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Quantum resource theories (QRTSs) provide a
unified theoretical framework for understand-
ing inherent quantum-mechanical properties
that serve as resources in quantum information
processing, but resources motivated by physics
may possess structure whose analysis is math-
ematically intractable, such as non-uniqueness
of maximally resourceful states, lack of con-
vexity, and infinite dimension. We investigate
state conversion and resource measures in gen-
eral QRTs under minimal assumptions to fig-
ure out universal properties of physically mo-
tivated quantum resources that may have such
mathematical structure whose analysis is in-
tractable. In the general setting, we prove
the existence of maximally resourceful states
in one-shot state conversion. Also analyzing
asymptotic state conversion, we discover cat-
alytic replication of quantum resources, where
a resource state is infinitely replicable by free
operations. In QRTs without assuming the
uniqueness of maximally resourceful states, we
formulate the tasks of distillation and forma-
tion of quantum resources, and introduce dis-
tillable resource and resource cost based on
the distillation and the formation, respectively.
Furthermore, we introduce consistent resource
measures that quantify the amount of quan-
tum resources without contradicting the rate
of state conversion even in QRTs with non-
unique maximally resourceful states. Pro-
gressing beyond the previous work showing
a uniqueness theorem for additive resource
measures, we prove the corresponding unique-
ness inequality for the consistent resource mea-
sures; that is, consistent resource measures of
a quantum state take values between the dis-
tillable resource and the resource cost of the
state. These formulations and results estab-
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lish a foundation of QRTs applicable in a uni-
fied way to physically motivated quantum re-
sources whose analysis can be mathematically
intractable.

1 Introduction

Advantages in quantum information processing com-
pared to conventional classical information process-
ing arise from various inherent properties of quantum
states. A framework for systematically investigating
quantum-mechanical properties is essential for better
understandings of quantum mechanics and quantum
information processing. Quantum resource theories
(QRTS) [1] give such a framework, in which the quan-
tum properties are regarded as resources for over-
coming restrictions on operations on quantum sys-
tems; especially, manipulation and quantification of
resources are integral parts of QRTs. QRTs have cov-
ered numerous aspects of quantum properties such
as entanglement [2-4], coherence [5-11]|, athermal-
ity [12-16], magic states [17, 18], asymmetry [19-
23], purity [24], non-Gaussianity [25-28], and non-
Markovianity [29, 30]. Recently, QRTs for a gen-
eral resource have been studied to figure out common
structures shared among known QRTs and to under-
stand the quantum properties systematically [31-40].

However, general QRTs are not necessarily math-
ematically tractable to analyze, and simply extend-
ing the formulation of a known QRT such as bi-
partite entanglement is insufficient. For example,
maximal resources in the QRT of magic states [17]
and the QRT of coherence with physically incoher-
ent operations (PIO) [10] are not unique. Gaussian
states [41, 42], quantum discord [43], and quantum
Markov chain [44] are quantum-mechanical properties
emerging in a non-convex quantum state space. Gaus-
sian operations [41, 42] are conventionally defined on
a non-convex state space while existing QRTs of non-
Gaussianity [25-28] are formulated on a convex state
space. Furthermore, the state spaces of QRTs of non-
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Gaussianity are infinite-dimensional, and analysis of
QRTs on finite-dimensional quantum systems is not
necessarily applicable to infinite-dimensional systems.
The analyses of these physically motivated quantum
properties are mathematically intractable.

To analyze general quantum properties including
those mentioned in the previous paragraph, we in-
vestigate manipulation and quantification of quantum
resources in general QRTs that are physically moti-
vated but hard to analyze. We do not make mathe-
matical assumptions such as the existence of a unique
maximal resource, a convex state space, and a finite-
dimensional state space.

In this paper, we take a position that free opera-
tions determine free states. A free operation is an
element in a subset of quantum operations. The set
of free operations describes what is possible for free
when we operate on a quantum system. A quan-
tum state that may not be obtained by free opera-
tions is regarded as a resource state, while a quantum
state freely obtained by free operations is called a free
state. Convertibility of quantum states under free op-
erations introduces a mathematical concept of order,
preorder, of the states in terms of resourcefulness. A
maximally resourceful state is a special resource state
at the top of this ordering, regarded as a unit of the re-
source. The existence of maximally resourceful states
is essential for quantifying quantum resources. Due
to the generality of our formulation, the existence of
a maximally resourceful state is not obvious, but we
prove that a maximally resourceful state always exists
by introducing compactness in our framework. Fur-
thermore, we analyze the set of free states, and clarify
a condition where a maximally resourceful state is not
free.

To investigate manipulation of a quantum resource
in general QRTSs, we analyze one-shot and asymptotic
state conversion in the general framework of QRTs,
rather than specific resources. We discover a type of
quantum resource with a counter-intuitive property,
which is a resource state that is not free to gener-
ate but can be replicated infinitely by free operations
using a given copy catalytically. While catalytic con-
version of quantum resources is originally found in
entanglement theory [45], our discovery provides an-
other form of catalytic property of quantum resources.
We call this resource state a catalytically replicable
state. In addition, we formulate resource conversion
tasks in general QRTs, namely, distillation and forma-
tion of a resource [46], and introduce general defini-
tions of the distillable resource and the resource cost
through these tasks, which generalize those defined
for bipartite entanglement [46, 47], coherence [48],
and athermality [13]. Formulation of the distillation
and the formation of a resource is not straightforward
when the QRT has non-unique maximally resource-
ful states. To overcome this issue, we formulate the
distillable resource as how many resources can be ex-

tracted from the state in the worst-case scenario, and
the resource cost as how many resources are needed
to generate the state in the best-case scenario. Under
this formulation, we identify a condition of the distil-
lable resource being smaller than the resource cost.

A resource measure is a tool for quantifying re-
sources. In the QRT of bipartite entanglement, it
is known that a resource measure satisfying certain
properties given in Ref. [49] is lower-bounded by the
distillable resource and upper-bounded by the re-
source cost, which we call the uniqueness inequality.
In this paper, we show that the uniqueness inequal-
ity holds for a general QRT under the same prop-
erties even in infinite-dimensional cases, but at the
same time show that these properties applicable to
the QRT of bipartite entanglement are too strong to
be satisfied in known QRTSs such as magic states [17].
Motivated by this issue, we introduce a concept of
consistent resource measures, which provide quantifi-
cation of quantum resources without contradicting the
rate of asymptotic state conversion. We prove that
the uniqueness inequality also holds for the consistent
resource measure and observe that this uniqueness in-
equality is more widely applicable than the uniqueness
inequality previously proved through the axiomatic
approach. Moreover, we show that the regularized
relative entropy of resource serves as a consistent re-
source measure, generalizing the existing results in
reversible QRTs [32].

These formulations and results establish a frame-
work of general QRTs that are applicable even to
physically motivated restrictions on quantum oper-
ations whose analysis is mathematically intractable.
We here point out that whether a given QRT is phys-
ically motivated or not is indeed a subjective issue,
depending on what operation we assume to be free
and what quantum property we regard as a resource.
Remarkably, one can use our general results on ma-
nipulation and quantification of quantum resources
regardless of whether the resources are physical or
not from the subjective viewpoint; in particular, our
general results on QRTs are applicable to whatever
QRTs that one may consider to be “physical”. The
significance of our contribution is the full generality
of the results, which opens a way to stop the contro-
versy over what QRTs are physically meaningful, so
that anyone can suitably enjoy the benefit of the gen-
eral framework of QRTs for quantitatively analyzing
quantum properties of interest. These results lead to
a theoretical foundation for further understandings of
quantum-mechanical phenomena through a system-
atic approach based on QRTs.

The rest of this paper is organized as follows. In
Sec. 2, we recall descriptions of infinite-dimensional
quantum mechanics and provide a framework of gen-
eral QRTs. In Sec. 3, we investigate maximally re-
sourceful states and free states in general QRTs. In
Sec. 4, we analyze manipulation of quantum states in
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general QRTs, especially, asymptotic state conversion.
In Sec. 5, we focus on the distillation of a resource
from a quantum state and the formation of a quan-
tum state from a resource, and prove the uniqueness
inequality. In Sec. 6, we investigate the quantification
of a resource, introducing and analyzing a consistent
resource measure. Our conclusion is given in Sec. 7.

2 Preliminaries

We provide preliminaries to quantum resource the-
ories (QRTs) that we analyze in this paper. In
Sec. 2.1, we present notations on describing quantum
mechanics on infinite-dimensional quantum systems
that QRTs in this paper cover. In Sec. 2.2, we recall
a formulation of QRTs. In Sec. 2.3, we recall the def-
inition of a preorder, and introduce a preorder intro-
duced by free operations in QRTs. The readers who
are interested in QRTs on finite-dimensional quantum
systems and are familiar with finite-dimensional quan-
tum mechanics can skip Sec. 2.1, while we may use
notions summarized in Sec. 2.1 to show our result in
Sec. 3.1.

2.1 Quantum Mechanics on Infinite-

Dimensional Quantum Systems

We provide mathematical notations of quantum me-
chanics that cover infinite-dimensional quantum sys-
tems. Notice that some inherent properties of quan-
tum mechanics, such as non-Gaussianity [25-28],
are easier to formulate on an infinite-dimensional
quantum system than its approximation by a finite-
dimensional quantum system. As for proofs of math-
ematical facts that we use in the following, see, e.g.,
Refs. [50, 51].

To represent a (finite- and infinite-dimensional)
quantum system, we use a complex Hilbert space H,
i.e., a complex inner product space that is also a com-
plete metric space with respect to the distance func-
tion induced by the inner product. We represent a
multipartite system as a tensor product of the Hilbert
spaces representing its subsystems. We may write an
orthonormal basis (i.e., a complete orthonormal sys-
tem) of H as

By = {lk) - (1)

In cases where H represents a D-dimensional system,
By is a finite set with cardinality D, while By can
be an uncountable set in this paper.

We use a subset of operators on H, in partic-
ular, the von Neumann algebra, to describe quan-
tum mechanics on the system represented by H,
since. H can be infinite-dimensional. Let £ (H)
denote the set of linear operators on H. Let
B(H) C L(H) denote the set of bounded oper-
ators, that is, for any A € B(#), the operator
norm [|All, = sup {4 [o)ll : [v) € . v}l < 1}

is bounded, where ||-||,, denotes the norm induced by
the inner product of H.

To define trace-class operators, we use the trace de-
fined as TrT := }_\cp,, (k|T'[k), where By is an
orthonormal basis of H defined in (1), each term on
the right-hand side denotes the inner product of T |k)
and |k) on H, and if By is an infinite set, the summa-
tion on the right-hand side means the limit of a net,
i.e., a generalization of sequence. While a sequence
(an : n € N) is indexed by a natural number, that
is, a countably infinite and totally ordered set, a net
an is indexed by 7 in a directed set, a generalization
of totally ordered sets, while this directed set can be
uncountable. In the definition of the trace, the net is
indexed by any finite subset B}, C By and defined
as ZWGB;{ (k|T|k), which approaches to the limit
Tr T as B, gets larger. Note that Tr T is independent
of the choice of By. Let T (H) C B (H) denote the set
of trace-class operators; that is, for any T € T (H),
we have finite and hence well-defined Tr|T|, where
|T| == VT1T, and TT denotes the conjugation of T
For any T € T (#H), the trace norm of T is defined as

1Ty = T |T]. (2)

To define the von Neumann algebra, we need to
discuss convergence of bounded operators mathemat-
ically. To discuss convergence of bounded operators,
we need a topology defined for B (#), and we use the
ultraweak operator topology. The ultraweak operator
topology of B (H) is a topology where any sequence
A1, As,... € B(H), or more generally, any net A;,
converges to A if and only if Tr [T A;] converges to
Tr[T'A] for any T € T (H). A von Neumann alge-
bra M on B (H) is a subset of B (H) (or B (H) itself)
that contains the identity operator 1 on H, is closed
under linear combination, product, and conjugation,
and is also closed in terms of the ultraweak operator
topology.

A noncommutative von Neumann algebra can be
used for describing a quantum system, while a com-
mutative von Neumann algebra for a classical system.
To describe quantum mechanics on H, we use a set
of operators represented as a von Neumann algebra
M on B(H). For example, for any finite-dimensional
Hilbert space H, the algebra of all the linear opera-
tors £ (H) = B (H) is a von Neumann algebra, which
suffices to describe the finite-dimensional quantum
mechanics. More generally, for any H that can be
infinite-dimensional, the algebra of all the bounded
operators B (H) is a von Neumann algebra. In this
paper, a system H is always accompanied with a set
of operators M therein, where we may implicitly con-
sider M = B (H) unless stated otherwise.

Given that a quantum state associates a measure-
ment of an observable with a probability of a measure-
ment outcome, we introduce a quantum state using a
linear functional from an operator to a scalar. In par-
ticular, for a system H with M, a state is defined as a
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linear functional fy : M — C that is positive semidef-
inite fy (MTM) > 0, VM € M, satisfies the normal-
ization condition fy (1) = 1, and is also normal, i.e.,
continuous in terms of the ultraweak operator topol-
ogy. We require this continuity in order for fy to be
in the predual M, of M, i.e., the space whose dual
(M.)" equals (can be identified with) M. Given this
duality and under the condition of M = B(H), we
identify fy, with the operator ¢ € T (H) that satisfies
for any M € M

Tr[pM] = fy (M) . (3)

Note that we have one-to-one correspondence between
fy and ¢ if M = B(#). This operator ¢ is the
density operator representing the state fy, and let
DH) = {veT(H):¢=20,Tryp =1} denote the
set of density operators on H with M = B (#). For
simplicity, we may call 1 a quantum state, rather than
fo-

We introduce a quantum channel on a system H
with M = B (#) in the Heisenberg picture as a com-
pletely positive and unital linear map on M, which
correspondingly yields the definition of the channel in
the Schrédinger picture as a completely positive and
trace-preserving linear map of density operators on H.
Given two systems H with M) and H©") with
M) yepresenting the spaces of the input and the
output respectively, a channel £ : M©18) — A(0) iy
the Heisenberg picture is defined as a linear map that
is completely positive

nzjl M m)Jf5 ( out)TM out)) M(m) >0,

4,k=0

v MM e MO,

VMM MY e M)

Vn € N, (4)
unital 5( (OUt) = 10" and normal, i.e., continu-

ous in terms of the ultraweak operator topologies of
M) and M) where 1(°%) and 10" are the iden-
tity operators on H(°") and H (™) respectively. In the
same way as the identification (3) of a functional f
of a state with the density operator 1 of the state, un-
der the conditions of M) = B (7—[(“‘)) and M) =
B(H©W), we identify a channel £ : MW —
M) in the Heisenberg picture with the channel
E T (M) — T (HC) in the Schrodinger pic-
ture that satisfies for any M (©ut) ¢ Af(out)

Tr [5 (¥) M(O‘“)} = (fy08) (M(O“t)) .5

where ¢ and f, are related as (3). Note that £ is a
completely positive and trace-preserving (CPTP) lin-
ear map by definition, and if M = B (’H(i“)) and
Meut) = B (’H(O“t)), we have one-to-one correspon-
dence between £ and £.

The set of channels from an input system #(n)
with M) to an output system H (") with A(out)
is denoted by C (H(in) — ’H(Out)), which we may write
C(H) if H = HI = #)  In this paper, we use
the Schrodinger picture with M) = 3 (’H(i“)) and
Mout) — B(’H(O‘“)); that is, C (K™ — ’H(O“t)) is
the set of the CPTP linear maps, while it would be
possible to use the Heisenberg picture otherwise. We
represent quantum operations as channels, while it is
possible to include measurements in our formulation
as channels from a quantum input system to a classi-
cal output system.

To discuss compactness of a set of states, we need
further definitions of topologies for the set of states. A
compact set in terms of some topology is a set where
for any net in the set, there exists a subnet that con-
verges in terms of the topology, where a subnet gen-
eralizes a subsequence in the same way as the net
generalizing the sequence. A closed set in terms of
some topology is a set where for any net that con-
verges in terms of this topology, its limit point is in
the set. Note that a compact set in a Hausdorff space
is a closed set, which holds in our case. Several dif-
ferent topologies can be defined for the set of states.
The weak operator topology of 7 (#H) is a topology
where any net T; in 7 (H) converges to T if and only if
Tr [T; A] converges to Tr [T'A] for any A € B(H). The
trace norm topology of T (H) is a topology where any
net T; in 7 (H) converges to T if and only if ||T; — T'||,
converges to 0. The trace norm topology is stronger
than the ultraweak operator topology, and the ultra-
weak operator topology is stronger than the weak op-
erator topology, while these topologies are the same
in the finite-dimensional case. In general, whether a
set is compact or not may depend on the choice of the
topology, but we show in Appendix A that the com-
pactness of a set of states in terms of these topologies
are equivalent. Thus, it suffices to consider the trace
norm topology when we discuss compactness of a set
of states. Then, in the trace norm topology, com-
pactness is equivalent to sequential compactness, and
hence we may use a sequence rather than a net to
discuss compactness of a set of states. Note that if H
is finite-dimensional, D (H) is compact, while D (H)
for an infinite-dimensional system is not compact in
terms of the trace norm topology.

To discuss convergence and compactness
of channels, we need a topology defined for
C (’H(in) — "H(O“t)), and we use the bounded weak
(BW) topology. The bounded weak topology of
C(’H(in) %’H(O‘“)) is the weakest topology such
that for any fy, € M and Meut) ¢ pgqlout)
a map Sy preun C(?—[(i“) —>’H(°ut)) — C given
by Sy prew (€) = (fpo&) (M©@W) is continuous,
where £ and £ are related as (5). Note that if 7"
and H (" are finite-dimensional, C (H") — H(©ut))
is compact, while C(?—l(i”) —>7—l(°‘“)) for infinite-
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dimensional systems is not compact in terms of the
BW topology.

2.2  Framework of Quantum Resource Theories

In this section, we provide a formulation of quantum
resource theories (QRTs) starting from free operations
with minimal assumptions. In the definition, we con-
sider a compact set of the free operations. We also
present justification of the compactness by examples
from the perspective of indistinguishability. To rep-
resent the state set of interest in a QRT, e.g., the set
of pure states on finite-dimensional H, we consider a
compact set of quantum states chosen as desired

S(H)CD(H). (6)

Note that the quantum system H can be infinite-
dimensional as we have introduced in Sec. 2.1.

Free operations in our formulation are introduced
as follows [1]. Let O be a mapping that takes two
quantum systems H ™ and H©") and outputs a com-
pact set of completely positive and trace-preserving
(CPTP) maps from S (H™) to S (H(°)). This set
is denoted by

O (KO = W) C o (MO ). (1)

A map contained in O (’H(i“) — ’H(Out)) is called a free
operation from H™ to H(™W . If the input space
and output space are the same quantum system H,
we write the set of free operations from H to H as
O (H) C C(H). We consider a compact set because
two arbitrarily close CPTP maps are indistinguish-
able by any protocol in a task of channel discrimina-
tion [52], as we will discuss below by examples. We
assume that O satisfies the following axioms of QRTs:

1. Let Hi, Ho and Hs be arbitrary quantum
systems. For any M € O(H; — Hz) and
N € O(Hzy— H3), it holds that N o M €
O (H1 — H3), where o represents the composi-
tion.

2. Let ’Hgin), H§°“t), HS“) and ’Héou” be arbitrary
quantum systems. For any M € (’)(”Hgin) —
H Y and M € OH™ — 1), it holds that
MaN e OHM™ o 1™ — 1™ g 1),

3. Let ‘H be an arbitrary quantum system. Then,
it holds that id € O (H), where id is an identity
map.

4. Let H be an arbitrary quantum system. Then,
it holds that Tr € O (H — C), where Tr is the
trace. Note that due to the above conditions, it
is necessary that the partial trace is also free.

The meanings of these axioms are as follows:

1. We always have access to free operations and can
use free operations as many times as necessary.

2. We can arbitrarily apply free operations to a
quantum system regardless of what free opera-
tions are applied to another quantum system.

3. Doing nothing is free.
4. Ignorance is free.

Remark 1 (Operations Not Satisfying the Axioms).
There can be classes of operations that do not sat-
isfy the axioms stated above. For example, Refs. [53]
and [32] consider e-resource non-generating opera-
tions. However, the composition of two e-resource
non-generating operations is not necessarily an e-
resource non-generating operation, which implies the
set of e-resource non-generating operations does not
satisfy the first axiom. Hence, we do not employ this
class of operations as free operations since they are
not free to use multiple times. In addition, Ref. [54]
considers separability preserving (SEPP) operations.
However, the set of SEPP operations is not closed
under tensor product, and hence does not satisfy the
second axiom. We do not use these operations as free
operations since they are not free to apply to multiple
quantum systems simultaneously.

In the definition above, we use a compact set as
the set of free operations. Some classes of operations
that are conventionally used as free operations do not
satisfy this compactness, such as local quantum op-
erations and classical communication (LOCC) in the
QRT of bipartite entanglement [55]. However, in this
case, we take a position that the closure of LOCC,
i.e., a compact superset of LOCC, can be considered
to be free in the sense that any channel in the closure
of LOCC is indistinguishable from a channel imple-
mentable in the setting of LOCC, as discussed in Ex-
ample 1. In the same way, Example 2 shows that we
conventionally consider any unitary transformation to
be implementable by the Clifford+71" gate set in the
sense that any unitary can be approximated with ar-
bitrary precision by this gate set. Note that the com-
pactness of the set of free operations is essential for
guaranteeing the existence of maximally resourceful
states as we will see in Sec. 3.1.

Example 1 (LOCC and Closure of LOCC). In
the case of the QRT of entanglement, LOCC is
conventionally considered to be physically imple-
mentable operations, but our formulation of QRTs
may use the closure of LOCC in this case as a
compact set of free operations instead of LOCC.
In particular, let Orocc (’H(i“) — H") be the set
of LOCC from K™ to #eu") It is known
that Orocc ((C4—>(C4) is not closed; that is,
Orocc ((C4 — (C4) # OLocc ((C4 — C4) [55] In this
case, we use O ((C4 — (C4) = Orocc (C* = C4) as
the set of free operation because for any CPTP
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map N e OLocc ((C4 — (C4) \ Orocc ((C4 — (C4) and
any € > 0, we can construct a CPTP map N &
Orocc (C* — C*) that is indistinguishable from A
up to an e probability by any protocol in a task of
channel discrimination [52].

In the next example, we consider a situation of uni-
versal quantum computation where any finite-depth
quantum circuit composed of a universal gate set is
implementable as the free operations.

Example 2. For any finite-dimensional quantum sys-
tems () and H") we define O (R — 3 (out))
as the set of CPTP maps that can be realized
by a finite-depth circuit composed of the identity
gate, the partial trace, the Hadamard gate H, the
controlled-NOT gate, the m/8 phase gate T, ap-
pending |0), and the measurement in the computa-
tional basis. Here, a finite-depth circuit refers to
a d-depth circuit for some integer d = 0, and op-
erations conditioned on measurement outcomes are
allowed. Conventionally, combination of these op-
erations can be considered to be universal because
o (H(in) — ’H(O“t)) is dense in the set of all the chan-
nels C (R0 — W) but O (K — HwW) jg
different from C (’H(i“) — ’H(Out)) since a finite num-
ber of these gates cannot exactly implement qubit ro-
tation at an arbitrary angle [52, 56]. In this case, our
framework may use the closure of the set of opera-
tions implemented by all the d-depth circuits for any
d as the set of the free operations; that is, we take the
set of free operations in this case as the set of all the
channels O (H() — H(©u0) = ¢ () — lout)),

We do not assume the convexity of the set of free op-
erations in our framework. Convex QRTs are a class
of QRTs where the set of free operations is convex.
For instance, the QRT of bipartite entanglement [55],
the QRT of coherence [48] and the QRT of magic
states [17] are known as convex QRTs. We can achieve
a convex combination of operations using classical
randomness. In general, randomness is regarded as
a resource [57, 58|, and randomness generation [59] is
indeed a promising application of noisy intermediate-
scale quantum (NISQ) devices [60]; therefore, we also
consider non-convex QRTSs in our framework, such as
the following example.

Example 3 (Non-Convex QRT). The QRT of non-
Markovianity [29, 30] is known as a non-convex QRT,
where the set of free operations is not convex.

2.3 Preorder in Quantum Resource Theories

In this section, we recall the definition of a preorder
in order theory, and provide the definition of the pre-
order of resourcefulness of quantum states introduced
by free operations.

Suppose that S is a set and > is a binary relation
on S. Then, the relation > is called a preorder if it

holds that

a > a, (8)
a=bbrc=a>c (9)

for all a,b,c € S. This preorder introduces mazimal
elements and minimal elements in theset S. If a € S
satisfies

b-a=a>0b (10)

for all b € S, a is called a maximal element. Similarly,
if a € S satisfies

a-b=>bra (11)

for all b € S, a is called a minimal element. Intu-
itively, an element a € S is maximal/minimal if a is
the largest/smallest among all the elements that can
be compared with a.

For any quantum system H, free operations intro-
duce a preorder = on S (). This preorder is intro-
duced in terms of the exact one-shot state conversion
under free operations. Given two states ¢,v¢ € S (H),
the exact one-shot state conversion from ¢ to 1 is a
task of transforming a single ¢ exactly into a single ¥
by a free operation ' € O (H). Formally, we write

¢ = (12)
if there exists a free operation N’ € O (H) such that
N(¢) =1 (13)

This relation > is indeed a preorder because it holds
that

¢ = ¢, (14)
p=ppmo=d=o (15)

for any states ¢,1,0 € S (H).

With respect to this preorder, two states ¢,v €
S (M) are said to be equivalent if both ¢ »= % and
¢ =1 hold. If ¢ and 1 are equivalent, we write

¢~ (16)

3 Maximally Resourceful States and
Free States

In this section, we analyze properties of maximally
resourceful states and free states in general quantum
resource theories (QRTS). In Sec. 3.1, we provide the
definition of maximally resourceful states based on
the preorder mentioned in Sec. 2.3, and prove the ex-
istence of maximally resourceful states in QRTs under
our formulation in Sec. 2.2. In Sec. 3.2, we provide
the definition of free states, and give a condition under
which a maximally resourceful state is not free.
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3.1 Maximally Resourceful States

In this section, we analyze maximally resourceful
states defined by the preorder of resourcefulness of
states mentioned in Sec. 2.3. The existence of max-
imally resourceful states is not trivial in general,
although it is desired for quantification of the re-
source. We prove the existence of maximally resource-
ful states in any QRT that satisfies the four axioms
and the compactness given in Sec. 2.2.

The preorder of states introduces maximal elements
in the set of states in terms of order theory. Given a
quantum system H, we let G (H) denote the set of
the maximal states of S (#H) in terms of the preorder
defined as (12), that is,

G (H) 1={¢€5('H)ZWGS(H)WtGﬁ#d)EED}j

17
The elements of G (H) are called mazimally resource-
ful states. Note that there may be several non-
equivalent maximally resourceful states, which are not
comparable with each other. Here, we recall two
QRTs that have two or more non-equivalent maxi-
mally resourceful states.

Example 4 (QRTs with Non-Equivalent Maximally
Resourceful States). The first example is the QRT
of magic for qutrits [17]. In this QRT, there ex-
ist two non-equivalent maximally resourceful states,
which are called the Norrell state and the Strange
state. The second example is the QRT of coherence
with physically incoherent operations (PIO) [10]. In
the QRT of coherence with PIO, a free operation can-
not change diagonal elements of a quantum state rep-
resented in the standard basis. Therefore, there exist
infinitely many non-equivalent maximally resourceful
states, which have different diagonal elements from
each other.

We here prove that a maximally resourceful state
always exists in any QRT satisfying axioms and the
compactness of the set of states discussed in Sec. 2.2.
Maximally resourceful states are regarded as a unit of
resource [8, 46, 61]. For example, in the QRT of bipar-
tite entanglement, the amount of entanglement of the
Bell state is defined as one ebit. Therefore, it is crucial
for QRTs to have a maximally resourceful state. In
general, whether a maximally resourceful state exists
is not obvious. For example, a maximally entangled
state does not necessarily exist in a QRT of bipartite
entanglement for an infinite-dimensional system with
a non-compact set of free operations such as LOCC
while a unique maximally entangled state exists for a
finite-dimensional system. Theorem 1 shows that for
any given state, there exists a maximally resourceful
state that is more resourceful than the state, which
ensures the existence of maximally resourceful states
in our framework.

Theorem 1 (Existence of a Maximally Resourceful
State). Let H is a quantum system. For any state

P € S(H), there exists a state ¢ € G (H) that upper-
bounds ; that is, ¥ < ¢.

Proof. Tt is known that a compact space X with a pre-
order = has a maximal element if the upper closure
U, = {y € X|x 2y} is closed for any =z € X [62]
(Proposition VI-1.6.(i)). Thus, it suffices to show
Uy = {p€S(H) |y < ¢} is closed in terms of the
weak operator topology, or equivalently closed in
terms of the trace norm topology due to Lemma 28
in Appendix A. We take a sequence (¢n), oy in Uy
convergent to ¢ € S (H) in terms of the trace norm
topology and prove ¢ € Uy. By the definition of the
preorder =<, for each n € N, there exists a free op-
eration NV,, € O (H) such that ¢ = N, (¢,). Since
O (H) is compact in terms of the bounded weak (BW)
topology, there exists a subnet (Nn(i))i ¢ convergent
to some N € O (H) with respect to the BW topol-
ogy. In the following, we show 1) = N (¢) to prove the
theorem.

Take an arbitrary € > 0 and an arbitrary A €
B(#H) \ {0}, which satisfies [|A||,, > 0. Since S(H)
is compact in terms of the trace norm topology, there
exists a finite subset {xx : k € {1,...,N.}} of S(H)
such that for any x € S(H)

€
. _ < 18
e Il < = a9)

By definition of the convergence N, EW, N in
terms of the BW topology with respect to ¢, there
exists ie, 4 € I such that for any ¢ 2= 4. 4

pe X | Tr (Nogay (xk) A) = Tr (N (xx) A)| < e.
(19)

Thus, for any i 2 i, 4 and any x € S(H), we have

| Tt (Nagiy () 4) = Tr (N (x) A)|
= |Tr (Mg (x = xw) A) + Tr (Mg (xn) 4)
—Tr (N (x — xx) A) = Tr (N (xx) 4)|
< |Tr (Magy (x = x) A) |+ [Tr (V (x — xx) A)]
+ T (Nagsy (xa) A) = Tr (N (xx) A)]
< T (Mo (x = xa) A) | + [T (N (x = xx) A)) ﬂ(;g)

where x is an element in the finite subset {xx} of
S (H) in (18) satisfying

€
- — 21

and we use (19) in the last line. With

[N oo = sup { [Ny (D], = T € T(H), [T (5221)}

denoting the operator norm of the linear map Nn(i) :

T(H) — T(H), we have

| Tr (Mogiy (X — xi) A) |
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= ||-/\[7L(1) (X - Xk)Hl ’ HAHOO
€
<1 Ml = (23)

where the last inequality follows from the fact that
any CPTP map N,,(;) satisfies

[Nl oo = 5up [Ny (D)]], S sup |||, < 1. (24)

In the same way as (23) by substituting N,y with
N, it holds that

[Tr (M (x = xx) A)| <& (25)

Therefore, applying (23) and (25) to
i 2.4 and any xy € S(H), we have

(20), for any

|Tr (Nngiy (x) A) = Tr (N (x) A)| < e+ e+e=3e
(26)
Consequently, for any i = i, 4, we obtain

Tr (¢ — N () A
= [Tr (pA) — Tr (N () A)|
= |Tr (Nagiy (9n(i)) A) — Tr (N (9) 4))|
< [T (Nagi) (Dn) 4) = Tr (N (dni)) A) |
+ | Tr (N (¢n@)) A) — Tr (N () A)|
<3e+ Nl - |one) — @, - 1Al — 36, (27)

where the last inequality follows from (26) by substi-
tuting x with ¢,(;) and from the inequality shown in
the same way as (23)

|Tr (N (én(i)) A) — Tr (N (4) A)]
< Mo - |Eney — @, - 1Al (28)

and the limit in the last line in terms of i yields
|éni) — @, = 0. Since ¢ > 0 and A € B(H) \ {0}
are arbitrary, this shows ¢ = N (¢). Q.E.D.

Remark 2. In a similar manner, we can prove that the
set of minimal elements

{peSH):VWWeSH), oz =>9p=zo} (29)

is not empty as well. The set of minimal elements is
considered as the set of the least resourceful states.
If the set of free states, which is defined in the fol-
lowing section, is not empty, the set of minimal set
is identical to the set of free states. However, the set
of minimal elements and that of free states may be
different because the set of free states can be empty
for some QRTs as we will show in Example 5.

3.2 Free States

In this section, we analyze properties of free states. A
free state is defined as a state that can be generated

from any other state by a free operation. Let F (H)
denote the set of free states; that is,

F(H) ::{w € S(H):VH Vo e S(H),
(30)
W EOH = H) st :N(¢)}.

A state ¢ € S(H) \ F(H) that is not free is called a
resourceful state or a resource state. Since Tr is a free
operation, the set of free states is equal to the set of
states that can be generated from the scalar 1 € S (C)
as shown in the following proposition.

Proposition 2. Let H be a quantum system. Then,
it holds that

F(H) =

{zpeS(H):HN’e(’)(CeH) s.mp:/\/u)}.
(31)

Proof. By the definition (30) of F (#), it trivially
holds that

F(H)C {¢ ESH):IN € O(C = H) st =N (1) }
(32)
To show the converse inclusion, assume that

b€ {wGS(H):HNeO(C%H) s.t.z/J:N(l)}.

(33)
Let N € O(C — H) be a free operation such that
¥ = N (1). Consider an arbitrary quantum system
H' and an arbitrary state ¢ € S(H'). Since Tr €
O (H' — C), it holds that

v=NoTr(¢). (34)

Therefore, ¢p € F (H), which yields the conclusion.
QE.D.

The set of free states F (H) may be empty for some
H while the set of minimal elements defined in (29) is
not empty as seen in Remark 2. For example, if the
set of free operations O (C — H) does not contain any
operation for a quantum system H, then F (H) = 0.
The following example gives a more concrete sce-
nario, where we take the logical 2-dimensional space
of the Gottesman-Kitaev-Preskill (GKP) code [63] as
S (C2). In this paper, to investigate constraints and
properties of QRTSs in as general a setup as possible,
we do not make any assumption on whether F (H) is
empty or not.

Example 5 (QRT of Non-Gaussianity on GKP
Code). The QRT of non-Gaussianity has applica-
tions to analyzing continuous-variable quantum com-
putation using the Gottesman-Kitaev-Preskill (GKP)
code as shown in Ref. [28]. The GKP code en-
codes a qubit into an infinite-dimensional oscillator
of an optical mode, and the logical 2-dimensional
space can be defined by dividing the Hilbert space
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of the bosonic mode into a logical qubit and a gauge
mode [64]. Gaussian operations [65] at a physical level
suffice to implement logical Clifford gates for the GKP
code [63]. Suppose that S (C?) is the set of logical
states in the logical 2-dimensional space of the GKP
code. Take the quantum operations on S ((Cz) im-
plementable by the Gaussian operations as the free
operations. Any physical state of the GKP code is
non-Gaussian, and hence in this case, F only has the
trivial element 1; that is, F(H) = {1} if dimH = 1,
and F(H) = 0 otherwise.

The following proposition guarantees that a max-
imally resourceful state cannot be a free state if a
resource state exists.

Proposition 3. Let H be a quantum system. Suppose
that the set of resource state is not empty; that is

S(H)\ F(H)#0. Then, it holds that
GH)NF (H)=0. (35)

Proof. The proof is by contradiction. To prove (35),
assume that ¢ € G (H)NF (H). Take a resource state

peSH)\NF(H). (36)

Since ¢ € F (H), it holds that ¢ = ¢. Then, since
¢ € G (H), it holds that ¢ > 1. Therefore, 1 is also a
free state; that is, ¢ € F (#), which contradicts (36).

Q.E.D.

We can observe that some properties of the set of
free states F (1) are inherent in the set of the free
operations O (H). The compactness of O (H) leads
to the compact set of free states F (H). If O (H) is
convex, F (H) is also convex.

4 Asymptotic State Conversion

In this section, we characterize the asymptotic state
conversion in general quantum resource theories
(QRTs). Asymptotic state conversion gives a funda-
mental limit of large-scale quantum information pro-
cessing exploiting quantum resources, and it has been
widely discussed for known QRTs [1]. We provide a
general definition of a state conversion rate in Sec. 4.1.
In terms of the conversion rate, we find a class of re-
sources that cannot be generated from any free state
with any free operation but can be replicated infinitely
by free operations. We call this state a catalytically
replicable state. We give the definition and an exam-
ple of catalytically replicable states in Sec. 4.2. In
Sec. 4.3, we formulate relations between asymptotic
state conversion and one-shot state conversion that
hold in general QRTs, which may have catalytically
replicable states. In the following, the ceiling func-
tion is denoted by [---], and the floor function is
denoted by | ---].

4.1 Formulation of State Conversion Rate

We recall the concept of asymptotic state conversion
and provide possible two definitions of asymptotic
state conversion rates. We show the equivalence of
these two definitions.

For two quantum systems #H; and Hs, and two
quantum states ¢ € S(H1) and ¢ € S (Hs), asymp-
totic state conversion from ¢ to v is a task of trans-
forming infinitely many copies of ¢ into as many
copies of 1 as possible by a sequence of free oper-
ations N7j,Na,... within a vanishing error. There
are two possible ways to define state conversion rates
from ¢ to 1: how many 1’s can be generated from
a single ¢, and how many ¢’s are necessary to gen-
erate a single ¥. We write the first conversion rate
as Teonv (@ — 1), and the second conversion rate as
Thony (¢ = ). As will be shown in Theorem 4, these
two conversion rates are related to each other in such a
way that r. ., (¢ — ) is the inverse of Teony (¢ — V).
Therefore, we consider reony (¢ — %) as the asymp-
totic state conversion rate in this paper.

More formally, reonv (¢ — ) is defined as follows.
A set of asymptotic achievable rates is defined as

R (6 ) =
{rﬁO:ﬂ(/\fnGOO{i@”—fHé@rm]):n€N>7

‘1 :O}’
(37)

where ¢®° := 1. Intuitively, achievable rate r > 0
is a positive number for which we can generate rn
copies of v from n copies of ¢. However, rn is not
necessarily an integer in general; therefore, in (37), we
regard r as an achievable rate when we can generate
[rn] copies of ¢, which guarantees that we can obtain
rn or more 1’s. An asymptotic state conversion rate
Teonv (@ — ) is defined as

tim inf |[A7, (6°7) — 4=

n—oo

Tconv (¢ — w) = SupR (¢ - /(/)) : (38)

Similarly, we can consider the other definition of a
state conversion rate r. . (¢ — ). Here, we define
another set of asymptotic achievable rates

R (6 ) =
{rg():a(/\/,;eo(ﬂ?“”“a%?“):neN),

lim inf H/\f/l (¢>®V"J) _yen|| = 0}.
1 (39)

n—oo
Here, achievable rate v’ 2 0 is a positive number for
which we can generate n copies of 1 from r'n copies of
¢. However, r'n is not necessarily an integer in gen-
eral; therefore, in (39), we regard r’ as an achievable
rate when we can generate n copies of ¢ from |r'n]
copies of ¢, which guarantees that r'n or more copies
of ¢ suffice to generate n copies of 1. With respect
to this definition of achievable rates, an asymptotic
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conversion rate ., (¢ — 1) is defined as

Tony (0 = ) = inf R’ (¢ — ), (40)
where 7’

! oy (& — ) is infinity if the set on the right-
hand side is empty.

These two conversion rates reony (¢ — ¢) and
rron (& = 1) are related to each other as shown
in the following theorem. Hereafter, we will use
Teonv (¢ — 1) as the asymptotic states conversion rate
rather than r. . (¢ — ¢).

Theorem 4 (Relation Between Two Conversion
Rates). Let H and H' be quantum systems. For any
states ¢ € S(H) and p € S (H'), it holds that,

1

Teonv (¢ = ¢) = m7

(41)

where we regard 1/0 = 0.
Proof. 1t suffices to show that
TER((b%i/))é%GRI(d)%dJ), (42)
and that
TGR/(¢%1/}):>%€'R(¢~>1/J). (43)
First, assume that r € R (¢ — ¢) to show (42).

Choose a fixed positive real number ¢ > 0. Let n
be an arbitrary positive integer such that

<« (44)

HN" (¢®) — @]

Let n’ = [rn]. Because n < |[n//r|, we can define a
free operation M,,s as the partial trace over [n'/r]—n
systems so that

My (¢®L”’/TJ) = ¢, (45)
From (44) and (45), it holds that

HN" o My (¢® L"’/’”J) —

<6 (46)
and 1/r € R’ (¢ — ¢) follows.

On the other hand, assume that r € R (¢ — 1) to
show (43). Choose a fixed positive real number ¢ > 0.
Let n be an arbitrary positive integer such that

) <e (47)

b o) o

Let n’ = |rn|. Because n = [n//r], we can define a
free operation M/, as the partial trace over n—[n’/r]
systems so that

M, (&) = eI/, (48)

From (47) and (48), it holds that
[ o8 (o) — e
= || o A (657) = M (057

NG (927) = v

< €,

‘1 (49)
<

1

and 1/r € R (¢ — v) follows. Q.E.D.

Remark 3. Conventionally, a conversion rate may also
be defined as [1, 5]

Feony (0 = 1) = sup R (¢ = 1), (50)
where
R(p— 1) =
{rﬁO:H(/\/neO<H?”—>H§®”"J> :neN),

o),
1 (51)

instead of a conversion rate rcony (¢ — %) defined in
(37) and (38). In (51), the floor function is used in-
stead of the ceiling function used in (37).

As we show in the following, these two conversion
rates Teony (¢ — %) and Teony (¢ — 1) are identical;
however, considering the meaning of rcony (¢ — )
discussed below (38), we adopt rcony (¢ — ¥) in this
paper. To see that the two conversion rates are identi-
cal, first suppose that r € R (¢ — ) for ¢, ¢ € S(H).
Since [rn] 2 |rn| and since the partial trace is free, it
holds that r € R (¢ — 1). Conversely, suppose that
r € R (¢ — 1). Then, the fact that

tim inf |7, (6°7) — p® L
n—oo

lrn] = [rn] — 1= ’7<T — 711) n—‘ (52)
implies that » — 1/n can be regarded as a achievable
rate with respect to R (¢ — ). Since r — 1/n ap-
proaches to r as n becomes large, considering the
definition (37) of R (¢ — ¢), it can be concluded
that r € R (¢ — ¢). Therefore, Teony (¢ — ¥) and
Teonv (¢ — 1) are identical.

In the same way, we may replace the floor function
in (39) with the ceiling function to obtain the identi-
cal conversion rate, but we adopt the definition (39)
and (40) due to the meaning of this conversion rate
discussed below (39).

Finally, we recall a useful relation of state conver-
sion rates given in Ref. [66]. Let H;, Ho and Hs be
quantum systems. Let p € S(H1), 0 € S(H2) and
w € S (H3) be quantum states. Suppose that we first
asymptotically generate o from p, then we generate
w from o to achieve conversion from p to w. While
this protocol generate w from p, the protocol is not
necessarily optimal. In fact, it is known that

TCOHV (p _> w) z rr‘COHV (p _> U) TCOIIV (J _> w) . (53)
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Note that the equality of (53) does not necessarily
hold. For example, a bound entangled state cannot
generate maximally entangled states, but needs them
to be formed [67]. On the other hand, it is known
that the equality of (53) holds in special cases such
as the conversion between pure states in the QRT of
bipartite entanglement [68, 69].

4.2 Catalytic Replication of Resource

In this section, we analyze the replication of a re-
source. One of the fundamental principles of quan-
tum mechanics is the no-cloning theorem [70], which
shows that we cannot clone a quantum state if we do
not know the description of the state. The no-cloning
theorem gives a fundamental limitation of quantum
mechanics, and contributes to understanding what is
achievable in quantum mechanics. Similarly, to fig-
ure out what is capable in our framework of QRTs,
we consider replication of a quantum resource. In the
task of the replication, we generate tensor products
of a resource state, where the description of the re-
source state is known but the operation is restricted
to the set of free operations. In terms of the asymp-
totic state conversion, the replication of a resource is
regarded as a catalytic state conversion between the
same state similarly to catalytic transformation of en-
tanglement [45].

We prove that the replication of a resource has only
two scenarios: we cannot replicate the resource, or
we can replicate the resource infinitely. Furthermore,
we find a counter-intuitive example where a resource
state is replicable infinitely. Note that the infinite
replication of a resource does not necessarily mean
that the amount of the resource increases under free
operations because the quantification of a resource de-
pends on a resource measure, which will be discussed
in detail in Sec. 6.

Theorem 5 (Replication of State). Let H be a quan-
tum system. For any state 1 € S (H), Teony (¥ — V)
s equal to either 1 or +oo.

Proof. 1t trivially holds that
Tconv (1/] — 1/J) 2 1 (54)

because id € O (H).
Assume that reony (¥ — ¥) > 1, that is, there ex-

ists r > 1 such that » € R(¥ = ¢). To prove
Teonv (¥ — ) = 00, it suffices to show that
2r—1eR(W — 1) (55)

because if (55) holds, an arbitrarily large rate can be
achieved by exploiting (55) repeatedly.

Choose a fixed positive real number e.
There exists a sequence of free operations
(./\/n €O (’H®" — ’H®“’"]) ‘n € N) such that

€

HN" () — @Il < 5 (56)

1

holds for an infinitely large subset of N.
Define
ro = infr,, (57)
n

where
Ty, ‘= max {7", >0: [T/?ﬂ =2 ﬁ"n] —n}, (58)

and the infimum is taken over n satisfying (56).
For n satisfying (56), it holds that
2
7’71:2r—1+ﬂ, (59)
n

where «,, is a real number satisfying 0 < «a,, < 1 and
[rn] = rn+ a,. The term 2a,, /n approaches to zero
as n approaches to infinity. Then, it holds that

20,
infrninf{erJra}

n (60)
=2r—1.
Therefore, it holds that
ro =2r — 1. (61)

Then, due to (55) and (61), it suffices to show that
ro €RW —=v). (62)
Now, observe that for any n,
[rn] >n (63)
always holds. This implies that for any n,
2[rn] —n > [rn] (64)

holds.

For n satisfying (56) and (63), we define a free oper-
ation M,, as the partial trace over (2 [rn] —n)—[ron]
systems so that we can obtain

M, (,¢®2[rrﬂ 7n) _ ”L/J® [ron] (65)
Therefore, from the triangle inequality, it follows that
HMn o (Nn ® ld) oNn (w@n) _ w@f""on]

< [ M o (N, @id) o N, (457)
~ M, 0 (N, ®id) (w®“’”) H

1

(66)
1

+ || Mo 0 o @ id) (wEIT) — polrond

1 )
where id is the identity map on [rn] — n systems.

Since the trace distance is non-increasing for quantum
operations, it holds that

My 0 (N, ®id) o N, (427)
-M,, 0 (Nn ® id) <1/}®(r7ﬂ) H

HN” (™) — L@

1 (67)

[IA

)

1
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and that

HM o (N, ®id) (¢®fm1) _ p®Tron] ‘1

< [N © 1) (St +Irm=m) yoiarrm-n

- H( (®") w@fm]) & @ (rnl=n)
- o

1

1

1

(68)
Therefore, by (66), (67), and (68), we obtain
[Ma o (Vo @ i) 0 A () =y |
<2 HN" w@n) _ ¢®(rn‘\ (69)
1
< €,
which implies that ro € R (¢ — ). Q.E.D.

Remarkably, we here give an example where
Teonv (¥ — ¥) = 00, but v is not a free state, that
is, ¥ & F (H). In this paper, we call a state ¢ that
satisfies Teony (¥ — ) = oo and ¢ ¢ F (H) a catalyt-
ically replicable state. A catalytically replicable state
is regarded as a form of catalytic property of quantum
resources, which are similar to catalytic state conver-
sion in the entanglement theory [45]. Any free state
¥ is a trivial example of Tcony (¥ — 1) = 00, but the
following example shows that this is not the whole
story; that is, rcony(¥) — %) = oo implies that 1 is
free or catalytically replicable.

Example 6 (Catalytically Replicable Resource).
Suppose that S (C?) = {|0) (0],]1) (1]}. Further sup-
pose that the set of free operations O consists of op-
erations that are realized by circuits composed of the
identity gate, the partial trace, the controlled-NOT
gate, the preparation of an auxiliary qubit in |0) state.
For any integer n = 0, the set of free states is

F((©)®") = {10 01°"}. (70)

In this case, whereas [1)(1] ¢ F(C?),
Teonv (|1) (1] = |1)(1]) = +o0o because we can
convert |1) (1] into |1) (1/*" for any n by appending
an auxiliary system prepared in |0) and applying
controlled-NOT repeatedly.

4.3 Relations Between One-Shot State Con-
version and Asymptotic State Conversion

In this section, we analyze relations between the
asymptotic state conversion and the exact one-shot
state conversion. The asymptotic state conversion
from ¢ to 1 is a task transforming infinitely many
copies of ¢ into many copies of 1 with a vanishing
error, while the exact one-shot conversion ¢ to 1 is a
task transforming a single ¢ into a single v exactly.

We prove two propositions both of which give re-
lations between the asymptotic state conversion and
the exact one-shot state conversion. The first proposi-
tion provides the relation that holds for inequivalent
states. On the other hand, the second proposition
characterizes the asymptotic conversion rate between
two equivalent states. Firstly, the following proposi-
tion shows that the more resourceful a state is, the
harder it is to distill the state and the easier it is to
form another state from the state.

Proposition 6. Let Hq,Hs be quantum systems. Let
O, € S(Hy) and p € S (Hs) be quantum states. If
¢ = 1, then it holds that

Tconv (P — ¢) < Teonv (,0 — %ZJ) (71)
Tconv (¢ - P) < Teonv (¢ — P) . (72)
Proof. To prove (71), it suffices to show that

R(p—¢) C R(p—1). Suppose that r €
R (p — ¢). Then, there exists a sequence of free oper-

ations (Nn €O (7—[?" — ’H?“M) in € N) such that
for arbitrary € > 0,

HN" (p®") — ¢®lrml

<€ (73)

holds for an infinitely large subset of N. As ¢ = 1,
there exists a free operation N such that

N(¢) = 1. (74)

Define a sequence of free operations
(./\/l GO(HQ@"%H@[M]) :nGN) as
M, =Nl o N, (75)

Then, for any n satisfying (73),

HM" (p®") — @I

1

— HN@MTM o Ny, (p2) — N®Inl (¢®(m])H
B R

<e€

L (76)

1

holds, and this implies that r € R (p — v).

Then, we prove (72). Note that (72) is equiv-
alent to 7., (¢ —p) < 1l (¥ — p) because of
Theorem 1. It suffices to show that R’ (¢p — p) C
R (¢ — p). Suppose that r € R (¢ — p).
Then, there exists a sequence of free operations
(N,’L €0 (’H®LMJ_>H ) in € N) such that for arbi-

trary € > 0,
b (o)<

holds for an infinitely large subset of N. As ¢ = v,
there exists a free operation N/’ such that

N'(¢) = 1. (78)

L <e (77)

Accepted in {Yuantum 2020-10-21, click title to verify. Published under CC-BY 4.0. 12



Define a sequence of  free operations
(/\/l;I €0 ('H?LMJ — ’HS@”) in € N) as
M, =N o N'® Lrn] (79)

Then, for any n satisfying (77),
/ Rlrn] ) _ ®n
HM" <¢ ) P,
_ HNrIL ON/®LrnJ (¢®|_rnj) _ p®n

1 (80)
< / ®rn] ) _ ,®n
= H'/v" (1/) ) P,
<e€
holds and this implies that r € R (¢ — p). Q.E.D.

Next, we investigate the other relation between
the asymptotic conversion and the exact one-shot
conversion, i.e., the asymptotic state conversion be-
tween two equivalent states. Asymptotically, we may
achieve conversion between states that are not con-
vertible to each other in the one-shot state conver-
sion. One may wonder whether we can achieve a bet-
ter asymptotic conversion rate between states that are
equivalent under the one-shot conversion. The follow-
ing proposition shows that the asymptotic conversion
rate for two equivalent states is equal to 1 in a QRT
without catalytically replicable states.

Proposition 7. Let H be a quantum system. Let
,¢ € S(H) be quantum states such that 1 ~ ¢.
Suppose that reony (¥ — ) = 1. Then, it holds that

Tconv (1/) — ¢) = T'conv (d) — ¢) =1L (81)

Proof. Since 7cony (¥ — ¥) = 1, it follows that

Tconv (1;[} - ¢) Tconv (¢ — lb) = Tconv (1/1 - 1/’) =1
(82)
from (53). On the other hand, since ¢ ~ ¢, there exist
free operations M € O (H) and N' € O (H) such that

M) =¢ (83)
N(¢) =1, (84)
which implies that
Tconv (1/} — ¢) 2 1 (85)
Teonv (¢ = ) 2 1. (86)

Therefore, both 7eony (¥ — @) and reony (¢ — ) must
be equal to 1. Q.E.D.

5 Distillable Resource and Resource
Cost
In this section, we analyze properties of the distillable

resource Rp and the resource cost Rc, which rep-
resent how many resources can be extracted from a

state and how many resources are needed to generate
a state respectively. As noted in Sec. 3.1, maximally
resourceful states are not necessarily unique in general
quantum resource theories (QRTs). In Sec. 5.1, we de-
fine the distillable resource Rp as how many resource-
ful states can be generated from a state in the worst-
case scenario, and we define the resource cost R¢ as
how many resourceful states are needed to generate
a state in the best-case scenario. Our definition for-
mulates distillation and formation of a resource even
in cases where maximally resourceful states are not
unique. In Sec. 5.2, we analyze distillation and for-
mation of catalytically replicable states. In Sec. 5.3,
we prove weak subadditivity of the distillable resource
and the resource cost. In Sec. 5.4, we further investi-
gate the resource cost, and prove that an upper bound
of the resource cost is achievable by a maximally re-
sourceful state if the number of non-equivalent max-
imally resourceful states is finite. In Sec. 5.5, gen-
eralizing the fact that the distillable entanglement is
always smaller than the entanglement cost [49], we
prove that the distillable resource is smaller than the
resource cost in general QRTs without catalytically
replicable states.

5.1 Definitions of Resource Cost and Distill-
able Resource

In this section, we provide a formulation of distilla-
tion and formation of a resource, and give the def-
initions of the distillable resource and the resource
cost, generalizing those in known QRTs such as bipar-
tite entanglement [46, 47|, coherence [48], and ather-
mality [13]. In contrast with the definition in these
previous works, our definitions are applicable to gen-
eral QRTs, where maximally resourceful states are not
necessarily unique. Our definition of the distillable
resource represents how many resources can be gen-
erated in the worst case, and the definition of the re-
source cost represents how many resources are needed
to form a state in the best case.

Our formulation of distillation and formation of a
resource is as follows. For a quantum system H and a
state ¢ € S (H), distillation from the state 1 is a task
of extracting many copies of a state ¢ € S (H) from
many copies of ¥, where ¢ is a state that is the most
difficult to generate from . More formally, distilla-
tion is regarded as state conversion from 1 to a state ¢
for which reony (¥ — @) takes a minimum value. Sim-
ilarly, formation of 1 is a task of generating many
copies of ¥ from many copies of a state ¢ € S(H)
where ¢ is a state that can the most easily generate
1. Formation is regarded as state conversion from ¢
to a state 1, where reony (¢ — ¥) takes a maximum
value for ¢.

The distillable resource Rp represents the amount
of resource obtained by distillation; the resource cost
R¢ represents the amount of resource needed for for-
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mation of a state. Formally, the distillable resource
of any state ¢ € S (H) is defined as

R = inf
p (1) sanf

{reom (0= 0) RIRS . (87)

where Rﬁrﬁi = 0 is a normalization constant. If the
dimension of H is finite, we typically take RI(Z;‘LZ( as the
required number of qubits for representing the system
H; that is,

R =log, (dimH), (88)

where dim H denotes the dimension of H, which im-
plies that R,(Iﬁz( represents the maximum amount of a

resource in S (H). Similarly, the resource cost of any
state ¢ € S (H) is defined as

. R,
RC (w) - d’elg(fﬂ) {rconv ((j) — ’IZ}) } - (89)

Note that if we set the normalization constant Rfﬁél( =

log, (dim H) as mentioned in (88) in the QRT of bi-
partite entanglement, Rp and R¢ reduce to the distil-
lable entanglement and the entanglement cost [46, 47],
respectively.

We obtain the following proposition for QRTs with-
out catalytically replicable states, while QRTs with
catalytically replicable states will be discussed in the
next subsection. This proposition provides general
bounds of the distillable resource and the resource
cost, and we will also analyze achievability of the
bound of the resource cost in Sec. 5.4.

Proposition 8. Let H be a quantum system, and let
¥ € S(H) be a state. Suppose that S (H)\F (H) # 0.
If ¢ is not a catalytically replicable state, it holds that

0 < Rp (v) < RYY, (90)
0< Rc (¥) < R, (91)

Especially, if 1 is a free state, it holds that

Rp () =0, (92)
0.

Proof. Note that by the definitions (87) of Rp and
(89) of Rc, 0 < Rp (¢) and 0 £ Re (¢) trivially hold.
First, we prove the statement for a free state. Let
¥ € F (H) be a free state. Since the set of free states
is closed, for any resource state ¢ € S (H) \ F (H), it
holds that

Teonv (¥ — @) = 0. (94)
Therefore, it holds that

0 § Rp (flp) g Rgrﬁ;rconv (1/) — ¢) =0, (95)

which shows Rp (1) = 0. On the other hand, by
Proposition 2, there exists a free operation N €

O (C — H) such that N (1) = ¢. Therefore, it holds
that

NE (1) = yo" (96)

for any positive integer n, which implies that
Tconv (1 — w) = Q. (97)

Therefore, it holds that

0§R0(¢)§m:07 (98)

which shows R¢ (1) = 0.
Next, we prove (90) for a resource state 1 € S (H)\
F (H). By Theorem 5, we have reony (¥ — ¢) = 1

because 1 is not a catalytically replicable state. Then,
from (87), we obtain

Rp (¥) = an}a@(rconv (Y =)
— RG)

max*

(99)

We can show (91) by replacing Rp with Rc and

Teonv (¥ — ¥) with 1/reony (¢ — 9) respectively in
the proof of (90). Q.ED.

In fact, from the relation between the preorder in-
troduced by the free operations and the asymptotic
conversion rate shown in Proposition 6, we obtain the
following theorem, which shows that it is sufficient
to take the infimum over the maximally resourceful
states in the definitions of Rp and R¢, rather than
the infimum over the whole set of states.

Theorem 9 (Maximally Resourceful States are Suf-
ficient for Distillable Resource and Resource Cost).
Let ¢ € S(H) be an arbitrary state. It is sufficient
to consider G (H) instead of S (H) when we take the
infimum in the definitions (87) and (89) of Rp and
Rq¢; that is, it holds that

R = inf {7Teony RO L (100
o ()= int {reom (0 @) RO}, (100)
R

R = inf { ——"% 4. 101

¢ (w) $€G(H) | Tconv (¢ — 'l/)) ( )
Proof. To show (101), it suffices to show that

R = inf {7l — ) RI b (102

p(w)= inf {rln, (0= W) RN} (102

By Proposition 6 and Theorem 1, for any state p €
S (M), there always exists a maximally resourceful
state ¢ € G (#H) such that

Thomy (¢ — 1) R, < v

max — conv

(p = ¥) B

max"*

(103)

Therefore, (102) holds. Equation (100) can be shown
by replacing Rc with Rp and 7)., (p — ¢) with
Teonv (P — ) in (102). Q.E.D.
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Remark 4. Due to Theorem 9, the infimum in the
definitions of the distillable resource and the resource
cost is achieved in the following cases. Let
G(H)/ ~={Cy:0€G(H)} (104)
be the set of equivalence classes of the maximally re-
sourceful states, where
Cyi={b € G(H) v ~ 8} (105)
is the equivalence class of ¢. Suppose that the num-
ber of non-equivalent maximally resourceful states is
finite; that is, |G (H)/ ~| < oo. For example, in the
QRT of bipartite entanglement, |G (H)/ ~| = 1; in
the QRT of magic states for qutrits, |G (H)/ ~| =
2 [17]. In these cases, the infimum is achievable
by a maximally resourceful state because of Propo-
sition 7. Thus, for these existing QRTs, we can ac-
tually replace the infimum in the definitions of the
distillable resource (87) and the resource cost (89)
with the minimum, while further research is needed
to clarify whether or not we can replace the infi-
mum with the minimum for QRTs with infinitely
many non-equivalent maximally resourceful states,

e, |G(H)/ ~| = oc.

By using Theorem 9, we here prove that the more
resourceful a state is, the larger the distillable resource
and the resource cost of the state are.

Proposition 10. For a quantum system H, let ¥, ¢ €
S (H) be quantum states such that ¢ > . Then, it
holds that

Rp (¢), (106)
Rc(9). (107)

Proof. Let € be an arbitrary positive number. Due to
Theorem 9, we can take a maximally resourceful state
p € G (H) such that

Ro (¢) + € Z R reony (6 = p) - (108)
Then, by Proposition 6,
Ro (6) = inf R (0 0)} (109
S Rggcrconv (Y —p) (110)
= Rr(n?-gc""conv (¢ — ,0) (111)

S Rp (¢) + ¢ (112

~

holds. As we can take an arbitrarily small €, Rp (¢) <
Rp (¢) holds.

Similarly, due to Theorem 9, we can take a maxi-
mally resourceful state p € G (H) such that

RrGY.

> e
Ro(9)+ez Tconv (Pﬁﬁﬁ)

(113)

Then, by Proposition 6,

. R,
felv)=_ i, { Feonv (0 = ) } ey
R,
= Teonv (P — V) (115)
RO,
< ctmax 116
= Teonv (P — B) (116)
S Rc(¢) +e (117)

holds. As we can take an arbitrarily small €, R¢ (¢) <
Rc (¢) holds. Q.E.D.

5.2 Distillable Resource and Resource Cost of
Catalytically Replicable States

In this section, we analyze the distillable resource and
the resource cost of a catalytically replicable state. As
the conversion rate between a catalytically replicable
state is infinite, we obtain a counter-intuitive result,
which shows that an infinitely large number of a re-
source can be distilled from a catalytically replicable
state and that a catalytically replicable state can be
generated without any cost.

The following proposition shows that the resource
cost needed to form a catalytically replicable state is
equal to zero. Moreover, if the distillable resource of
a catalytically replicable state is nonzero, an infinite
amount of a resource can be distilled from the state.

Proposition 11. Let i) € S(H) be a state satisfying
Teonv (P — %) = co. Then,

Rc () = 0. (118)
holds. Moreover, if Rp () > 0,
Rp (¢) = o0 (119)

holds.

Proof. Note that 0 < R¢ (¢) and 0 £ Rp (1) hold by
the definitions. Since reony (¥ — ¥) = 00,

RO

max

Tconv (¢ — ¢)
~0

A

RC ('l/)) (120)

holds. Therefore, it holds that R¢ (¢) = 0.

Recall that for quantum states p, o and w, it holds
that Teony (P = W) 2 Teonv (P = ) Teony (0 = w) as
shown in (53). Take an arbitrary positive number
e. Let ¢ € S (H) be a state such that

Rp (¥) + € 2 Teony (¥ — ¢) RID= Rp (). (121)
Then, it holds that
Rp (¥) + € 2 Teony (¥ = ¢) R (122)
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> Teony (1 = ©) Feony (10 — ¢) RUL).

(123)
z’rconv (1/1 — d)) Rp (7/}) (124)
= 0. (125)

As we can take an arbitrarily small e, it holds that
Rp (¢) = occ. Q.E.D.

In a QRT whose maximally resourceful states are
catalytically replicable, there may be a state of which
the distillable resource is infinite, and the resource
cost is zero, as shown in the Example 7.

Example 7 (Zero Resource Cost and Infinite Dis-
tillable Resource). As shown in Proposition 8 and
Proposition 11, the distillable resource of a catalyt-
ically replicable state may be infinity while that of a
free state is zero. Consider the same setup as Exam-
ple 6. In this case,

Rp (|1) (1]) = oo, (126)

Re ([1) (1)) =0 (127)

follows  from G (C?) = {I1) (1]} and

Teonv (|1) (1] = |1)(1]) = oo. In contrast, for
any free state v, Proposition 8 shows that

Rp (¢¥) =0, (128)

Rc (1) = 0. (129)

5.3 Weak Subadditivity of Distillable Resource
and Resource Cost

In this section, we prove that the distillable resource
and the resource cost are weakly subadditive if the
Hilbert space H is finite-dimensional and the normal-
ization constant is set as REZQ( = log, (dim #H). The
definitions of additivity and subadditivity are as fol-
lows.

Definition 12 (Additivity and Subadditivity). Let
fu be a family of functions from S (H) to R, where
H is a quantum system. We may omit the subscript
of fy to write f for brevity. Then, f is said to be
additive if it holds that

fWee)=fW)+1(9)

for any states ¢ € S(H) and ¢ € S(H'). On the
other hand, f is said to be weakly additive if it holds
that

(130)

F@®") =nf ()

for any state ¢ € S(H) and for any positive integer
n

(131)

Similarly, f is said to be subadditive if it holds that

fWeeo) s fW)+f(9) (132)

for any states ¢ € S(H) and ¢ € S(H'). On the
other hand, f is said to be weakly subadditive if it
holds that

F@®") =nf @) (133)

for any state ¢ € S(H) and for any positive integer
n.

Note that in some cases, e.g., in Ref. [49], the prop-
erty mentioned in (131), which we call weak additivity
here, is reffered to as additivity. However, in this pa-
per, we follow the convention of Ref. [1].

The proof of weak subadditivity exploits the follow-
ing proposition.

Proposition 13. Let H and H' be quantum systems.
Let v € S(H) and ¢ € S(H') be quantum states.
Then for any n € N, it holds that

Tconv (¢ — ¢) = Tconv (¢®n — ¢®n) :

Proof. It suffices to show that R —¢) =
R (& — ¢®™). First, assume r € R (P& — o)
to  show R (Y& — ¢®m) C R — ¢).
Choose a positive number ¢ > 0. Then,
there exists a sequence of free operations
(M%” € O (HOm™ — wenlrml) i m e N) such
that

[ (@wem=) - (¢>®”)®W]H1 <e  (135)

holds for an infinitely large subset of N. Since
n[rm] = [rnm] holds, we can define NG e
@ (’H’®"rrm] — ’H"X’rmm]) as the partial trace over
nlrm] — [rnm] systems. Then, we have
N (¢p®nlrml) = ¢®Irnml Therefore, it holds that

(134)

e o1
[ o (6 <2 i)

M ((¢®")®m> _ g®nlrm] H

< €.

1
s

1

(136)
Therefore, for an integer k& = nm with a sufficiently
large m, there exists a free operation L = /\/,(,:L) )
MSJZ ) such that

|20 (woh) =2 <. (137)

Therefore, r € R(Yp —¢), which
R = ¢%") CR (Y — ¢).
On the other hand, to show R (¥ — ¢) C

implies

R (p®" — ¢®™),  assume T € R (W — ).
Choose a  positive number . Then,
there exists a sequence of free operations

(M, € O (HE™ — H'@I"m1) :m €N)  such that
for a fixed positive integer n,

T R ™
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holds for an infinitely large subset of N. Therefore,
for any n satisfying (138), it holds that

e ()~

which implies that R () — ¢) C R (" — ¢®").
Q.E.D.

<e (139)
1

Using Proposition 13, we show Theorem 14. The
meaning of this theorem will be discussed after the
proof.

Theorem 14 (Weak Subadditivity of Distillable Re-
source and Resource Cost). Let H be an arbitrary
finite-dimensional system. Set the normalization con-
stant as RGOtk = log, (dimH) as stated in (88). For

any n € N and for any state ¢ € S (H),
Rp (¥®") < nRp (),
Rc (¢®") £ nRc (¢).

Proof. First, we prove (140). Let n be a fixed posi-

tive integer, and let € be an arbitrary positive number.

Due to Theorem 9, we can take a maximally resource-
ful state ¢ € G (H) such that

(140)
(141)

Ro () + = 2 R¥reom (0= ¢).  (142)
Since ¢®" € S (H®™),
nRp (V) + €= nRggcrconv (Y — 9) (143)
= RO reony (057 — ¢%™)  (144)
2 Rp (v®") (145)

holds where (144) follows from Proposition 13. As we
can take an arbitrarily small €, (140) holds. We can
show (140) in a similar way by replacing Rp with R¢
and Teony (¥ — @) with 1/7cony (¢ — ). Q.E.D.

In the statement of Theorem 14, (140) means that
for a maximally resourceful state ¢ € G (H), there
may be ¢, € G(H®") that is harder to distill than
»®™. On the other hand, (141) means that for a max-
imally resourceful state ¢ € G (), there may be a
more resourceful state ¢, € G (H®") in resource for-
mation than ¢®" for n > 2.

5.4 Maximally Resourceful State Maximizing
Resource Cost

In this section, we prove that the upper bound R&Z'QZ(

of the resource cost Rc shown in Proposition 8 is
indeed achievable by a maximally resourceful state
if the number of equivalence classes of the maxi-
mally resourceful states is finite and if there is no
catalytically replicable state. Note that this prop-
erty holds even in infinite-dimensional cases; that is,
RrRUY, = log, (dim H) for finite-dimensional #H is not
assumed in this section.

Using Proposition 7, we prove Theorem 15. Re-
call the set of equivalence classes of the maximally re-
sourceful states G (H) / ~ defined in (104). Consider
a QRT where the number of maximally resourceful
states is finite up to the equivalence with regard to
the preorder, that is,

|G (H)/ ~| < o0. (146)
In this case, the following theorem shows that the up-
per bound Rg& of the resource cost given in Proposi-
tion 8 is actually achievable by a maximally resource-
ful state.

Theorem 15 (Maximally Resourceful State that
Maximizes Resource Cost). Suppose that there is no
catalytically replicable state. Suppose further that the
set of resource states is not empty; that is, S (H) \
FH) #0. If |G(H)/ ~|] < oo where G(H)/ ~ is
defined in (104), then there exists a mazximally re-
sourceful state ¢ € G (H) such that

Rc (¢) = RIL), (147)

holds.

Proof. Assume that for all states ¢ € G (H), Rc (¢) <
REH}Q( Because of Theorem 9, this assumption im-
plies that for all states ¢ € G(H), there exists a
maximally resourceful state p € G(H) such that
Teonv (P — @) > 1. According to Proposition 7, p must
be in an equivalence class different from Cy. Write
this relation as ¢ — p; that is, for ¢ € G (H) / ~ and
pEGH)/ ~, we write ¢ — p if Teony (p — @) > 1.
Since |G (H) / ~| < oo, there must exist a loop of el-
ements in G (H) / ~

PO PLEY > P > Pg- (148)

Therefore, Theorem 5 shows that

Tconv (Po — pn) X Tconv (pn — pn—l) X
© - X Teonv (pl — pO)
> 1.

On the other hand, note that for any maxi-
mally resourceful state p € G(H), it holds that
Teconv (P = p) = 1 because there is no catalytically
replicable state and because p € F (#H) due to Propo-
sition 3. From (53), it follows that

Tconv (Po — pn) X o+ X Teonv (pl — Po)
§ Tconv (Po — pO)

(149)

which contradicts (149). Therefore, there exists a
maximally resourceful state ¢ € G (#H) such that

Rc (¢) = RTL.. Q.E.D.
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5.5 Condition for Distillable Resource Upper-
Bounded by Resource Cost

In this section, we prove that the distillable resource is
smaller than or equal to the resource cost if the QRT
does not have any catalytically replicable state. The
claim that the distillable resource is smaller than or
equal to the resource cost was proved in the QRT of
bipartite entanglement [49]. Progressing beyond this
previous work, our proof does not make any assump-
tion on the existence of additive measures, and hence
is simpler and has more applicability than the existing
technique.

Theorem 16 (Condition for Distillable Resource Up-
per-Bounded by Resource Cost). Let H be a quan-
tum system. Suppose that S (H)\ F (H) # 0. Fur-
ther suppose that there is no catalytically replicable
state; that is, Teony (0 — @) = 1 for any resource state
o€ S(H)\ F(H). Then, for any state v € S (H), it
holds that

Ro () < Ro (1)

Proof. As shown in Proposition 8, for a free state
Y € F(H), it holds that Rp () = Rc(¢) = 0.
Therefore, (150) trivially holds for a free state. Then,
let ¢ € S(H) \ F (H) be an arbitrary resource state.
Let € > 0 be an arbitrary positive number. Due to
Theorem 9, we take a maximally resourceful state

¢ € G (H) such that

(150)

ROV

max

Tconv (¢ - 11)) .

By the definition (87) of the distillable resource, it
holds that

Rc(¥) +ez (151)

Rp () < Teony (¥ — ¢) R4,

As Tconv (¢ — ¢) Tconv ((b — 1/}) g Tconv (w — 1/}) =1
shown in (53), it holds that

(152)

Rp (V) = reony (¥ — @) Rﬂﬁc (153)
_ R
- Tconv (¢ — w) (154)
< Ro (¢) +e. (155)

As we can take an arbitrarily small e, it holds that
Rp (¥) < Rc (¥). Q.E.D.

6 Resource Measures

In this section, we investigate a formulation of re-
source measures in general QRTs and clarify general
properties of the resource measures. The resource
measures quantify the amount of quantum resources,
which is a central interest in QRTs [1]. In Sec. 6.1
we provide the definition of a resource measure. In
Sec. 6.2, progressing beyond the existing result on

bipartite entanglement [49], we show in the general
setting that a resource measure is upper-bounded by
the resource cost and lower-bounded by the distillable
resource if it satisfies the same properties as those
given in Ref. [49]. At the same time, we show that
the QRT of magic for qutrits [71], which has several
non-equivalent maximally resourceful states, has no
resource measure satisfying the properties. To over-
come this problem in the axiomatic approach based on
Ref. [49], we here introduce a concept of consistency
of a resource measure in Sec. 6.3. In contrast with
the previous approach, a consistent resource measure
exists in the case where multiple non-equivalent maxi-
mally resourceful states exist. Furthermore, we prove
a similar uniqueness inequality to the previous ap-
proach; that is, the consistent resource measure is
bounded by the distillable resource and the resource
cost if it is normalized. In Sec. 6.4, we provide the def-
inition of the relative entropy of resource, and show
that the regularized relative entropy of resource serves
as a consistent resource measure.

6.1 Properties of Resource Measures

In this section, we provide a definition of resource
measure as discussed in previous works on studying
resource measures in a wide class of QRTs, such as
Refs. [20, 32, 72-75|, and recall conventionally stud-
ied properties of a resource measure some of which
are also discussed in Refs. [1, 49]. A resource measure
R quantifies the amount of the resource of a state. It
takes a state as an input and outputs a real number
that represents the amount of the resource. To quan-
tify the resource without contradicting the fact that
free operations cannot generate resources by them-
selves, a resource measure must satisfy a property
called monotonicity; i.e., the amount of the resource
quantified by a resource measure does not increase
through application of free operations. Formally,
monotonicity is defined as follows. For quantum sys-
tems H™ and H") any state ¢ € S (H™), and
any free operation N € O (K™ — H(©) it holds
that

Ry (¥) 2 Ry (N (). (156)

Here, we recall the definition of a resource measure.

Definition 17 (Resource Measure). A resource mea-
sure Ry is a family of real functions from S (#) for a
quantum system H to R satisfying monotonicity. We
may omit the subscript of Ry to write R for brevity.

By monotonicity, a resource measure Ry for a
quantum system H quantifies the resource consis-
tently with the preorder introduced by free opera-
tions. For two states satisfying

¢ =1, (157)

it holds that

Ry (¢) 2 Ry (¥). (158)
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Note that if two states satisfy

o~ (159)

then we have

Ry (¢) = Ry (¥). (160)

Furthermore, using a resource measure, we can eval-
uate the resource amounts of two different states that
cannot be compared in terms of the preorder intro-
duced by free operations.

For example, in the QRT of bipartite entanglement,
the distillable entanglement and the entanglement
cost are known to be entanglement measures [46, 47].
Generalizing this fact, we find a condition where the
distillable resource and the resource cost become re-
source measures as shown in the following proposition.

Proposition 18. Suppose that for any quantum sys-

tem H, there exists a mazimally resourceful state

@ € G(H) such that for any quantum system H' and

for any mazimally resourceful state ¢' € G(H'), it
holds that o0
H

TCOHV(QS *> ¢,) Rzr’;.?/x *

max

(161)

Then, the distillable resource Rp and the resource cost
Rc satisfy monotonicity.

Proof. Choose any 6 > 0. Let H1 and Hs be quantum
systems. Let ¢p € S(H1) be a quantum state and
N € O(H1 — Hsz) be a free operation. Suppose that
@2 € G(H2) is a maximally resourceful state satisfying
the assumption given in (161).

Now, suppose that ¢1 € G(H;) is a maximally re-
sourceful state such that

Rp(¥) Z R reone (¥ — ¢1) — (162)
Then, it holds that
Rp(N (%)) £ R rcony (N (1) — 62)
= Rmax Tconvw’ — ¢2)
< R reony (¥ = 62)Tconv(d2 — ¢1)
= Rmax Teonv (¥ — ¢1)
< Rp(¥) +4.
(163)

The first inequality holds by definition. The second
inequality follows from Proposition 6. The third in-
equality follows from (161). Using (53), we have the
fourth inequality. Since we can take an arbitrarily
small §, we have Rp(N(¢)) < Rp(v).

Next, suppose that ¢; € G(H1) is a maximally re-
sourceful state such that

R('Hl)

max
-0

Tconv (¢1 — 1/1)

1\

Re(v) (164)

Then, it holds that

R(Hz)

ReN W) = T = N o))

R(Hz)

max

S - e
- rconv(¢2 - 'l/))
< RI(I’I;-;; rconv(¢2 — ¢1)

Tconv(d)Z — 1/))

(H1)

max

< -7
B Tconv(¢1 — w)
Re(¥) +6.

Since we can take an arbitrarily small §, we have

Rc(N(¥)) = Re(¥). Q.E.D.

Now, we recall several properties of a resource mea-
sure that are conventionally studied.
Additivity: Strong superadditivity refers to

(165)

A

R@7) 2 R(v*) + R(¢%),  (166)
and superadditivity refers to
R} ®¢)Z R($)+ R(6). (167)
Subadditivity refers to
R(@¢) S R()+ R(4). (168)
Additivity refers to
R ®¢) =R () + R(9), (169)
while weak additivity refers to
R(y®") =nR (¥). (170)

Regularization of R provides a measure that is addi-
tive for tensor product of the same states

B () = tim 27

n— oo n

(171)

as long as the right-hand side exists. The following
proposition shows that additivity of a resource mea-
sure implies that free states have zero resource, which
is a generalization of the statement shown for entan-
glement in Ref. [49] to general QRTs.

Proposition 19. If a resource measure R is weakly
additive, R (¢) = 0 for any free state ¢.

Proof. Suppose that v is a free state. Then, there ex-
ists a free operation M such that M (1) = 1. There-
fore, for any n € N, M®" (1) = ®" holds, which
implies 1™ is also a free state. Then, there exist free
operations N7 and N3 such that

Nl (¢®n) = d)7
Na (¢) = ©"

hold. Therefore, it holds that R (¢)) = R (¢®™). Since
R is weakly additive, R (1)) = nR (v) for any n, which
implies R (¢) = 0. Q.E.D.

(172)

Accepted in {Yuantum 2020-10-21, click title to verify. Published under CC-BY 4.0. 19



One conventional way of normalizing resource mea-
sures such as that in the entanglement theory is as
follows, which we call conventional normalization:

e For any free state o,

R (o) =0. (173)

e For any maximally resourceful state ¢ € G (H),

R(9) = R (174)
Because of monotonicity of a resource measure, a re-
source measure takes the least value for free states.
From Proposition 19, the least value is automatically
set to zero for an additive measure. We can assume
this normalization also for non-additive measures.
Furthermore, we can set the greatest value of a re-
source measure to Rgéz( in the same way that we nor-
malize the distillable resource (87) and the resource
cost (89) with the normalization constant REZQ( In
a finite-dimensional case with R{%, = log, (dim H)
shown in (88), (174) provides the normalization gen-
eralizing that of entanglement measures in the en-
tanglement theory, but our definition is applicable to
infinite-dimensional cases. We here remark that gen-
eral QRTs do not necessarily have resource measures
satisfying this conventional normalization, as we will
prove in the next subsection.

Asymptotic continuity: For any quantum system H,,
Ry, is asymptotically continuous if for any sequence
of positive integers (n;);cy, and any sequences of
states (¢n, € S(H®™)), and (Yn, € S (H®™)), sat-
isfying lim;_oo ||@n, — ¥n,||; = 0, it holds that

i [ Rsgon (6n) = Rygon, ()]

i— 00 n;

=0.  (175)

Our definition of asymptotic continuity is applicable
to an infinite-dimensional system. If we take REZQ( =
log, (dim H) as stated in (88) for a finite-dimensional
system H, our definition (175) corresponds to Con-
dition (E3) in Ref. [49]. Note that our definition in-
cludes asymptotic continuity discussed in [76] (Def-
inition 1) as a tighter bound applicable to a finite-
dimensional system.

Remark 5 (Continuity and Asymptotic Continuity).
Since a resource measure is a family of functions each
of which may be defined for different quantum sys-
tems, we employ asymptotic continuity of a family
of functions as a desired property of resource mea-
sures rather than continuity of a single function Ry
for a fixed quantum system #H defined as follows. A
function Ry : S(H) — R is continuous if for any
sequences of states (¢, € S (H)),, and (¢, € S(H)),

satisfying lim, o ||¢n — ¥n||; = 0, it holds that

Our definition of asymptotic continuity implies conti-
nuity as a special case.

6.2 Generalization of Uniqueness Inequality

In this section, we show that we have the inequal-
ity Rp £ R £ R¢ for a resource measure R if R
satisfies conventional normalization, asymptotic con-
tinuity, and weak additivity. We call this inequality
the uniqueness inequality. The uniqueness inequality
is originally proved in the QRT of bipartite entangle-
ment in finite-dimensional cases [49]. We show that
the proof of this uniqueness inequality can be gener-
alized to all the QRTs in our framework that covers
infinite-dimensional cases. At the same time, we also
show a QRT in which no resource measure satisfies
these properties; that is, the set of states satisfying
the uniqueness inequality becomes empty.

We prove the following uniqueness inequality for
general QRTs in our framework.

Proposition 20 (Uniqueness Inequality). Let H be
a quantum system. Suppose that there is no catalyt-
ically replicable state; that is, Teony (¢ — ¢) = 1 for
any resource state ¢ € S(H)\ F (H). If a resource
measure Ry satisfies the conventional normalization,
asymptotic continuity, and weak additivity, then for
any state v € S (H), Ry satisfies

Ro (4) < Ry () < Ro (). (177)
Proof. First, we prove Rp (¢) £ Ry (¢) for any state
¥ € S(H). Let ¢ be an arbitrary positive number.
Due to Theorem 9, we take a maximally resourceful
state ¢ € G (H) such that

Rp (1)) S Teonv (0 > ) R (178)
Let 7 := reony (¥ — ¢). For any positive integer n, it
holds that

RO < [T oy

max — max*
n

(179)

Then, by conventional normalization and weak addi-
tivity, it holds that

max

MR(H) — MRH (¢)
" " (180)

_ Byorn (¢°7)
i )

By the definition of 7cony (¥ — ¢) shown in (38), there
exist free operations (Nn €O (H®" — ’H@T”W)) such
that for any e, it holds that

HN" () — $®rn]

‘ <e (181)
1

for an infinitely large subset of N. Because of asymp-
totic continuity, there exists sufficiently large n such
that

Ryerem (0%11) < By Nn (1)) +

n n

5. (182)
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By monotonicity and weak additivity, it holds that

R’;.L@[rn] (Nn (1[}@”)) < RH@’” (’(/}@n)
nRa@) ()
=Ry (¢¥).

Therefore, by (178), (179), (180), (182), and (183), it
holds that
Rp (¥) < Ry (¥) + 6. (184)

Since we can take arbitrarily small ¢, it holds that
Ro (1) < Ry () holds.

Next, we prove Rc (1) = Ry (v) for any state ¢ €
S (H). Let 6 be an arbitrary positive number. Due
to Theorem 9, we take a maximally resourceful state
¢ € G (H) such that

R

max

> Tmax
Re (,l/}) oz Tconv ((b — ¢)

= Tlony (0 — ¥) R,

Let r =17/, (¢ = ). For any positive integer n, it
holds that

(185)

rRUY) > [rn JRQ” (186)
n

By the conventional normalization, weak additivity,
and monotonicity, it holds that

o) poo _ Lrnd

max ~

?)

Ry (
RH®L77LJ <¢ I'TnJ) (187)

n
S Ryen (M (671)))

n
n

3

for any free operation M,. By the definition of
Ttony (@ = ) shown in (40), there exist free opera-
tions (M,, € O (@™ — H®")) such that for any
€, it holds that

e (o2 —ver]

for an infinitely large subset of N. Because of asymp-
totic continuity, there exists sufficiently large n such
that

Ry (Mo (6°0)) _ Rygon (45
n = n
Therefore, by (185), (186), (187), (189), and weak ad-
ditivity, it holds that

<e (188)

— 5. (189)

Xn
Re () +6 2 RH@"#W) _5
_ nRy (V) _s (190)
n
=Ry (¢) — 0.
Since we can take arbitrarily small §, it holds that

Rc (¥) 2 By (). (191)
Q.E.D.

Remark 6. If we can assume strong superadditivity
of the resource measure R, the uniqueness inequality
in Proposition 20 holds for R satisfying the conven-
tional normalization, weak additivity, strong super-
additivity, and lower semi-continuity for each quan-
tum system H, instead of assuming asymptotic con-
tinuity. A function Ry : S (H) — R is lower semi-
continuous if for any fixed state ¢ € S (H) and any
sequence of states (¢, € S (H)),, converging to 1, i.e.,
limy, o0 |10 — x|, = 0, it holds that

liminf Ry (¢n) 2 Ry (v) .

n—oo

(192)

Strong superadditivity and lower semi-continuity do
not necessarily imply asymptotic continuity, and
asymptotic continuity does not necessarily imply
strong superadditivity and lower semi-continuity ei-
ther; that is, these assumptions are independent.
We prove the uniqueness inequality for R satisfy-
ing the conventional normalization, weak additivity,
strong superadditivity, and lower semi-continuity in
Appendix B. The combination of strong superadditiv-
ity and lower semi-continuity is first used in Ref. [77]
to bound a resource cost in the context of a QRT of
coherence, but our contribution is to generalize it to
the full uniqueness inequality by completing proofs of
both bounds, that is, the bounds for the distillable
resource as well as the resource cost.

Despite the general uniqueness inequality shown in
Proposition 20, we show a condition of QRTs where
no resource measure satisfies the conventional normal-
ization, asymptotic continuity, and weak additivity si-
multaneously. In these QRTSs, Proposition 20 is not
applicable. Note that because of Proposition 7, the
condition (194) in the following theorem is not sat-
isfied for QRTs with a unique maximally resource-
ful state, but may hold for QRTs with two or more
different equivalence classes of maximally resourceful
states; that is,

IG(H) /[~ 22 (193)
Theorem 21 (Inconsistency of Conventional Prop-
erties of Resource Measure). Suppose that there exist
mazimally resourceful states ¢o, d1 € G (H) such that

Tconv (¢0 — ¢1) >1 (194)
If Rmax > 0, then there exists no resource measure
satisfying the conventional normalization, asymptotic
continuity, and weak additivity simultaneously.

Proof. The proof is by contradiction. Assume that
there exists a resource measure R that satisfies all
of the conventional normalization, asymptotic conti-
nuity, and weak additivity. Let ¢g,¢1 € G (H) be
maximally resourceful states such that

T = Teonv (G0 — ¢1) > 1 (195)
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By the definition of Teonv (00 — &1)
shown in (38), there exist free operations
(N € O (H®™ — H®I™™1)) such that for any e,
it holds that

HNn (60%") — ¢, &1

<« (196)

for an infinitely large subset of N. Then, by asymp-
totic continuity, for a fixed € > 0, there exists suffi-
ciently large n such that

" ®[rn]
Ryyofen (Nn( g@ )) N Ry eren ( 1 ) .
n - n
(197)
By monotonicity, it holds that
®[rn]
Raon (627 Ryeren1 | @1
n n
Then, from weak additivity, it follows that
rn
R'H ((250) 2 %R’H (¢1) — €. (199)

Therefore, due to the conventional normalization, it is
necessary that for any € and n such that (197) holds,
it holds that

RO - Rg > e 2

n

Since REHZZ( > 0, we have
gl e (201)

n RUS
Since r > 1, this inequality does not hold for suffi-
ciently small € or sufficiently large n, which implies
that there is no such R. Q.E.D.

The following example shows that the QRT of
magic has no measure with the conventional normal-
ization, asymptotic continuity, and weak additivity.

Example 8 (QRT without Measure with Conven-
tional Normalization, Asymptotic Continuity, and
Weak Additivity). The QRT of magic for qutrits [17]
shown in Example 4 does not have any conventionally
normalized, asymptotically continuous and weakly
additive measure. It has been proved that the asymp-
totic conversion rate from the Strange state to the
Norrell state is larger than 1 [71]. Therefore, from
Theorem 21, it follows that no measure can satisfy
the conventional normalization, asymptotic continu-
ity and weak additivity simultaneously in this QRT.

6.3 Consistency of Resource Measures

In this section, we introduce consistent resource mea-
sures in place of resource measures in the previous
axiomatic approach in Secs. 6.1 and 6.2. As The-
orem 21 and Example 8 suggest, the conventional

normalization, asymptotic continuity and weak ad-
ditivity do not necessarily hold simultaneously with
monotonicity in general QRTs. On the other hand,
a consistent resource measure is compatible with the
state conversion rate. We prove that the uniqueness
inequality (177) also holds for a consistent resource
measure that is appropriately normalized. Note that
this normalization respects the state conversion rate,
and hence can be different from conventional normal-
ization given by (173) and (174).

First, we introduce a definition of a consistent re-
source measure. A consistent resource measure quan-
tifies the amount of a resource without contradicting
the state conversion rate.

Definition 22 (Consistent Resource Measure). For
quantum systems H and H’, a resource measure R is
called a consistent resource measure if for any states

€ S(H) and ¢ € S (H'), it holds that
Ry W) Tconv (¢ - 1/1) é Ry (¢) .

The following proposition shows that a consistent
resource measure must be weakly additive for any
non-catalytically replicable resource states.

(202)

Proposition 23. Let R be a consistent resource mea-
sure. Then, for any resource state 1 € S (H) \ F (H)
that is not catalytically replicable and for any positive
integer n, it holds that

R (¢®") =nR(v). (203)
Proof. By (53), it holds that
Tconv (w _> /lp®n) TCOHV (w®n % w)
g Tconv (1/] — '(/J) (204)
=1

Since the identity map is a free operation, we have

Tconv (d) — 1/)®n) 2 %7 (205)

Tconv (z/}@n — Q/J) 2 n. (206)
Thus, we have

Tconv (¢ — ¢®n) = %v (207)

Tconv (1/)®n - 1/}) = n. (208)

By the definition of a consistent resource measure
combined with the equations above, it holds that

nR(¥) < R (¥°"), (209)
LRy S R(). (210)
Therefore, it holds that
R (¢®") =nR(¥). (211)
Q.E.D.
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We prove that the uniqueness inequality holds for a
consistent resource measure that satisfies normaliza-
tions in the following propositions.

Proposition 24. Let Ry be a consistent resource
measure. Suppose that 0 < Ry (¢) < R, for any
state Y € S (H). Then, Ry satisfies

Ry (¢) = R (V). (212)

Proof. Let € be an arbitrary positive number. Due
to Theorem 9, we take a maximally resourceful state
¢ € G (H) such that

RrY,

> e
RC (w)_'_e: Tconv (¢H1/))

(213)

Then, it holds that

R,
Tconv ((ﬁ — w) (214)

Ry (9)
Tconv (¢ — ’(/})
2 Ry (),

Rc(’(/J)—i—ez

1\

(215)
(216)

where the second inequality follows from the definition
of consistent resource measures. As we can take an
arbitrarily small €, Ry (¢) £ Rc (¢) holds.  Q.E.D.

Proposition 25. Let Ry be a consistent resource
measure. Suppose that there exists a mazximally re-

sourceful state ¢ € G (H) such that Ry (¢) = R4,
Then, Ry satisfies

Ry () 2 Rp (¥)
for any state Y € S (H).

(217)

Proof. By the definition of the distillable resource, it
holds that

Rp (V) = rcony (¥ — @) Rg_g( (218)
Then, it holds that
Rp (1) £ reonv (¥ — ¢) RIL, (219)
= Tconv (¢ — ¢) R'H ((b) (220)
< Ry (¥) (221)
Therefore, Rp (1) £ Ry (1) holds. Q.E.D.

From Proposition 24 and Proposition 25, we obtain
the following corollary.

Corollary 26. Let Ry be a consistent resource mea-
sure. Suppose that Ry satisfies the following assump-
tions:

e For any state vy € S(H), 0 < Ry (¢) < Rl(z'éz(;

e There exists ¢ € G (M) such that Ry (¢) = R,

Then, it holds that
Rp (¢) = Ry (¥) = Re (¥),
for any state v € S (H).

Remark 7. The second condition of Corollary 26 can
be replaced by the existence of a state p € S(H)
(which is not necessarily maximally resourceful) such

(222)

that Ry (p) = R Suppose a resource measure Ry,
satisfies the following conditions:

e The measure Ry is normalized in such a way that
there exists a positive real number C' such that
0 £ Ry (v) £ C for any state ip € S (H);

e The upper-bound of Ry is achieved by some
state; that is, there exists p € S(H) such that
Ry (p) =C.

Then, there exists a maximally resourceful state ¢ €
G (H) such that Ry (¢) = C by monotonicity of the
resource measure.

To observe whether a consistent resource measure
satisfies asymptotic continuity, take any two states
¢, € S(H) such that reony (¢ — ) < 1. Con-
sider a consistent resource measure R satisfying 0 <
Ry (¥) < RI. for any ¢ € S(H). By the definition
of a consistent resource measure, it holds that

Ry () — Ryt (9)
0D

max

S1—reonv (@ = ). (223)

Assume that the quantum system H is finite-
dimensional, and take R\ = log,(dim #H) as stated
in (88). Inequality (223) suggests that a consis-
tent resource measure has asymptotic continuity if
1 — reony (¢n, — ¥n,) converges to zero for any se-
quence of positive integers (n;) ey and any sequences
of states (¢, € S(H®")) and (¢, € S(H®™)) satis-
fying lim;_, o ||pn; — ¥n,|l1 = 0. However, in general,
1 — reonv (¢n; — ¥n,) is not necessarily small even if
|¢n;, — ¥n,|l1 is small, because the convertibility of
two states under free operations is not related to the
distance between the two states. Therefore, a con-
sistent resource measure is not necessarily asymptot-
ically continuous. More generally, the difference in
the amount of resources present in two states is not
necessarily related to the distance between the states
since the preorder and the distance are independent.
Thus, we do not assume asymptotic continuity in the
definition of a consistent resource measure.

6.4 Example of Consistent Resource Measures

In this section, we show an example of a consistent
resource measure, which is known as the regular-
ized relative entropy of resource and widely used in
known QRTSs such as bipartite entanglement [78], co-
herence [8] and magic states [17]. We give the def-
inition of the relative entropy of resource Ry in our
framework.
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Definition 27 (Relative Entropy of Resource). The
relative entropy of resource Ry is defined as

Rp (¢) = inf D(yle),

224
PEF(H) (224)

where D (+||-) is the quantum relative entropy defined
as D (¢[|¢) = Treplogy ¢ — Treplogy .

The relative entropy of resource Ry is subadditive
since the set of free operations is closed under ten-
sor product. Therefore, by subadditivity of Rg, the
regularized relative entropy of resource defined as

QN
R (p) = lim 2P

n—00 n

(225)

exists [49].

We show that the regularized relative entropy of
resource serves as a consistent resource measure for
a finite-dimensional convex QRT in which F (#) for
each H contains at least one full-rank state. Consider
a convex QRT that is defined for finite-dimensional
systems and satisfies the axioms of QRTs given in
Sec. 3. It has been shown that if the set of free states
F (H) for each H contains at least one full-rank state,
the relative entropy of resource is asymptotically con-
tinuous [76, 79]. On the other hand, in Refs. [1, 80],
it is shown that

_ 9
= 1)

holds for an asymptotically continuous resource mea-
sure f and its regularization f*°. Therefore, the regu-
larized relative entropy of resource RY° is a consistent
resource measure for a convex QRT that has a full-
rank free state in each dimension. The QRT of bipar-
tite entanglement [55], coherence [48] and magic [17]
are known as convex QRTs with full-rank free states.
In these QRTs, the regularized relative entropy of re-
source works as a consistent resource measure.

We remark that this proof of the existence of a
consistent measure is not applicable to non-convex
QRTs because the relative entropy of resource for
a non-convex set of free states can be discontinu-
ous [81]. However, as mentioned in the last para-
graph of Sec. 6.3, asymptotic continuity is a sufficient
but not necessary condition for a resource measure
to be consistent. Therefore, there may be a consis-
tent resource measure that is not asymptotically con-
tinuous. Thus, there may be a consistent resource
measure even in QRTs that are not convex, not finite-
dimensional, or do not contain full-rank free states
while further research is needed to explicitly construct
consistent resource measures in these QRTs.

7ﬂconv((yb — 'l/))

(226)

7 Conclusion

We have formulated and investigated quantum state
conversion and resource measures in a framework of

general QRTs to figure out general properties of quan-
tum resources. Our framework is based on minimal
assumptions, and hence covers a broad range of QRTs
including those with non-unique maximally resource-
ful states, non-convexity, and infinite dimension. In
our general framework, the existence of maximally re-
sourceful states is no longer trivial, but we proved
that there always exists a maximally resourceful state
in the general QRTs.

To clarify general properties of resource manipula-
tion, we investigated one-shot and asymptotic state
conversions, which are central tasks in QRTs. We dis-
covered the existence of catalytically replicable states,
which are resources that are infinitely replicable by
free operations. In addition, we introduced the distil-
lable resource and the resource cost in our framework
without assuming uniqueness of maximally resource-
ful states. We showed that the distillable resource
and the resource cost are weakly subadditive. Fur-
thermore, we showed that the distillable resource is
always smaller or equal to the resource cost if there is
no catalytically replicable state.

As for quantification of quantum resources, we
proved that the conventional normalization, asymp-
totic continuity, and weak additivity are incompati-
ble with each other in general QRTs with non-unique
maximally resourceful states. Motivated by this in-
compatibility, we introduced a consistent resource
measure, which is consistent with the asymptotic
state conversion rate. Moreover, we proved that a
normalized consistent resource measure is bounded by
the distillable resource and the resource cost, general-
izing the previous work on the uniqueness inequality
in the entanglement theory to general QRTs.

Owing to the generality, our formulations and re-
sults broaden potential applications of QRTs in the
following future research directions. Since we for-
mulated a framework of QRTs applicable to non-
convex QRTs where randomness can be regarded as
a resource, it would be interesting to find further
applications of non-convex QRTSs, such as analyses
of random-number generation [82] and quantum ¢-
design [83]. In addition, since our framework forms
a basis of QRTs on infinite-dimensional quantum sys-
tems, our results provide a foundation for applying
QRTs to quantum field theory. Since we discovered
a counter-intuitive phenomenon of catalytically repli-
cable resources, it is interesting to find more situa-
tions where catalytically replicable states arise. Fur-
thermore, while we showed that the regularized rela-
tive entropy serves as a consistent resource measure
in convex finite-dimensional QRTs that have full-rank
free states, construction of a consistent resource mea-
sure for all the QRTs in our framework including
non-convex or infinite-dimensional QRTs is still open.
Finally, extension of our framework to dynamic re-
source [84-90] would also be an interesting future di-
rection.
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We established general and fruitful structures of
QRTs disclosing universal properties of quantum re-
sources. Owing to the broad applicability of our for-
mulations, our results open a way to quantitative
understandings of complicated quantum-mechanical
phenomena that are sometimes hard to analyze,
through a unified approach using our general formu-
lation of QRTs.
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A Equivalence of Compactness in
Weak Operator Topology and Trace
Norm Topology

In this section, we prove the following lemma, which
shows that compactness in the weak operator topol-
ogy is equivalent to that in the trace norm topology
on a set of density operators. We exploit this lemma
in the proof of Theorem 1 in Sec. 3.1.

Lemma 28. For any set of density operators K C
D (H), K is compact in terms of the weak operator
topology if and only if K is compact in the trace norm
topology.

Proof. Since the trace norm topology is stronger than
the weak operator topology, the “if” part is obvious.
Assume that K is compact in terms of the weak op-
erator topology to show the “only if” part. To show
the compactness in the trace norm topology, take an
arbitrary sequence (vn,),cy in K. According to the
Eberlein-Smulian theorem (e.g. [91], Theorem V.6.1),
in the weak operator topology, the condition of the
compactness coincides with that of the sequential
compactness. Therefore, there exists a subsequence
(Vn(k)) ey converging to some ¢ € K C D(H) in
terms of the weak opertor topology. Moreover, ac-
cording to [92] (Lemma 2), a sequence in D (H) con-
vergent to a density operator in terms of the weak op-
erator topology is in fact convergent to that density
operator in terms of the trace norm topology. Thus,
(Vn(r)) pen 1S convergent to 1 in terms of the trace
norm topology. Therefore K is sequentially compact,
hence compact, in the trace norm topology. Q.E.D.

B Uniqueness Inequality Based on
Strong Superadditivity and Lower Semi-
Continuity

In this section, we prove the uniqueness inequality
under the assumptions of strong superadditivity and
lower semi-continuity, instead of asymptotic continu-
ity as mentioned in Remark 6. In Ref. [77], strong
superadditivity and lower semi-continuity are used to
bound a resource cost in the context of a QRT of
coherence, and the extension for general resources
was mentioned. Our proof further generalizes this
statement to the full uniqueness inequality for gen-
eral QRTs by completing proofs of both bounds, that
is, the bounds for the distillable resource as well as
the resource cost.

Proposition 29. Let H be a quantum system. Sup-
pose that there is no catalytically replicable state;
that is, Teonv (¢ — &) = 1 for any resource state
¢ € S(H)\ F(H). If a resource measure Ry sal-
isfies the conventional normalization, weak additiv-
ity, strong superadditivity, and lower semi-continuity,
then for any state v € S (H), Ry satisfies

Rp (¢) = Ry (¥) = Re (¢) -

Proof. First, we prove Rp (¢) £ Ry (¢) for any state
¥ € S(H). Let ¢ be an arbitrary positive number.
Due to Theorem 9, we take a maximally resourceful
state ¢ € G (H) such that

(227)

Rp (¥) < reonv (¥ = ¢) RO < Rp () +6. (228)

Let 7 := reony (¥ — ¢). For any positive integer n, it
holds that
+RD < [T o

max — max"*
n

(229)

Then, by conventional normalization and weak addi-
tivity, it holds that

MR(H) — MRH ().

max

(230)

By the definition of 7¢ony (¥ — ¢) shown in (38), there
exist free operations (A, € O (H®" — H®I™1)) such
that for any ¢, it holds that

<« (231)

HN” (") — @I

for an infinitely large subset of N. Note that
N, (¥®7) € S (H®I™1) is a state on a system com-
posed of [rn] subsystems. For k € {1,...,[rn]},
let ¢ € S (H) denote a state obtained by trac-
ing out ([rn] — 1) subsystems except the kth one for
N, (®™). Strong superadditivity yields

rn]
Ry (N (6°)) 2 3 R (309)

k=1

(232)
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Then defining

b = argmin Ry (¢~>) , (233)
$e{o"ke{1,....Trn1}}
we have
Ryerr1 (N (7)) = [rn]R (qge) . (234)

From (231), monotonicity of the trace distance implies
¢ — 0|, <e. (235)

Because of lower semi-continuity, we can take a suffi-
ciently small € > 0 such that

Ry (¢) = Ry (¢c) +0 (236)
Using (234), we obtain
W] I oy (9) < Bzt (n I

By monotonicity and weak additivity, it holds that

Ryerrm1 (No (V%)) _ Ryen (1)
n = n
_ nBu (¥) (238)
- n
=Ry ().
Therefore, by (228), (229), (230), (236), (237),
and (238), it holds that
Ro () < Ry () + 1725 (239)
R 0 1
< Ry (¥) + (% + n) 5 (240)
<R+ (145 +1)5 ()

where the last inequality follows from Proposition 8
and % < 1. Since we can take arbitrarily small ¢, it
holds that Rp (¢) < Ry (¢).

Next, we prove R¢ (¢) = Ry (v) for any state ¢ €
S (H). Let § be an arbitrary positive number. Due
to Theorem 9, we take a maximally resourceful state
¢ € G (H) such that

)

5> . ftmax
Ro(W)+02 Tconv (¢ — 1)

= COHV (QS % w) max
2 Rc ().

(242)

Let r =17l (¢ — ). For any positive integer n, it
holds that
rR0Y > 1 g
n

max*

(243)

By the conventional normalization, weak additivity,
and monotonicity, it holds that

max

_ B (¢®“”J) (244)

" (¢®Lmj))

)
n

RH@)H (

v

for any free operation M,,. By the definition of
Tl onw (& = ) shown in (40), there exist free opera-
tions (/\/ln eoO (’H‘X’L’""J — H®”)) such that for any
€, it holds that

[ (027) = v,

<€, (245)

for an infinitely large subset of N. Note that
M,, (¢®lrml) € S (H®™) is a state on a system com-
posed of n subsystems. For each k € {1,...,n},
let @k) S (H) denote a state obtained by trac-
ing out (n — 1) subsystems except the kth one for
M, (¢>® Lrn] ) Strong superadditivity yields

Ryor (M (6°07)) 237 Bt (09) . (246)
k=1
Then defining
1&6 = argmin Ry (1[)) , (247)
de{dke(1,....[rn1} }
we have
Ryon (Mo (6°170)) ZnR (). (248)
Thus, we obtain
N ®|rn] B
Byor (Mn (6717)) > R(4.) . (249)

n

From (245), monotonicity of the trace distance implies

[ = vl <e (250)

Because of lower semi-continuity, we can take a suffi-
ciently small € > 0 such that

Ry (he) 2 Ry (1) — 0.

Therefore, by (242), (243), (244), (249), and (251) it
holds that

(251)

Ro () + 6 2 Ry () — 6. (252)

Since we can take arbitrarily small §, it holds that
Re (¥) 2 Ry (¥). (253)

Q.E.D.
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