Operational, gauge-free quantum tomography

Olivia Di Matteo1,2,3, John Gamble4, Chris Granade4, Kenneth Rudinger5, and Nathan Wiebe4,6,7

1TRIUMF, Vancouver, British Columbia, Canada V6T2A3
2Department of Physics and Astronomy, University of Waterloo, Waterloo, ON, Canada
3Institute for Quantum Computing, University of Waterloo, Waterloo, ON, Canada
4Microsoft Research, Quantum Architectures and Computation Group, Redmond, Washington 98052, USA
5Quantum Performance Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
6Department of Physics, University of Washington, Seattle, WA 98195, USA
7Pacific Northwest National Laboratory, Richland, WA 99352, USA

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


As increasingly impressive quantum information processors are realized in laboratories around the world, robust and reliable characterization of these devices is now more urgent than ever. These diagnostics can take many forms, but one of the most popular categories is $\textit{tomography}$, where an underlying parameterized model is proposed for a device and inferred by experiments. Here, we introduce and implement efficient operational tomography, which uses experimental observables as these model parameters. This addresses a problem of ambiguity in representation that arises in current tomographic approaches (the $\textit{gauge problem}$). Solving the gauge problem enables us to efficiently implement operational tomography in a Bayesian framework computationally, and hence gives us a natural way to include prior information and discuss uncertainty in fit parameters. We demonstrate this new tomography in a variety of different experimentally-relevant scenarios, including standard process tomography, Ramsey interferometry, randomized benchmarking, and gate set tomography.

► BibTeX data

► References

[1] M. Reiher, N. Wiebe, K. M. Svore, D. Wecker, and M. Troyer, ``Elucidating reaction mechanisms on quantum computers,'' Proceedings of the National Academy of Sciences , 201619152 (2017).

[2] C. Ferrie, ``Self-Guided Quantum Tomography,'' Physical Review Letters 113, 190404 (2014).

[3] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L. O'Brien, M. A. Nielsen, and A. G. White, ``Ancilla-assisted quantum process tomography,'' Phys. Rev. Lett. 90, 193601 (2003a).

[4] C. Granade, J. Combes, and D. G. Cory, ``Practical Bayesian tomography,'' New Journal of Physics 18, 033024 (2016).

[5] R. Blume-Kohout, ``Optimal, reliable estimation of quantum states,'' New J. Phys. 12, 043034 (2010).

[6] F. Huszár and N. M. T. Houlsby, ``Adaptive Bayesian quantum tomography,'' Physical Review A 85, 052120 (2012).

[7] D. C. McKay, A. W. Cross, C. J. Wood, and J. M. Gambetta, ``Correlated randomized benchmarking,'' (2020), arXiv:2003.02354 [quant-ph].

[8] M. Quadeer, M. Tomamichel, and C. Ferrie, ``Minimax quantum state estimation under bregman divergence,'' Quantum 3, 126 (2019).

[9] P. Cerfontaine, R. Otten, and H. Bluhm, ``Self-consistent calibration of quantum gate sets,'' (2019), arXiv:1906.00950 [quant-ph] https:/​/​doi.org/​10.1103/​PhysRevApplied.13.044071.

[10] T. Guff, Y. R. Sanders, N. A. McMahon, and A. Gilchrist, ``Decision-making in quantum state discrimination,'' (2019), arXiv:1906.09737 [quant-ph].

[11] L. J. Fiderer, J. Schuff, and D. Braun, ``Neural-network heuristics for adaptive bayesian quantum estimation,'' (2020), arXiv:2003.02183 [quant-ph].

[12] J. M. Lukens, K. J. Law, A. Jasra, and P. Lougovski, ``A practical and efficient approach for bayesian quantum state estimation,'' (2020), arXiv:2002.10354 [quant-ph] https:/​/​doi.org/​10.1088/​1367-2630/​ab8efa.

[13] J. B. Altepeter, D. Branning, E. Jeffrey, T. C. Wei, P. G. Kwiat, R. T. Thew, J. L. O'Brien, M. A. Nielsen, and A. G. White, ``Ancilla-assisted quantum process tomography,'' Phys. Rev. Lett. 90, 193601 (2003b).

[14] S. T. Merkel, J. M. Gambetta, J. A. Smolin, S. Poletto, A. D. Córcoles, B. R. Johnson, C. A. Ryan, and M. Steffen, ``Self-consistent quantum process tomography,'' Physical Review A 87, 062119 (2013).

[15] R. Blume-Kohout, J. K. Gamble, E. Nielsen, J. Mizrahi, J. D. Sterk, and P. Maunz, ``Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped ion qubit,'' (2013), arXiv:1310.4492 [quant-ph].

[16] J. P. Dehollain, J. T. Muhonen, R. Blume-Kohout, K. M. Rudinger, J. K. Gamble, E. Nielsen, A. Laucht, S. Simmons, R. Kalra, A. S. Dzurak, et al., ``Optimization of a solid-state electron spin qubit using gate set tomography,'' New Journal of Physics 18, 103018 (2016).

[17] R. Blume-Kohout, J. K. Gamble, E. Nielsen, K. Rudinger, J. Mizrahi, K. Fortier, and P. Maunz, ``Demonstration of qubit operations below a rigorous fault tolerance threshold with gate set tomography,'' Nature Communications 8, 14485 (2017).

[18] K. Rudinger, S. Kimmel, D. Lobser, and P. Maunz, ``Experimental demonstration of a cheap and accurate phase estimation,'' Phys. Rev. Lett. 118, 190502 (2017).

[19] K. Rudinger, T. Proctor, D. Langharst, M. Sarovar, K. Young, and R. Blume-Kohout, ``Probing context-dependent errors in quantum processors,'' Physical Review X 9, 021045 (2019).

[20] M. Rol, C. Bultink, T. O’Brien, S. De Jong, L. Theis, X. Fu, F. Luthi, R. Vermeulen, J. de Sterke, A. Bruno, et al., ``Restless tuneup of high-fidelity qubit gates,'' Physical Review Applied 7, 041001 (2017).

[21] Y. Chen, M. Farahzad, S. Yoo, and T.-C. Wei, ``Detector tomography on IBM quantum computers and mitigation of an imperfect measurement,'' Physical Review A 100, 052315 (2019).

[22] M. R. Geller, ``Rigorous measurement error correction,'' (2020), arXiv:2002.01471 https:/​/​doi.org/​10.1088/​2058-9565/​ab9591 [quant-ph].

[23] L. Govia, G. Ribeill, D. Ristè, M. Ware, and H. Krovi, ``Bootstrapping quantum process tomography via a perturbative ansatz,'' Nature communications 11, 1 (2020).

[24] S. S. Hong, A. T. Papageorge, P. Sivarajah, G. Crossman, N. Didier, A. M. Polloreno, E. A. Sete, S. W. Turkowski, M. P. da Silva, and B. R. Johnson, ``Demonstration of a parametrically activated entangling gate protected from flux noise,'' Physical Review A 101, 012302 (2020).

[25] A. Hughes, V. Schäfer, K. Thirumalai, D. Nadlinger, S. Woodrow, D. Lucas, and C. Ballance, ``Benchmarking of a high-fidelity mixed-species entangling gate,'' (2020), arXiv:2004.08162 [quant-ph] https:/​/​doi.org/​10.1103/​PhysRevLett.125.080504.

[26] M. K. Joshi, A. Elben, B. Vermersch, T. Brydges, C. Maier, P. Zoller, R. Blatt, and C. F. Roos, ``Quantum information scrambling in a trapped-ion quantum simulator with tunable range interactions,'' (2020), arXiv:2001.02176 [quant-ph] https:/​/​doi.org/​10.1103/​PhysRevLett.124.240505.

[27] S. Mavadia, C. Edmunds, C. Hempel, H. Ball, F. Roy, T. Stace, and M. Biercuk, ``Experimental quantum verification in the presence of temporally correlated noise,'' NPJ Quantum Information 4, 1 (2018).

[28] M. Ware, G. Ribeill, D. Riste, C. Ryan, B. Johnson, and M. P. da Silva, ``Experimental pauli-frame randomization on a superconducting qubit,'' Bulletin of the American Physical Society 62 (2017).

[29] E. Nielsen, R. J. Blume-Kohout, K. M. Rudinger, T. J. Proctor, L. Saldyt, et al., Python GST Implementation (PyGSTi) v. 0.9, Tech. Rep. (Sandia National Lab.(SNL-NM), Albuquerque, NM (United States), 2019).

[30] E. Nielsen, K. Rudinger, T. Proctor, A. Russo, K. Young, and R. Blume-Kohout, ``Probing quantum processor performance with pyGSTi,'' (2020), arXiv:2002.12476 [quant-ph].

[31] Ł. Rudnicki, Z. Puchała, and K. Zyczkowski, ``Gauge invariant information concerning quantum channels,'' Quantum 2, 60 (2018).

[32] J. Lin, J. J. Wallman, and R. Laflamme, ``Independent state and measurement characterization in quantum computers,'' (2019), arXiv:1910.07511 [quant-ph].

[33] A. Doucet and A. M. Johansen, A Tutorial on Particle Filtering and Smoothing: Fifteen Years Later (2011).

[34] W. K. Hastings, ``Monte Carlo sampling methods using Markov chains and their applications,'' Biometrika 57, 97 (1970).

[35] M. Betancourt, ``A Conceptual Introduction to Hamiltonian Monte Carlo,'' (2017), arXiv:1701.02434 [stat].

[36] M. D. Hoffman and A. Gelman, ``The No-U-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo,'' (2011), arXiv:1111.4246 [cs, stat].

[37] I. Hincks, J. J. Wallman, C. Ferrie, C. Granade, and D. G. Cory, ``Bayesian Inference for Randomized Benchmarking Protocols,'' (2018), arXiv:1802.00401 [quant-ph].

[38] A. L. Barker, D. E. Brown, and W. N. Martin, ``Bayesian estimation and the Kalman filter,'' Computers & Mathematics with Applications 30, 55 (1995).

[39] C. Granade, C. Ferrie, I. Hincks, S. Casagrande, T. Alexander, J. Gross, M. Kononenko, and Y. Sanders, ``QInfer: Statistical inference software for quantum applications,'' Quantum 1, 5 (2017).

[40] J. Liu and M. West, ``Combined parameter and state estimation in simulation-based filtering,'' in Sequential Monte Carlo Methods in Practice, edited by D. Freitas and N. Gordon (Springer-Verlag, New York, 2001).

[41] M. A. Nielsen and I. Chuang, ``Quantum computation and quantum information,'' (2002).

[42] A. Banerjee, X. Guo, and H. Wang, ``On the optimality of conditional expectation as a Bregman predictor,'' IEEE Transactions on Information Theory 51, 2664 (2005).

[43] R. Kueng and C. Ferrie, ``Near-optimal quantum tomography: estimators and bounds,'' New Journal of Physics 17, 123013 (2015).

[44] C. E. Granade, C. Ferrie, N. Wiebe, and D. G. Cory, ``Robust online Hamiltonian learning,'' New Journal of Physics 14, 103013 (2012).

[45] W. Bruzda, V. Cappellini, H.-J. Sommers, and K. Życzkowski, ``Random quantum operations,'' Physics Letters A 373, 320 (2009).

[46] E. Magesan, J. M. Gambetta, and J. Emerson, ``Characterizing quantum gates via randomized benchmarking,'' Physical Review A 85 (2012).

[47] J. Emerson, R. Alicki, and K. Życzkowski, ``Scalable noise estimation with random unitary operators,'' J. Opt. B Quantum Semiclass. Opt. 7, S347 (2005).

[48] J. Emerson, M. Silva, O. Moussa, C. Ryan, M. Laforest, J. Baugh, D. G. Cory, and R. Laflamme, ``Symmetrized characterization of noisy quantum processes,'' Science 317, 1893 (2007).

[49] E. Knill, D. Leibfried, R. Reichle, J. Britton, R. Blakestad, J. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. Wineland, ``Randomized benchmarking of quantum gates,'' Phys. Rev. A 77, 012307 (2008).

[50] E. Magesan, J. M. Gambetta, and J. Emerson, ``Scalable and robust randomized benchmarking of quantum processes,'' Phys. Rev. Lett. 106, 180504 (2011).

[51] A. Carignan-Dugas, J. J. Wallman, and J. Emerson, ``Characterizing universal gate sets via dihedral benchmarking,'' Phys. Rev. A 92, 060302 (2015).

[52] A. W. Cross, E. Magesan, L. S. Bishop, J. A. Smolin, and J. M. Gambetta, ``Scalable randomised benchmarking of non-Clifford gates,'' NPJ Quantum Inf. 2, 16012 (2016).

[53] W. G. Brown and B. Eastin, ``Randomized benchmarking with restricted gate sets,'' Phys. Rev. A 97, 062323 (2018).

[54] A. K. Hashagen, S. T. Flammia, D. Gross, and J. J. Wallman, ``Real randomized benchmarking,'' Quantum 2, 85 (2018).

[55] J. Helsen, J. J. Wallman, S. T. Flammia, and S. Wehner, ``Multiqubit randomized benchmarking using few samples,'' Phys. Rev. A 100, 032304 (2019).

[56] D. C. McKay, S. Sheldon, J. A. Smolin, J. M. Chow, and J. M. Gambetta, ``Three qubit randomized benchmarking,'' Phys. Rev. Lett. 122, 200502 (2019).

[57] J. M. Epstein, A. W. Cross, E. Magesan, and J. M. Gambetta, ``Investigating the limits of randomized benchmarking protocols,'' Phys. Rev. A 89, 062321 (2014).

[58] T. Proctor, K. Rudinger, K. Young, M. Sarovar, and R. Blume-Kohout, ``What randomized benchmarking actually measures,'' Phys. Rev. Lett. 119, 130502 (2017).

[59] J. J. Wallman, ``Randomized benchmarking with gate-dependent noise,'' Quantum 2, 47 (2018).

[60] T. J. Proctor, A. Carignan-Dugas, K. Rudinger, E. Nielsen, R. Blume-Kohout, and K. Young, ``Direct randomized benchmarking for multiqubit devices,'' Physical Review Letters 123, 030503 (2019).

[61] C. E. Bonferroni, ``Teoria statistica delle classi e calcolo delle probabilità,'' Istituto Superiore di Scienze Economiche e Commerciali di Firenze 8, 3 (1936).

[62] O. J. Dunn, ``Multiple comparisons among means,'' Journal of the American Statistical Association 56, 52 (1961).

[63] J. Kiefer, ``On wald's complete class theorems,'' Ann. Math. Statist. 24, 70 (1953).

[64] V. Al Osipov, H.-J. Sommers, and K. Życzkowski, ``Random bures mixed states and the distribution of their purity,'' Journal of Physics A: Mathematical and Theoretical 43, 055302 (2010).

[65] B. H. Fong and S. T. Merkel, ``Randomized Benchmarking, Correlated Noise, and Ising Models,'' (2017), arXiv:1703.09747 [quant-ph].

[66] C. Granade, C. Ferrie, and D. G. Cory, ``Accelerated randomized benchmarking,'' New Journal of Physics 17, 013042 (2015).

[67] R. W. Heeres, P. Reinhold, N. Ofek, L. Frunzio, L. Jiang, M. H. Devoret, and R. J. Schoelkopf, ``Implementing a universal gate set on a logical qubit encoded in an oscillator,'' Nature Communications 8, 94 (2017).

[68] D. Steel, ``Bayesian Confirmation Theory and The Likelihood Principle,'' Synthese 156, 53 (2007).

[69] R. Barends, J. Kelly, A. Megrant, A. Veitia, D. Sank, E. Jeffrey, T. C. White, J. Mutus, A. G. Fowler, B. Campbell, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, C. Neill, P. O'Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov, A. N. Cleland, and J. M. Martinis, ``Superconducting quantum circuits at the surface code threshold for fault tolerance,'' Nature 508, 500 (2014).

Cited by

[1] B. I. Bantysh and Yu. I. Bogdanov, "Quantum tomography of noisy ion-based qudits", arXiv:2011.04179.

[2] Erik Nielsen, John King Gamble, Kenneth Rudinger, Travis Scholten, Kevin Young, and Robin Blume-Kohout, "Gate Set Tomography", arXiv:2009.07301.

The above citations are from SAO/NASA ADS (last updated successfully 2020-12-05 20:12:57). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-12-05 20:12:55).