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Time in quantum mechanics is peculiar:
it is an observable that cannot be associ-
ated to an Hermitian operator. As a conse-
quence it is impossible to explain dynam-
ics in an isolated system without invoking
an external classical clock, a fact that be-
comes particularly problematic in the con-
text of quantum gravity. An unconven-
tional solution was pioneered by Page and
Wootters (PaW) in 1983. PaW showed
that dynamics can be an emergent prop-
erty of the entanglement between two sub-
systems of a static Universe. In this work
we first investigate the possibility to intro-
duce in this framework a Hermitian time
operator complement of a clock Hamilto-
nian having an equally-spaced energy spec-
trum. An Hermitian operator complement
of such Hamiltonian was introduced by
Pegg in 1998, who named it “Age”. We
show here that Age, when introduced in
the PaW context, can be interpreted as
a proper Hermitian time operator conju-
gate to a “good”clock Hamiltonian. We
therefore show that, still following Pegg’s
formalism, it is possible to introduce in
the PaW framework bounded clock Hamil-
tonians with an unequally-spaced energy
spectrum with rational energy ratios. In
this case time is described by a POVM
and we demonstrate that Pegg’s POVM
states provide a consistent dynamical evo-
lution of the system even if they are not
orthogonal, and therefore partially un-
distinguishables.
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1 Introduction

1.1 Time and Clocks

Observables in quantum theory are represented
by Hermitian operators with the exception of
time [1, 2] (and of a few more observables, in-
cluding phases [3]). In Quantum Mechanics, as in
Newtonian physics, time is an absolute “external”
real valued parameter that flows continuously, in-
dependently from the material world. A change
of perspective from this abstract Newtonian con-
cept was introduced in the theory of Relativity.
Here time is an “internal” degree of freedom of the
theory itself, operationally defined by “what it is
shown on a clock”, with the clock being a wisely
chosen physical system [4].

An interesting question is if an operational ap-
proach would also be possible in Quantum Me-
chanics by considering time as “what it is shown
in a quantum clock” [5]. A proposal was for-
mulated in 1983 by Don N. Page and William
K. Wootters (PaW) [5, 6]. Motivated by “the
problem of time” in canonical quantization of
gravity (see for example [7, 8]) and considering
a “Universe” in a stationary global state satis-
fying the Wheeler-DeWitt equation Ĥ |Ψ〉 = 0,
PaW suggested that dynamics can be consid-
ered as an emergent property of entangled sub-
systems, with the clock provided by a quan-
tum spin rotating under the action of an applied
magnetic field. This approach has recently at-
tracted a large interest and has stimulated sev-
eral extensions and generalisations (see for exam-
ple [9, 10, 11, 12, 13, 14, 15, 16, 17]), including
an experimental illustration [18]. A brief sum-
mary of the Page and Wootters theory is given in
Appendix A.

1.2 Time Observables in a Timeless Quantum
System

We consider here an isolated non-relativistic
quantum system that in the following we call
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“Universe”. The Hilbert space of the “Universe”
is composed by a “clock-subspace” C that keeps
track of time and the “system-subspace” S of
the rest of the Universe. In absence of an ex-
ternal temporal reference frame we write the
Schrödinger equation of the Universe as:

(Ĥs − i~
∂

∂tc
) |Ψ〉 = 0 (1)

The first term Ĥs is the Hamiltonian of the sub-
system S. We interpret the second term as a
(possibly approximate) time representation of the
clock-subspace Hamiltonian:

− i~ ∂

∂tc
→ Ĥc. (2)

Under the implicit assumption that the two sub-
systems C and S are not interacting, Eq. (1)
becomes:

(Ĥs + Ĥc) |Ψ〉 = 0. (3)

The time representation of the clock Hamiltonian
Eq. (2) would be correct, −i~ ∂

∂tc
= Ĥc, only if Ĥc

has a continuous, unbounded spectrum. In this
case we could write the Hermitian time opera-
tor in the energy representation as T̂ = −i~ ∂

∂Ec
.

Since we consider here an isolated physical sys-
tem of finite size, the introduction of unbounded
Hamiltonians with a continuous spectrum would
not be possible. As a consequence, an Hermi-
tian time operator written in differential form as
in Eq. (1) cannot be introduced within standard
approaches [1].

In this work we explore the possibility to con-
struct a time Hermitian observable that is conju-
gate to a clock Hamiltonian having an eigenvalue
spectrum with a finite lower bound. It is clear, as
already mentioned, that such exploration would
be fruitless for the simple reason that its exis-
tence would contradict the Stone-von Neumann
theorem. A way out was considered by D. T.
Pegg [20] (see also [21]) who suggested a proto-
col to construct an Hermitian operator, named
“Age”, complement of a lower-bounded Hamilto-
nian with equally-spaced energy eigenvalues. The
idea was to consider an Hamiltonian with an en-
ergy cut-off, calculate all quantities of interest,
and eventually remove the cut-off by letting go
to infinity the upper bound.

Age is conjugate to the Hamiltonian in the
sense that it is the generator of energy shifts while
the Hamiltonian is the generator of translations

of the eigenvalues of Age. However, as Pegg em-
phasized, and consistently with the Pauli objec-
tion [1], the Age operator cannot be considered,
as a bona-fide time operator. This because Age is
a property of the system itself and crucially de-
pends on its state. In particular, while for partic-
ular states the rate of change of Age’s mean value
can be constant, for an energy eigenstate its mean
value does not evolve: a system in a stationary
state would not age as time goes on [20]. Pegg
also considered a larger set of Hamiltonians hav-
ing unequally-spaced energy eigenvalues. Also in
this case it is possible to write down a comple-
ment of the Hamiltonian whose eigenvalues can
be used to construct a probability-operator mea-
sure (POVM).

The central result of our work is to show that
the Pegg formalism finds a sound physical inter-
pretation when incorporated in the Page-Wooters
framework. We introduce as “good” clock a de-
vice described by an Hamiltonian having equally
spaced eigenvalues. In this case time is described
by an Hermitian operator. A device governed by
an Hamiltonian having rational energy differences
can still provide a good clock mathematically de-
scribed by a POVM. We show that in both cases
we recover the Schrödinger dynamical evolution
of the system S.

2 Time from Entanglement
2.1 The Clock Subspace
The first problem to deal with is the introduc-
tion of a good clock. We define as good clock
a physical system governed by a lower-bounded
Hamiltonian having discrete, equally-spaced, en-
ergy levels, see also [25, 26] (a generalisation to
non-equally spaced levels will be discussed in Sec-
tion IV):

Ĥc =
s∑

n=0
En |En〉 〈En| , (4)

where s + 1 is the dimension of the clock space
that, following D. T. Pegg [20], we first consider
as finite. We now search for an Hermitian observ-
able τ̂ in the clock space that is conjugated to the
clock Hamiltonian Ĥc. We define the time states
(we set ~ = 1)

|τm〉c = 1√
s+ 1

s∑
n=0

e−iEnτm |En〉c (5)
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with τm = τ0 +m T
s+1 , En = E0 +n2π

T and m,n =
0, 1, ..., s. Eq. (5) provides an orthonormal and
complete basis since

〈τm|τm′〉 = δm,m′ (6)

and
s∑

m=0
|τm〉 〈τm| = 1c. (7)

With the states (5) we can define the Hermitian
time operator

τ̂ =
s∑

m=0
τm |τm〉 〈τm| (8)

that is conjugated to the Hamiltonian Ĥc. It is
indeed easy to show that Ĥc is the generator of
shifts in τm values and, viceversa, τ̂ is the gener-
ator of energy shifts:

|τm〉c = e−iĤc(τm−τ0) |τ0〉c (9)

and
|En〉c = eiτ̂(En−E0) |E0〉c . (10)

A second important property of the clock states
is their ciclic condition: |τm=s+1〉 = |τm=0〉. The
time taken by the system to return to its initial
state is

T = 2π
δE

(11)

with δE being the spacing between two neigh-
bouring energy eigenvalues. Conversely, the
smallest time interval is

δτ = τm+1 − τm = 2π
δE (s+ 1) . (12)

To summarise: the greater is the spectrum of
the clock Hamiltonian, the smaller is the spac-
ing δτ between two eigenvalues of the clock. The
smaller is the distance between two eigenvalues
of the clock energy, the larger the range T of
the eigenvalues τm. The final crucial step is to
choose the value of s. Following Pegg’s prescrip-
tion [20], this has to be first taken finite in order
to allow the calculation of all quantities of inter-
est, including the Schrödinger equation, that will
therefore functionally depend on s. The physical
values of the observables are eventually obtained
in the limit s −→ ∞. Obviously, this limit im-
plies a continuous flow of time, but nothing for-
bids, in principle, to choose s large but finite so
to preserve a discrete time evolution. The two
prescriptions would give different predictions for
measured values of observables.

2.2 Dynamics

We consider the total Hilbert space of the Uni-
verse H = Hc ⊗ Hs, with Hc and Hs having
dimension dc = s + 1 and ds respectively. We
require that our “good clock” has dc � ds. A gen-
eral bipartite state of the Universe can be written
as

|Ψ〉 =
dc−1∑
n=0

ds−1∑
k=0

cn,k |En〉c ⊗ |Ek〉s . (13)

We impose the constraint Eq. (3) Ĥ |Ψ〉 = 0 and,
under the assumption that the spectrum of the
clock Hamiltonian is sufficiently dense (namely,
that to each energy state of the system S there is
a state of the clock for which Eq. (3) is satisfied),
we obtain for the state of the Universe

|Ψ〉 =
ds−1∑
k=0

c̃k |E = −Ek〉c ⊗ |Ek〉s (14)

with
∑
k |c̃k|

2 = 1. With the resolution of the
identity (7), we write

|Ψ〉 = 1√
dc

dc−1∑
m=0
|τm〉c ⊗

ds−1∑
k=0

c̃ke
−iEkτm |Ek〉s .

(15)
By writing a generic state of the system as
|φm〉s =

∑ds−1
k=0 c̃ke

−iEkτm |Ek〉s, the state (15) be-
comes

|Ψ〉 = 1√
dc

dc−1∑
m=0
|τm〉c ⊗ |φm〉s . (16)

It is interesting to note, and we emphasise, that
the state |φm〉s is related to the the global |Ψ〉 of
the Universe by

|φm〉s = 〈τm|Ψ〉
1/
√
dc

(17)

that is the Everett relative state definition of the
subsystem S with respect to the clock system C
[19]. As pointed out in [11], this kind of pro-
jection has nothing to do with a measurement.
Rather, |φm〉s is a state of S conditioned to the
clock C in the state |τm〉c.

Now, following the PaW framework and using
Eq. (17), the constraints Eq. (3) and Eq. (9), we
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have:

|φm〉s =
√
dc 〈τ0| eiĤc(τm−τ0) |Ψ〉 =

=
√
dc 〈τ0| ei(Ĥ−Ĥs)(τm−τ0) |Ψ〉 =

= e−iĤs(τm−τ0) |φ0〉s

(18)

where |φ0〉s = 〈τ0|Ψ〉
1/
√
dc

=
∑ds−1
k=0 c̃ke

−iEkτ0 |Ek〉s.
The Eq. (18) provides the Schrödinger evolution
of S with respect to the clock time.

Now we can also consider the global state writ-
ten in the form (16) and, through (18), we can
consider the unitary operator Ûs(τm − τ0) =
e−iĤs(τm−τ0) [9]. With this choice the state of
the global system can be written as

|Ψ〉 = 1√
dc

dc−1∑
m=0
|τm〉c ⊗ Ûs(τm − τ0) |φ0〉s (19)

where explicitly is included the entire time his-
tory of the Universe. We conclude this Section
by noticing that the conditional probability of
obtaininig the outcome a for the system S when
measuring the observable A at a certain time τm
is given, as expected, by the Born rule:

P (a on S | τm on C) = P (a on S, τm on C)
P (τm on C) =

=
∣∣∣〈a| Ûs(τm − τ0) |φ0〉

∣∣∣2 .
(20)

3 The Hermitian Time Operator
Here we show that within the PaW framework
the operator τ̂ has the expected properties of a
Hermitian time observable. It is well known that
Pauli objected about the existence of a time Her-
mitian operator because time is continuous and
unbounded in the past and in the future while
general Hamiltonians have a lower bounded (con-
tinuous or discrete) spectrum [27]. Pegg’s Age
operator overcome the energy objection [1] since
τ̂ has a discrete spectrum and cyclical boundary
conditions while the appropriate limits are taken
only after calculating whatever of interest. The
question we address here is why τ̂ can not be
considered as a proper time operator outside the

PaW mechanism. As clearly pointed out by Pegg,
τ̂ has dimensions of time but it is a property of
the quantum system, and it strongly depends on
the state of the system. With a quantum system
with Hamiltonian Ĥ we would be forced to con-
sider τ̂ defined on the space of the system itself.
So the evolution of the mean value of τ̂ operator
with respect to an external time has to be con-
stant or at least not zero, otherwise the dynamics
would freeze:

d〈τ̂〉
dt

= −i 〈ψ|
[
τ̂ , Ĥ

]
|ψ〉

∝
∑
n,n′

(En′ − En) 〈ψ|En′〉 〈En|ψ〉
(21)

where |ψ〉 is a generic state of the system . If we
consider the system in an energy eigenstate (that
is |ψ〉 = |Ei〉), we obtain

d〈τ̂〉
dt

= 0 (22)

which means that the τm values stops running
over time. So, outside the PaW framework, the τ̂
operator can not be considered as a time observ-
able, but as a property of the system that has
dimension of time. Conversely, within the PaW
framework, we have a global stationary state that
includes the whole time history of S with re-
spect to C. An energy eigenstate of the system
S evolves with an unobservable global phase

|φm〉s = e−iEkτm |Ek〉s . (23)

However, this does not mean that the Universe
stops. Indeed, from the fact that in the clock
space τ̂ and Ĥc are conjugated operators, it fol-
lows that, even if taking the system S in an
energy eigenstate |Ek〉 forces the clock in an
eigenstate of Ĥc, all time states exist (indeed,
thanks to the fact that τ̂ and Ĥc are incompati-
ble observables, for construction we have |Ek〉 ∝∑
m e
−iEkτm |τm〉). The τ̂ operator that Pegg’s

defined as complement of the Hamiltonian be-
comes a proper time operator when included in
the PaW framework. This happens in general
with any choice of the clock Hamiltonian, as dis-
cussed by Leon and Maccone in [23], because in
the Page and Wootter theory the concept of ex-
ternal time is eliminated (or in any case becomes
irrelevant), and time is an emerging property of
entanglement between the system S and the clock
C imposed by the Wheeler-DeWitt constraint.
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4 Unequally Spaced Energy Levels for
the Clock Hamiltonian

With the perspective to extend the set of Hamil-
tonians useful to describe a clock, we now con-
sider the case in which the clock Hamiltonian
does not have equally spaced energy levels, but
non-degenerate eigenstates having rational en-
ergy differences. In this case we cannot define
an Hermitian operator but we can still introduce
a probability-operator measure, complement of
such Hamiltonian [20].

4.1 Discrete Flow of Time

We consider a quantum system described by p+1
energy states |Ei〉 and Ei energy levels with i =
0, 1, 2, ..., p such that

Ei − E0
E1 − E0

= Ci
Bi
, (24)

where Ci and Bi are integers with no common
factors. We can write

Ei = E0 + ri
2π
T

(25)

where T = 2πr1
E1−E0

, ri = r1
Ci
Bi

for i > 1 (with r0 =
0) and r1 equal to the lowest common multiple of
the values of Bi.

In this space we define the states

|αm〉c = 1√
dc

dc−1∑
i=0

e−iEiαm |Ei〉c (26)

where dc = p+ 1 and

αm = α0 +m
T

s+ 1 (27)

with m = 0, 1, 2, ..., s and s + 1 = D ≥ rp. The
number of |αm〉 states is therefore greater than
the number of energy states in Hc and the s+ 1
values of αm are uniformly distributed over T .
The resolution of the identity (7) is now replaced
by (see Appendix B)

1c = p+ 1
s+ 1

s∑
m=0
|αm〉 〈αm| . (28)

As in the previous discussion, we can now con-
sider a general state in the space H = Hc ⊗ Hs

and require that it satisfies the PaW constraint.
By writing

|Ψ〉 =
dc−1∑
n=0

ds−1∑
k=0

cn,k |En〉c ⊗ |Ek〉s (29)

and imposing Ĥ |Ψ〉 = 0 (considering dc � ds),
we obtain

|Ψ〉 =
ds−1∑
k=0

c̃k |E = −Ek〉c ⊗ |Ek〉s (30)

with
∑ds−1
k=0 |c̃k|

2 = 1. We can now apply the
resolution of the identity (28) to the state |Ψ〉
and obtain (D = s+ 1):

|Ψ〉 = dc
D

D−1∑
m=0
|αm〉 〈αm|Ψ〉 =

=
√
dc
D

D−1∑
m=0
|αm〉c ⊗

ds−1∑
k=0

c̃ke
−iEkαm |Ek〉s .

(31)

We notice here that the states |αm〉c are not or-
thogonal. This introduces a possible conceptual
warning that needs to be discussed. It is clear
that by considering time states that are not or-
thogonal implies that these are partially indistin-
guishable with a single measurement, the prob-
ability of indistinguishability being proportional
to | 〈αm′ |αm〉 |2. The partial indistinguishability
of the states |αm〉c implies an overlap between
different times. We show, however, that also in
this case the time evolution is described by the
Schrödinger equation. Considering

|φm〉s = 〈αm|Ψ〉
1/
√
dc
, (32)

we obtain |φm〉s =
∑ds−1
k=0 c̃ke

−iαmEk |Ek〉s for the
state of the system S (see Appendix C). There-
fore, even if time states are partially indistin-
guishable, the state of the system S, conditioned
on a given |αm〉c, evolves with αm. Indeed,
thanks to the fact that

|αm〉c = e−iĤc(αm−α0) |α0〉c , (33)

using once again the constraint (3) and the (32),
we obtain

|φm〉s = e−iĤs(αm−α0) |φ0〉s (34)
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that is the Schrödinger evolution for the state
|φm〉s with the Hamiltonian Ĥs. We notice here
that POVMs generalizing the one introduced by
Pegg have been discussed in [28]. The conse-
quence of using POVM is that time states are not
fully indistinguishable. This suggests a possible
extension of the definition of the Everett relative
states where is still possible to have a consistent
dynamical evolution of the system S.

To conclude this Section we notice that,
through equation (34), we can again define the
unitary operator Ûs(αm − α0) = e−iĤs(αm−α0).
With this choice the state of the global system
can be written as

|Ψ〉 =
√
dc
D

D−1∑
m=0
|αm〉c ⊗ Ûs(αm − α0) |φ0〉s (35)

and the conditional probability of obtaining the
outcome a for the system S when measuring the
observable A at a certain time αm is given again
by the Born rule (see Appendix D):

P (a on S | αm on C) = P (a on S, αm on C)
P (αm on C) =

=
∣∣∣〈a| Ûs(αm − α0) |φ0〉

∣∣∣2 .
(36)

The Eq. (36) shows that the conditioned state of
S to a certain clock value αm has no contributions
from different times αm′ 6= αm, and so interfer-
ence phenomena are not present even if the time
states are not orthogonal.

4.2 Continuous Flow of Time

So far we have considered a discrete flow of time.
A continuous can be obtained in the limit s→∞
[20]. We define

|α̃〉 =
p∑
i=0

e−iEiα |Ei〉 (37)

where again p+ 1 is the number of energy eigen-
states and α can now take any real value from α0
to α0 +T . In this framework the resolution of the
identity (28) becomes

1c = 1
T

∫ α0+T

α0
dα |α̃〉 〈α̃| . (38)

The global state is

|Ψ〉 = 1
T

∫ α0+T

α0
dα |α̃〉 〈α̃|Ψ〉 =

= 1
T

∫ α0+T

α0
dα |α̃〉c ⊗

ds−1∑
k=0

cke
−iEkα |Ek〉s =

= 1
T

∫ α0+T

α0
dα |α̃〉c ⊗ |φ(α)〉s

(39)

and, since |φ(α)〉s ∝ 〈α̃|Ψ〉, we derive the
Schrödinger equation for the state |φ(α)〉s

i
∂

∂α
|φ(α)〉s = i

∂

∂α
〈α̃|Ψ〉 =

= i
∂

∂α

dc−1∑
k=0
〈Ek| eiEkα |Ψ〉 =

= −
dc−1∑
k=0
〈Ek|EkeiEkα |Ψ〉 =

= −〈α̃| Ĥc |Ψ〉 = Ĥs |φ(α)〉s .

(40)

To conclude this Section we briefly discuss the
case of a clock Hamiltonian with a discrete spec-
trum and arbitrary (not rational) energy level ra-
tios. Also in this scenario a Schrödinger-like evo-
lution is recovered for the state of the system S
with respect to the clock. A caveat is that, in
this case, the resolution of the identity (28) is no
longer exact and time states |αm〉c do not provide
an overcomplete basis in C. Nevertheless, since
any real number can be approximated with ar-
bitrary precision by a ratio between two rational
numbers, the residual terms in the resolution of
the identity and consequent small corrections can
be arbitrarily reduced.

4.3 Non-Observable Universe as Clock and the
Arrow of Time

Is there an arrow of time in the PaW formalism?
The answer in clearly negative. However, it is
possible to introduce an emergent arrow of time.
Following [11] one can consider for simplicity that
the system S consists only of two subsystems,
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“the observer”(Σ1) and “the observed”(Σ2) which
are initially in a product state. The arrow of
time (with respect to clock time) can be provided
by the increase in entanglement between the two
subsystems within S, as the observer learns more
and more about the observed. We can ask now
where to find a good clock for the Universe [29].
We have considered as a “good”clock a device de-
fined in a Hilbert space larger than the Hilbert
space of the system S, that is dc � ds. Indeed,
if dc ≤ ds, it would not be possible to connect
every energy state of the system S to an energy
state of C satisfying the constraint (3), and some
states of S would be excluded from the dynamics.
Therefore, the clock introduced here has essen-
tially two properties: it has to be larger than the
system S and it has to interact only weakly with
S or, in the ideal case, it should not interact at
all. Does such a clock exist? A possible choice is
to consider the non-observable Universe (namely,
the Universe laying outside the light cone centred
in the Earth) as a clock for the observable Uni-
verse. Indeed, in this case, the clock and the ob-
servable Universe S are not interacting but can
still be fully entangled, with the Hilbert space
of the clock that can be quite larger that the
Hilbert space of S. With this choice (which of
course is just one among several equally specu-
lative choices) the two requirements for a good
clock are satisfied. We can then consider that
during the evolution with respect to such a clock,
inside the observable Universe (that is inside the
interacting subsystems Σ1 and Σ2 of S) there is
an increasing entanglement generated by Ĥs and,
therefore, an increasing relative entropy and the
emergence of a thermodynamic arrow of time.

5 Conclusions

In this work we have elaborated on the Page and
Wootters theory. PaW provides a consistent pic-
ture of quantum time as an emerging property
of entanglement among subsystems of the Uni-
verse. We have considered a protocol introduced
by Pegg for the construction of a “Age”operator
complement of a bounded Hamiltonian having a
spectrum of equally spaced energy levels. By in-
corporating Pegg’s formalism in the PaW theory
we have shown that Age can be interpreted as an
Hermitian time operator providing the dynamical
evolution of the system.

In addition we have shown that it is possible to
extend this framework to any Hamiltonian with
a discrete spectrum having rational ratios of the
energy levels. We have demonstrated that even
if in this case the time states are not fully distin-
guishable, the system S still evolves with respect
to the clock time according to the Schrödinger
equation. Finally, we have considered the contin-
uous limit of the flow of time.

We can read the PaW approach as a general
“internalization protocol" where, beside time, it
is possible to internalise spatial reference frames
where space is “what is shown on a meter”. In the
current formalism of quantum mechanics there is
an evident asymmetry in how space and time are
treated: the spatial degrees of freedom are typ-
ically a quantum property of the system under
investigation while time on the contrary appears
as a classical parameter external to the theory
[30]. Perhaps a PaW formulation of spacetime
may represent a first step towards removing this
asymmetry. This might help to develop relativis-
tic generalizations of the PaW formalism, see also
[31, 32, 33, 34].
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A Summary of PaW Theory
We give here a brief summary of PaW theory, following [11]. Page and Wootters consider the whole
Universe as being in a stationary state with zero eigenvalue (consistently with the the Wheeler-DeWitt
equation), that is

Ĥ |Ψ〉 = 0 (41)

where Ĥ and |Ψ〉 are the Hamiltonian and the state of the Universe, respectively.
They divide the Universe into two non-interacting subsystems, the clock C and the rest of the

Universe S, and thus the total Hamiltonian can be written as

Ĥ = Ĥc ⊗ 1s + 1c ⊗ Ĥs (42)

where Ĥc and Ĥs are the Hamiltonians acting on C and S respectively, and 1c, 1s are unit operators.
The condensed history of the system S is written through the entangled global stationary state |Ψ〉 ∈
H = Hc ⊗Hs (which satisfies the constraint (41)) as follows:

|Ψ〉 =
∑
t

ct |t〉c ⊗ |φt〉s (43)

where the states {|t〉c} are eigenstates of the operator choosen to be the clock observable.
The relative state (in Everett sense [19]) of the subsystem S with respect to the clock C can be

defined

ρ
(s)
t =

Trc
[
P

(c)
t ρ

]
Tr
[
P

(c)
t ρ

] = |φt〉 〈φt| (44)

where ρ = |Ψ〉 〈Ψ| and P (c)
t is the projector on a certain time state in the clock subspace. Note that

equation (44) is the Everett relative state definition of the subsystem S with respect to the clock system
C. As pointed out in [11], this kind of projection has nothing to do with a measurement. Rather, |φt〉s
is a state of S conditioned to the clock C being in the state |t〉c.

From equations (41), (42) and (44), it is then possible to derive the Schrödinger equation for the
relative state of the subsystem S with respect to the clock C:

∂ρ
(s)
t

∂t
= i

[
ρ

(s)
t , Ĥs

]
. (45)

Since the subsystem S experiences a Schrödinger-like evolution with respect to the clock C, the param-
eter t can be interpreted as time and the evolution of S has been recovered within a globally stationary
Universe.

The last point concerns conditional probabilities. In the PaW framework the probability to obtain
the outcome a when measuring the observable Â on the subspace S “at a certain time” t̃ can be written
as:

P (a on S | t̃ on C) = P (a on S, t̃ on C)
P (t̃ on C)

(46)

that is the conditional probability of obtaining a on S given that the clock C shows t̃. That’s why the
PaW mechanism is sometimes called “conditional probability interpretation of time”.

The PaW approach to time has not been without criticism. For instance Kuchar [22] questioned
the possibility of constructing a two-time propagator and Albrecht and Iglesias [23] stressed how the
possibility for different choices of the clock inexorably leads to an ambiguity in the dynamics of the
rest of the Universe. These objections were addressed by Giovannetti, Lloyd and Maccone [9] (see also
[10, 24]) and Marletto and Vedral [11], respectively.
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B Proof of Equation (28)

We prove that
∑s
m=0 |αm〉 〈αm| is equal to the identity:

s∑
m=0
|αm〉 〈αm| =

1
p+ 1

s∑
m=0

∑
i

∑
k

e−iαmEieiαmEk |Ei〉 〈Ek| =

= 1
p+ 1

 s∑
m=0

∑
k

|Ek〉 〈Ek|+
∑
k 6=i

s∑
m=0

eiαm(rk−ri)2π/T |Ei〉 〈Ek|

 .
(47)

For (Ek−E0)/(E1−E0) rational, and thus rk−ri integer, the second term of the right side of equation
(47) will be zero and then we have

p+ 1
s+ 1

s∑
m=0
|αm〉 〈αm| = 1c. (48)

C Relative State Definition for S in case of non-orthogonal Time States

We start considering the global state |Ψ〉 written as

|Ψ〉 =
ds−1∑
k=0

c̃k |E = −Ek〉c ⊗ |Ek〉s (49)

and we apply in sequence the resolutions of the identity on the clock subspace

dc
D

D−1∑
m=0
|αm〉 〈αm| = 1c (50)

and

dc−1∑
n=0
|En〉 〈En| = 1c. (51)

We obtain
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|Ψ〉 = dc
D

D−1∑
m=0
|αm〉 〈αm|Ψ〉 =

= dc
D

D−1∑
m=0
|αm〉c ⊗

ds−1∑
k=0

c̃k 〈αm|E = −Ek〉 |Ek〉s =

=
√
dc
D

D−1∑
m=0
|αm〉c ⊗

ds−1∑
k=0

c̃ke
−iαmEk |Ek〉s =

=
dc−1∑
n=0
|En〉 〈En|

√
dc
D

D−1∑
m=0
|αm〉c ⊗

ds−1∑
k=0

c̃ke
−iαmEk |Ek〉s =

=
√
dc
D

dc−1∑
n=0
|En〉c ⊗

D−1∑
m=0
〈En|αm〉

ds−1∑
k=0

c̃ke
−iαmEk |Ek〉s =

= 1
D

dc−1∑
n=0
|En〉c ⊗

D−1∑
m=0

e−iαmEn

ds−1∑
k=0

c̃ke
−iαmEk |Ek〉s =

=
dc−1∑
n=0
|En〉c ⊗

ds−1∑
k=0

c̃k
1
D

D−1∑
m=0

e−iαm(En+Ek) |Ek〉s

(52)

from which we have

D−1∑
m′=0

e−iαm′ (En+Ek) = DδEn,−Ek
. (53)

Considering now the definition of the |φm〉s state as

|φm〉s =
√
dc 〈αm|Ψ〉 , (54)

we have:
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〈αm|Ψ〉 = 〈αm|
√
dc
D

D−1∑
m′=0

|αm′〉 ⊗
ds−1∑
k=0

c̃ke
−iαm′Ek |Ek〉s =

=
√
dc
D

D−1∑
m′=0

dc−1∑
n,n′=0

ds−1∑
k=0

1
dc
eiEnαme−iEn′αm′ 〈En|En′〉 c̃ke−iEkαm′ |Ek〉s =

=
√
dc
D

D−1∑
m′=0

dc−1∑
n,n′=0

ds−1∑
k=0

1
dc
eiEnαme−iEn′αm′ δEn,En′ c̃ke

−iEkαm′ |Ek〉s =

= 1
D
√
dc

dc−1∑
n=0

eiEnαm

ds−1∑
k=0

c̃k

D−1∑
m′=0

e−iαm′ (En+Ek) |Ek〉s ,

(55)

and considering (53) we obtain

〈αm|Ψ〉 = 1√
dc

ds−1∑
k=0

c̃ke
−iαmEk |Ek〉s . (56)

Then the definition (54) implies

|φm〉s =
ds−1∑
k=0

c̃ke
−iαmEk |Ek〉s . (57)

D Proof of Equation (36)

We start considering the global state written as

|Ψ〉 =
√
dc
D

D−1∑
m=0
|αm〉c ⊗ |φm〉s (58)

where |φm〉s =
∑ds−1
k=0 c̃ke

−iEkαm |Ek〉s. We can now calculate the conditional probability as follows
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P (a on S | αm on C) = P (a on S, αm on C)
P (αm on C) =

= |(〈αm| 〈a|) |Ψ〉|2∑
a |(〈αm| 〈a|) |Ψ〉|

2 =

=

∣∣∣(〈αm| 〈a|)√dc
D

∑D−1
m′=0 |αm′〉c |φm′〉s

∣∣∣2∑
a

∣∣∣(〈αm| 〈a|)√dc
D

∑D−1
m′=0 |αm′〉c |φm′〉s

∣∣∣2 =

=

∣∣∣(〈αm| 〈a|)∑D−1
m′=0 |αm′〉c

∑ds−1
k=0 c̃ke

−iEkαm′ |Ek〉s
∣∣∣2∑

a

∣∣∣(〈αm| 〈a|)∑D−1
m′=0 |αm′〉c

∑ds−1
k=0 c̃ke−iEkαm′ |Ek〉s

∣∣∣2 =

=

∣∣∣∑D−1
m′=0

∑dc−1
n=0 eiEn(αm−αm′ ) 〈a|

∑ds−1
k=0 c̃ke

−iEkαm′ |Ek〉s
∣∣∣2∑

a

∣∣∣∑D−1
m′=0

∑dc−1
n=0 eiEn(αm−αm′ ) 〈a|

∑ds−1
k=0 c̃ke−iEkαm′ |Ek〉s

∣∣∣2 =

=

∣∣∣∑dc−1
n=0 eiEnαm 〈a|

∑ds−1
k=0 c̃k

∑D−1
m′=0 e

−i(Ek+En)αm′ |Ek〉s
∣∣∣2∑

a

∣∣∣∑dc−1
n=0 eiEnαm 〈a|

∑ds−1
k=0 c̃k

∑D−1
m′=0 e

−i(Ek+En)αm′ |Ek〉s
∣∣∣2 .

(59)

Thanks to equation (53), that is
∑D−1
m′=0 e

−iαm′ (En+Ek) = DδEn,−Ek
, we have

P (a on S | αm on C) =

∣∣∣〈a|∑ds−1
k=0 c̃ke

−iEkαm |Ek〉s
∣∣∣2∑

a

∣∣∣〈a|∑ds−1
k=0 c̃ke−iEkαm |Ek〉s

∣∣∣2 =

= |〈a|φm〉|2∑
a |〈a|φm〉|

2 = |〈a|φm〉|2

(60)

and considering that |φm〉s = e−iĤs(αm−α0) |φ0〉s = Ûs(αm − α0) |φ0〉 we obtain

P (a on S | αm on C) =
∣∣∣〈a| Ûs(αm − α0) |φ0〉

∣∣∣2 . (61)
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