
quantities) and thereby eschewing the use of unob-
servable quantities such as quantum state operators
which appear in conventional treatments of quan-
tum dynamics.

In particular, to allow arbitrary quantum dynam-
ics it is convenient to think now of our opera-
tional representation as being an explicit function of
time. We assume here for simplicity that the gates,
fiducials and measurements all are given by time-
independent sequences. As an example, let us con-
sider the case where ∂t|ρ(t)〉〉 = L|ρ(t)〉〉, where L is
the Lindbladian super-operator and |ρ(t)〉〉 is the ini-
tial state evaluated for the system at time t.

The equation of motion for the operational repre-
sentation of the gate set is then

∂tẼi(t) = 〈〈E|Fi∂t|ρ(t)〉〉 = 〈〈E|FiL|ρ(t)〉〉,
∂tF̃ij(t) = 〈〈E|FiFj∂t|ρ(t)〉〉 = 〈〈E|FiFjL|ρ(t)〉〉, (34)

∂tG̃
(k)
ij (t) = 〈〈E|FiGkFj∂t|ρ(t)〉〉 = 〈〈E|FiGkFjL|ρ(t)〉〉,

A challenge with this representation is that its eval-
uation relies on objects that we do not know a priori
and are not related (directly) to observed quantities
since the expectation values of L are not assumed to
be known in the operational representation. In part,
this has to do with the way that we have chosen to
representL. In the following, let us assume that there
exist coefficients α` such that

L =
∑
`

α`F`. (35)

These values of α` can further be learned empirically
using the operational representation. Let us assume
that we empirically measure by choosing δ � 1 and
taking ∂tẼ(t) ≈ (Ẽ(t+ δ)− Ẽ(t))/δ. If we then take
the resultant vector to be ˙̃E(t), F̃(t) to be the matrix
representation of the F̃ij(t) tensor and take α to be
the unknown matrix of coefficients for the Lindbla-
dian using (35) then if F̃ is an invertible matrix then

˙̃E(t) = F̃(t)α⇒ α = F̃−1(t) ˙̃E(t). (36)

Thus such a representation can be learned if F̃(t) is
an invertible matrix. If not, a least-squares approxi-
mation can be found by applying the Moore-Penrose
pseudoinverse in its place. Of course, this merely
proves the existence of a solution (or a least-squares
solution) for the coefficients of the Lindbladian as a
function of the Fiducials. In practice, Bayesian meth-
ods such as the ones considered here and elsewhere
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may be of great use for both learning and quantifying
the uncertainty in the model Lindbladian.

Given a set of coefficients for the Lindbladian the
first order system of equations that governs the evo-
lution can be expressed as

∂tẼi(t) =
∑
`

α`〈〈E|FiF`|ρ(t)〉〉,

∂tF̃ij(t) =
∑
`

α`〈〈E|FiFjF`|ρ(t)〉〉, (37)

∂tG̃
(k)
ij (t) =

∑
`

α`〈〈E|FiGkFjF`|ρ(t)〉〉, (38)

As we can see the derivatives of Ẽi(t) depend on the
values of F̃ij(t) but the derivatives of F̃ij and G̃

(k)
ij

depend on expectation values of cubic functions of
the fiducials. Thus we can solve these equations,
but doing so may require more information in some
cases. Below we consider two important cases. The
first is where the set of fiducial super-operators is
not closed under multiplication and the second is
where the group is closed and and consists of at most
quadratic polynomials in the fiducials.

6.1 Dynamics for infinite sets of fiducials

As a first example of how the dynamics of the op-
erational representation works, consider the case
where the fiducial super-operators form an infinite
group wherein the group product is given by super-
operator multiplication. In this case, we cannot as-
sume any structure to the fiducials that will cause
products of them to contract to a finite set of super-
operators.

If we have such a model then the dynamics can
again be written in terms of a set of observables,
however the set that needs to be measured becomes
larger in this setting. In particular, we extend the def-
inition of the Ẽ and G̃ tensors such that

Ẽi1,...,ip(t) = 〈〈E|Fi1 · · ·Fip |ρ(t)〉〉.

G̃
(k)
ij1,...,jp(t) = 〈〈E|FiGkFj1 · · ·Fjp |ρ(t)〉〉. (39)

Under these assumptions the dynamics of the opera-
tional representation of the gate set takes the form of

a driven first order dynamical system.

∂tẼi(t) =
∑
`

α`F̃i`(t),

∂tF̃ij(t) =
∑
`

α`Ẽij`(t),

...
∂tF̃i1...in(t) =

∑
`

α`Ẽii...in`(t),

...
∂tG̃

(k)
ij (t) =

∑
`

α`G̃
(k)
ij` (t)

...
∂tG̃

(k)
ij1...jn

(t) =
∑
`

α`G̃
(k)
ij1...jn`

(t)

... (40)

Thus the entire dynamics of the gate set can be
predicted if the Ẽ and G̃ tensors are known in
their entirety. This is operationally equivalent to
the Schrödinger equation, while eschewing the need
for unobservable quantities such as the quantum
state. While solving the resultant dynamical equa-
tions formally requires knowing an infinite hierar-
chy of terms to predict future dynamics perfectly, in
many cases the super-operators for the fiducials will
form a finite group making knowledge of the com-
plete hierarchy of tensors unnecessary.

Finally, in practice the entire hierarchy is not
needed in order to accurately estimate the dynamics
for all subsequent times from data at a single time
given the decomposition of the Lindbladian into a
sum of fiducials. We have from Taylor’s theorem and
Stirling’s approximation that∣∣∣∣∣∣Ẽi(t+ ∆)−

K∑
j=0

∂jt Ẽi(t)∆
j

j!

∣∣∣∣∣∣ ≤ (
∑
` |α`|∆)K+1

(K + 1)!

≤
(
(
∑
` |α`|∆)
K + 1

)K+1
. (41)

Thus by solving this equation for the value of K that
yields error ε we find that a sufficient value of K is

K =

 ln(1/ε)

LambertW
(

ln(1/ε)
(
∑

`
|α`|∆)

)
 ∈ O( ln(1/ε)

ln(ln(1/ε))

)
,

(42)
if ∆ ≤

∑
` |α`|. Thus the total number of terms

needed to simulate the dynamics for a short time
step with error at most ε. varies logarithmically with
the error tolerance. Each such term can be approxi-
mated using Monte-Carlo sampling such that the es-
timate of the derivatives is at most ε using a num-
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ber of samples that scales as O(poly(1/ε)) and there-
fore even in the case where the algebra does not close
the dynamics can be simulated using a small number
of observables. It should be noted that in the event
that the fiducials form a closed group that this scal-
ing improves exponentially Monte-Carlo sampling is
no longer required to estimate the derivatives. This
shows that under reasonable assumptions the opera-
tional representation can also be used to describe the
dynamics of a quantum system that we can probe ex-
perimentally using a set of fiducial operations and
gates. Hence, while inspired by problems of charac-
terization in quantum systems, much broader classes
of quantum dynamical problems can also be dis-
cussed using our formalism while only making ref-
erence to observable quantities.

6.2 Dynamics for closed sets of fiducials
Next let us consider a simpler case where the set of
fiducial super-operators is closed under multiplica-
tion. Specifically, let S = {Fi

⋃
FiFj} be the set of

all monomials and binomials in the fiducials. Next
because the set is closed under multiplication there
exists a function g such that for any si and sj in S
there exists sg(i,j) such that sisj = sgf (i,j). Also for
simplicity, assume that the sets are laid out in lexi-
cographic ordering such that s1 = F1, s2 = F2, . . ..
It then follows that if we use the fact that the set is
closed then the equations of motion for the opera-
tional representation greatly simplify to the follow-
ing finite system of equations

∂tẼi(t) =
∑
`

α`〈〈E|FiF`|ρ(t)〉〉 =
∑
`

α`F̃i`(t),

∂tF̃ij(t) =
∑
`

α`〈〈E|sg(i,g(j,`))|ρ(t)〉〉,

∂tG̃
(k)
ij (t) =

∑
`

α`〈〈E|FiGkFjF`|ρ(t)〉〉 =
∑
`

G̃
(k)
ij` (t),

∂tG̃
(k)
ij1j2

(t) =
∑
`

α`〈〈E|FiGksg(j1,g(j2,`))|ρ(t)〉〉 (43)

These equations can, in many cases be solved directly
without having to truncate (as was done in the infi-
nite case considered above). Also, because of the lack
of a curse of dimensionality the resulting equations
can be solved within error ε using O(polylog(1/ε)
operations via existing differential equations solvers.
For this reason, cases where the fiducial operators
form a closed (or approximately closed) set under
multiplication can greatly simplify the equations of
motion. However, it should be noted that such cases
are highly restrictive and, for example, preclude the
inclusion of depolarizing noise or similar effects be-
cause such noise models will typically lead to a fidu-
cial set that is not closed under multiplication. For
such situations, truncating the infinite dynamics at
finite order may be preferable.

6.3 Generator Learning
A further observation is that because the dynam-
ics considered above can be represented as a set of
coupled first-order differential equations, we can use
this representation to think of generalize the notion
of Hamiltonian learning beyond the framework orig-
inally proposed. In particular, consider the dynamics
in (43). Let us consider a concatenation of all such
terms in (43) of the form

Ψ(t) = [Ẽ(t), F̃(t), G̃(k)
ij (t), G̃(k)

ij` (t)]
T , (44)

where we explicitly include the indices of G above
to differentiate the rank 2 and rank 3 G tensors. We
then have from the theory of differential equations
and the fact that (43) is a homogeneous first-order
differential equation that there exists a generator K
such that for any condition Ψ(0),

∂tΨ(t) = KΨ(t), Ψ(t) = eKtΨ(0). (45)

This means that we can also infer dynamical models
for a gateset using Bayesian inference. In particular,
if we have an initial description of our gateset Ψ(0)
then evolve some time t and after applying a gate
sequence then we would have that the posterior dis-
tribution can be expressed as

P (K|E) = P (E|K; Ψ(0)G0, . . . ,GN−1, t)P (K)∫
P (E|K; Ψ(0)G0, . . . ,GN−1, t)P (K)dK

(46)
This model ends up assuming that the time required
for the gate sequence to be implemented is negligi-
ble compared to the dynamical timescale for the gate-
set. In the event that the timescales are comparable,
then K only becomes the instantaneous generator of
time-displacements for the gateset and the result will
become an ordered operator exponential rather than
the simple operator exponential given above.

The key point behind these observations is that
techniques that are more reminiscent of quantum
Hamiltonian learning (such as in [44]) can also be in-
cluded within our operational representation. This
not only shows that the framework is broader than it
may have first appeared but also that we can apply
the same ideas employed in that literature in order
to infer models for the dynamics of a gateset. This
allows some forms of non-Markovian noise to be in-
corporated in our models without leaving the opera-
tional representation.

7 Conclusions
We have demonstrated a framework for quantum to-
mography in which we can represent many other
characterization tasks. Working with a gauge-
independent representation of the system, we can
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learn its behavior from experimental data and pre-
dict the outcomes of future experiments. OQT gives
us the freedom to incorporate prior information com-
putationally (without any physical experiments). Fu-
ture improvements to OQT involve the extension to
two-qubit operations, as well as allowing for buttons
to be held down for arbitrary duration (i.e. time-
dependent operations).
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A Review of Bayesian estimators
In this Appendix, we provide a brief review of esti-
mation theory as applied to Bayesian inference. In
doing so, it is convenient to first consider estimation
more generally. Suppose that there is some vector
x ∈ X of parameters that we would like to learn
given some data D ∈ D, where X is the set of fea-
sible values for x, and where D is the set of data we
could have possibly obtained. Then, we will say that
any function x̂(·) : D → X which accepts data and
returns estimates is an estimator.

For example, given any x0 ∈ X , the constant func-
tion x̂(D) = x0 is an estimator that disregards all ev-
idence in favor of returning x0. Clearly, while this is
a valid estimator, it is not a very good one to use in
practice. Our task in estimation theory is then to rec-
ommend a particular estimator that is desirable ac-
cording to some set of practical considerations. We
may, for example, want an estimator that incurs as
little error as possible.

We can formalize this desire by introducing a func-
tion L : (X ×X ) → R+ such that L(x̂, x) is the loss
that we incur if we return x̂ as our estimate when the
true value is x. For example, if we are estimating a
single real number (X = R), then we may choose the
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squared error L(x̂,x) = (x̂− x)2 as our loss. More
generally, for X = Rd for d ∈ N, the quadratic loss
LQ(x̂, x) = (x̂ − x)TQ(x̂ − x) is a well-defined loss
function for any positive definite matrix Q.

Once we have decided upon a loss function, we
can then reason about what losses we may incur in a
given experiment using a particular estimator. To do
so, we first need to extend our definition of loss from
estimates to estimators by taking the average over all
possible data sets that an estimator could take as in-
put. Concretely, given a loss function L, define the
risk R : (D → X )→ R+ of an estimator as

R(x̂, x) := ED∼Pr(D|x)[L(x̂(D), x)]. (47)

The risk implicitly defines a multi-objective opti-
mization problem, in that an estimator that works
well for a particular ground truth need not work well
more generally. At an extreme, the constant estima-
tor x̂(D) = x0 works beautifully well when x = x0.
We thus at a minimum want an estimator that min-
imizes the risk that we incur in some case of inter-
est. To formalize this notion, we say that an estima-
tor x̂(·) is dominated by an estimator x̂′(·), if for all
x, R(x̂, x) ≥ R(x̂′, x), and if there exists some x for
which this inequality is strict. Put differently, an es-
timator dominates another estimator if it is less risky
in all circumstances, such that there is no decision-
theoretic basis for preferring the dominated estima-
tor. An estimator which is not dominated by any
other estimator is said to be admissible.

From a Bayesian perspective, however, we are gen-
erally most interested in minimizing what we expect
the risk to be given our experience with a system so
far. We can make this precise by taking the expecta-
tion value of the risk with respect to a prior distribu-
tion to obtain the Bayes risk of an estimator,

r(x̂) := Ex∼Pr(x)[R(x̂, x)]. (48)

The unique estimator minimizing the Bayes risk for
a particular loss function is called the Bayes estimator
for that loss,

x̂Bayes := arg minx̂(·) r(x̂(·)). (49)

By construction, the Bayes estimator is admissible:
any estimator that dominates the Bayes estimator
would have a strictly smaller Bayes risk. Under fairly
weak conditions [63], however, we can conclude the
converse as well, namely that every admissible es-
timator is the Bayes estimator for a particular prior
distribution.

In full generality, computing the Bayes estimator
for a particular loss function requires minimizing
over functions of all data sets, which is not feasible
or practical. Some loss functions, however, allow for
much more efficiently computing Bayes estimators.
In particular, Bregman divergences are loss functions
which can be written as the difference between a con-
vex function and its first-order Taylor expansion. If

a loss function is Bregman, then the celebrated theo-
rem of [42] shows that

x̂Bayes(D) = Ex[x|D]. (50)

That is, the posterior mean of x is the Bayes estimator
for any Bregman divergence.

Many practically relevant loss functions are Breg-
man divergences, including the squared error,
quadratic loss, and Kullback–Liebler divergence.
Thus, the posterior mean gives us a method of effi-
ciently computing admissible estimators that mini-
mize the average error we incur in inference proce-
dures. As we saw in Section 3.2, the posterior mean
can be efficiently computed using particle filtering,
giving us a practical method for reporting Bayes es-
timates.

B Quantum state tomography
In traditional quantum state tomography, we seek to
learn an unknown state using a set of measurements
that are presumed to be perfectly known. Naively
performing this task, however, leads to estimates
that are not self-consistent. We provide a demonstra-
tion of this by performing OQT on unknown rebits,
i.e. qubits with no y-components.

As in previous examples, the first step is to phrase
the problem in terms of our operational formalism.
We will consider the case where our box again has
4 buttons: two SPAM buttons, and ones that we be-
lieve perform Rx

(
π
2
)

(denoted bRx ) and Ry
(
π
2
)

(de-
noted bRy ). We add uncertainty to our rotation but-
tons by setting the priors for Rx

(
π
2
)

and Ry
(
π
2
)

to
be over-rotations with a mean of 0 and a variance
of 10−3. We also add depolarization to the rotation
gates, with strength p ∈ U(0, 0.1).

We sample our states from the Ginibre rebit dis-
tribution, the uniform distribution over rebit states.
Such states are sampled by computing

ρ =
XX†

Tr(XX†)
, Xij ∈ N (0, 1), (51)

where in our case, X is a 2 × 3 matrix9. The rebit
states are subject to a small amount of depolariza-
tion with strength p ∈ U(0, 0.1). We apply similar
depolarization to the measurement E = |0〉 〈0|. Full
details of our parameter specifications are shown in
Table 4.

The set of chosen fiducial sequences is f =
{(·), (Rx), (Ry), (Rx,Rx)}. If our buttons were

9In the more general case, the Ginibre distribution of d× d
density matrices is sampled by populating a d× d matrix X
with complex values a+ bi where both a and b are randomly
sampled from N (0, 1). For random real density matrices, we
must sample matrices of size d× (d+ 1) [64].
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Table 4: OQT parameter specification for rebit state tomography. Button labels are abbreviated bRx
→ Rx for notational

simplicity. State tomography was performed independently for 1000 states (and associated gate sets) sampled from the
distributions below. As such, we do not provide examples of the sampled parameters in this case. For all priors, the value of
p is the amount of depolarization.

Button label Prior Example values
ρ Ginibre rebit distribution, Eq.(51), p ∈ U(0, 0.1) 1000 randomly selected states
Rx Rx(π/2 + ε), ε ∈ N (0, 10−3), p ∈ U(0, 0.1)
Ry Ry(π/2 + ε), ε ∈ N (0, 10−3), p ∈ U(0, 0.1)
E 1/

√
2
(

1 0 0 1
)

, p ∈ U(0, 0.1)

Fiducial seqs. {(·), (Rx), (Ry), (Rx,Rx)}
Training exps. 50 randomly chosen products of n fiducials n = 1, . . . , 10; n increases linearly
Testing exps. 50 randomly chosen products of n fiducials n = 5, . . . , 15; n increases linearly
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Figure 9: What happens when we perform state tomography ‘naively’ using the measurement results from noisy gates we had
assumed were perfect. (Left) The 1000 initial random states, sampled from the prior. They are rebits, and have only x and z
components. (Center) A ‘pseudo Bloch circle’ constructed by pulling coordinates from the initial operational representation,
i.e. fiducial experiment probabilities, as per (52). Points are colored by their distance to the corresponding true states in the
left panel. (Right) The same plot as for the middle, but calculating the Bloch coordinates using the posterior mean after
performing OQT. See Figure 11 for a histogram of the colored difference before and after reconstruction.

perfect, this set of fiducials provides a set of mea-
surements that is informationally complete in the tra-
ditional sense, meaning that the measurements span
the entire Bloch sphere. However in practice these
will be noisy - our definition of informationally com-
plete thus shifts to whether or not the fiducials pro-
duce a well-conditioned F̃ ; we find that the chosen
set is reliable in practice.

In the ‘naive’ method of performing state tomog-
raphy, the fiducial sequences and associated proba-
bilities would be directly related to the coordinates
on the Bloch sphere (ax, ay, az):

ax = 2px − 1, px = F̃02 = Tr [|ρ〉〉〈〈E|Ry(π/2)]
ay = 2py − 1, py = F̃01 = Tr [|ρ〉〉〈〈E|Rx(π/2)](52)
az = 2pz − 1, pz = F̃00 = Tr [|ρ〉〉〈〈E|]

In the remainder of this section, we will demonstrate
the consequences of this naive method.

We performed state tomography with OQT inde-
pendently on 1000 random states. In Figure 9, we

have plotted the true Bloch coordinates of the ini-
tial states in the left panel. In the middle panel, we
see the coordinates obtained from their initial op-
erational representations according to (52). States
pulled from the Ginibre ensemble should lie firmly
within the boundaries of the Bloch sphere, or circle,
in the rebit case. However reconstruction according
to (52) produces Bloch coordinates that fall well out-
side the boundaries. Furthermore, they pick up small
y-component, as demonstrated in the first two panels
of Figure 10.

For our OQT experiments, we push the state
preparation button once, then apply a sequence of
randomly selected gate buttons from a minimum
length of 1 to a maximum length of 10. We then mea-
sure, record the outcome, and repeat 50 cases to form
a training corpus. The sequence length steadily in-
creased during training, with the same amount of se-
quences generated at each length.

We note that Figure 9 illustrates the dangers of
‘naive’ state tomography in the presence of measure-
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Figure 10: For the same set of states in Figure 9, we color the states according to the y component of the pseudo Bloch
vectors. In theory this should always be 0, but we observe here that our naive reconstruction method produces slight deviations
both before and after reconstruction. However we note that after reconstruction, the deviation is less, as displayed in the right
panel of Figure 11.
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Figure 11: Histograms of pseudo Bloch vector properties before and after performing OQT. Solid lines show the mean of the
corresponding distribution. OQT learns these vectors well and produces comparable distributions, but this naive method of
tomography nevertheless leads to a noticeable y component added to many of the rebits.

ment errors. For each of the hypotheses shown in
the middle and right-hand plots of Figure 9, if a
naive tomographer were to take an infinite amount
of data from a system described by that hypothesis
and then reconstruct the initial state ρ, they would
correctly conclude either that their data was impos-
sible, or that ρ lies outside the Bloch sphere entirely.
Put differently, if one assumes that the measurement
sequences used in a state tomography experiment
are ideal, then naive state tomography will return ab-
surd results even in the limit of infinite data.

C Details on randomized benchmark-
ing

In this appendix, we discuss the advantages of per-
forming randomized benchmarking within an oper-
ational framework.

C.1 Using operational formalisms to perform
randomized benchmarking
Magesan et al. [46] derived that A and B contain in-
formation about the state preparation and measure-
ment errors incurred by a randomized benchmark-
ing experiment. They are expressed analytically as

A = Tr
(
EψΛ

(
ρψ
))

, (53)

and B = Tr
(
EψΛ

(
1

d

))
. (54)

A key point here is that traditional RB assumes that
Λ is the same for all elements of the Clifford group.
However, as we will see, Clifford elements imple-
mented in the GST framework will naturally have
different errors, as elements are composed of se-
quences of H and S of varying lengths.

If the implementations of each Clifford element are
perfect, we obtain A = 1, B = 1/2, and p = 1,
and so the survival probability is identically 1 for
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all sequences. However in the worst case, we ob-
tain something essentially depolarized and so p = 0,
meaning that the curve will immediately decay to
B = 1/2. Fitting the experimental data to a curve
of this form can thus give an idea of the value of p,
which in turn can give us an estimate of the average
gate fidelity.

Before proceeding, it is helpful to establish that,
despite its apparent simplicity, learning figures of
merit from randomized benchmarking data is an as-
tonishingly subtle problem that warrants no small
amount of caution. Especially given the rigorous
demands placed on randomized benchmarking re-
sults for application to predicting the success of fault-
tolerance, it is of the utmost importance that the re-
sults of RB experiments are understood in full recog-
nition of the caveats placed on said results by cur-
rent experimental and theoretical limitations. For in-
stance, as mentioned above, for instance, the deriva-
tion of Magesan et al. [46] rests critically on the as-
sumption that the noise on each element of a gate set
is independent of which element is being considered.
While Magesan et al. [46] does provide a deriva-
tion that attempts to include gate-dependence, later
counterexamples have shown that this assumption
cannot even be made in a gauge-independent fash-
ion [58] — this implies that the gate-independence
assumption cannot be experimentally tested. Later
work has shown that the effects of gate-dependence
exponentially small effects on randomized bench-
marking data [59, 65], but it is still an open question
as to how to meaningfully interpret RB data.

Perhaps more pressing still, the original deriva-
tion of Magesan et al. [46] only derived the mean sur-
vival probability and not any higher moments. A fit-
ting procedure such as homoscedastic least-squares
fitting (the default procedure offered by MATLAB,
SciPy, and many other packages, see Appendix C.2
for a review) will thus necessarily give incorrect or
misleading answers, as the variance over random-
ized benchmarking data depends both on the vari-
ance within each sequence and over shots of that se-
quence, and on the variance between different se-
quences. This challenge can be overcome by com-
mitting to taking exactly one repetition of each se-
quence before choosing a new sequence [66], but this
is feasible only for a small number of experimental
platforms, such as those controlled by custom FPGA
firmware [67]. As an alternative solution, one can
introduce nuisance parameters to track the unknown
higher moments and estimate them at the same time
as the expectation of interest. A recent proposal of
this form was advanced by Hincks et al. [37], who
introduced a parameterization for RB protocols that
includes a distribution at each sequence length that
is then sampled using Hamiltonian Monte Carlo, ef-
fectively introducing an uncountable number of nui-
sance parameters in a way that they can be efficiently

estimated.
From this perspective, using OQT to analyze ran-

domized benchmarking data provides an explicit
and gauge-independent nuisance parameterization
that avoids both the interpretational and practical
difficulties of drawing inferences from RB data. We
can then rely on the procedure of Blume-Kohout et al.
[17] to synthesize from a final posterior over opera-
tional representations RB data of a form that is im-
mediately amenable to analysis by even relatively in-
formal methods such as heteroscedastic least-squares
fitting.

C.2 Estimation within randomized benchmark-
ing
In this Appendix, we review the estimation theory
underlying randomized benchmarking and summa-
rize some of the most prevalent pitfalls. To do so,
we will rely heavily on the Likelihood Principle [68],
which informally states that in order to make deci-
sions consistent with experimental observation, we
must base our decisions only on the evaluation of a
likelihood function at our data, and cannot base our
inference on any property of our data that is not ex-
pressed in the likelihood. For RB in particular, this
consistency requirement forces us to describe our im-
plementations of RB in an operational manner, such
that we can write down likelihood functions.

For instance, we recall that as per (26), the Mage-
san et al. [46] model gives us that the mean sequence
probability

P (m) := (A−B)pm +B (55)

for some parameters y = (p,A,B). This is not yet an
operational description, however, as sequence prob-
abilities are not observable properties of finite-length
experiments 10. To make an operational description
of the Magesan et al. [46] model (26), let us be more
precise about a description of our experimental pro-
cedure. As a prototypical example of such a descrip-
tion, most RB experiments proceed as follows:

1. Perform the following for each m ∈
{m0, . . . ,mM−1}:

(a) Perform the following N times:

i. Choose a random sequence s.
ii. Perform the following K times:

A. Prepare a state ρ.
B. Apply the sequence s
C. Measure the POVM {E,1−E}.

10As an amusing aside, this realization implies that the word
“observable” in many formulations of quantum mechanics is
reserved for those objects which are fail to be observable. It is
for this reason that we prefer the more operational description
offered by the POVM formulation.
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iii. Record the number of times thatE was
observed in the above loop as k(s).

(b) Record the mean of k(s) for each s sampled
in the above loop as n(mi).

We recognize the innermost loop as being a sample
from the binomial distribution

k(s) ∼ Bin(Pr(E|[Φ]; s),K), (56a)

Pr(k|s) =
∑
k

(
K

k

)
pks (1− ps)

K−k, (56b)

where we have taken the shorthand ps :=
Pr(E|[Φ]; s) to denote sequence probabilities of the
form considered in the rest of the paper. From the
perspective of RB, however, this is problematic, as a
sequence probability for the sequence s can in gen-
eral depend on any element of the operational rep-
resentation for [Φ]. We may not be able to compute
the sequence probability Pr(E|[Φ]; s) given only hy-
potheses about the RB parameters y.

Nonetheless, the Magesan et al. [46] model gives
us hope that we may still be able to formulate a like-
lihood function for the entire experiment, even if we
cannot do so for each individual sequence within an
RB procedure. Following this hope, let us marginal-
ize (56) over the choice of sequence s, since we have
chosen s randomly at the start of our loop over se-
quences. Concretely,

Pr(k|[Φ]; |s| = mi)

= Es s.t. |s|=mi

[∑
k

(
K

k

)
pks (1− ps)

K−k
]

=
∑
k

(
K

k

)
Es s.t. |s|=mi

[
pks (1− ps)

K−k
]

.

(57)

Thus, if we wish to compute likelihood functions for
K shots at each sequence, we must be able to com-
pute the Kth moment of the distribution of sequence
probabilities over all sequences of a given length.

This makes it clear how both the techniques of
Granade et al. [66] and Hincks et al. [37] operate. The
former restricts attention to the case in which K = 1,
such that the needed moment is precisely that given
by Magesan et al. [46], while the latter introduces ad-
ditional parameters (formally, nuisance parameters)
to track the higher moments of distributions over se-
quences.

Though both of these approaches are provided
along with software implementations, they may be
practical constraints that prevent using the K = 1
experimental limitation or introducing large num-
bers of nuisance parameters. In practice, therefore,
convenience often demands deviating from statisti-
cal principle and exploring what can be done with
ad hoc methods. For example, least-squares methods
are often used in experimental papers to report re-
sults from randomized benchmarking observations

[69]. In this case, such methods are ad hoc in the sense
that least-squares fitting requires additional assump-
tions that are often left implicit.

In particular, if one is attempting to learn the ar-
gument x of a function f(x) from samples yi =
f(xi)+ εi where εi ∼ N (0,σ2), then the least-squares
solution can be readily shown to be the maximum
likelihood estimator for x. Thus, if a minimum vari-
ance unbiased estimator exists for x, it is equal to
the least-squares solution. Applying this argument
to the RB case thus demands a strong additional as-
sumption be made, namely that

n(mi) ∼ N (P (m),σ2). (58)

By using heteroscedastic least-squares fitting, we can
relax this assumption such that the variance on each
n(mi) is a function of mi,

n(mi) ∼ N (P (m),σ2
i ). (59)

In order to apply heteroscedastic least-squares fit-
ting, we must therefore be able to assume normality,
and we must have a way to compute σ2

i for each mi.
In typical experiments, we do not have direct ac-

cess to such variances. That said, when synthesiz-
ing RB data from a posterior over operational repre-
sentations, something remarkable happens: we can
interpret the variance as the mean Bayes risk for
the prediction loss over sequences. This interpreta-
tion makes it possible to directly compute σ2

i from
our posterior uncertainty, motivating the use of het-
eroscedastic least-squares fitting.
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