Time Observables in a Timeless Universe

Tommaso Favalli1,2 and Augusto Smerzi1

1QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
2Universitá degli Studi di Napoli Federico II, Via Cinthia 21, I-80126 Napoli, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.

Abstract

Time in quantum mechanics is peculiar: it is an observable that cannot be associated to an Hermitian operator. As a consequence it is impossible to explain dynamics in an isolated system without invoking an external classical clock, a fact that becomes particularly problematic in the context of quantum gravity. An unconventional solution was pioneered by Page and Wootters (PaW) in 1983. PaW showed that dynamics can be an emergent property of the entanglement between two subsystems of a static Universe. In this work we first investigate the possibility to introduce in this framework a Hermitian time operator complement of a clock Hamiltonian having an equally-spaced energy spectrum. An Hermitian operator complement of such Hamiltonian was introduced by Pegg in 1998, who named it "Age". We show here that Age, when introduced in the PaW context, can be interpreted as a proper Hermitian time operator conjugate to a "good" clock Hamiltonian. We therefore show that, still following Pegg's formalism, it is possible to introduce in the PaW framework bounded clock Hamiltonians with an unequally-spaced energy spectrum with rational energy ratios. In this case time is described by a POVM and we demonstrate that Pegg's POVM states provide a consistent dynamical evolution of the system even if they are not orthogonal, and therefore partially undistinguishables.

► BibTeX data

► References

[1] W. Pauli, General Principles of Quantum Mechanics, Springer Berlin Heidelberg (1980).
https:/​/​doi.org/​10.1007/​978-3-642-61840-6

[2] P. Busch, The Time-Energy Uncertainty Relation, (2008) on this topic. In: Muga J., Mayato R. S., Egusquiza Í., Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734. Springer, Berlin, Heidelberg.
https:/​/​doi.org/​10.1007/​978-3-540-73473-4

[3] R. Lynch, Physics Reports 256, 367 (1995).
https:/​/​doi.org/​10.1016/​0370-1573(94)00095-K

[4] C. Rovelli, Phys. Rev. D 43, 442 (1991).
https:/​/​doi.org/​10.1103/​PhysRevD.43.442

[5] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983).
https:/​/​doi.org/​10.1103/​PhysRevD.27.2885

[6] W. K. Wootters, International Journal of Theoretical Physics, 23, 701–711 (1984).
https:/​/​doi.org/​10.1007/​BF02214098

[7] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).
https:/​/​doi.org/​10.1103/​PhysRev.160.1113

[8] C. J. Isham, Canonical Quantum Gravity and the Problem of Time, edited by L. A. Ibort, M. A. Rodríguez, 157 (1993).
https:/​/​doi.org/​10.1007/​978-94-011-1980-1_6

[9] V. Giovannetti, S. Lloyd and L. Maccone, Phys. Rev. D 92, 045033 (2015).
https:/​/​doi.org/​10.1103/​PhysRevD.92.045033

[10] E. Moreva, M. Gramegna, G. Brida, L. Maccone and M. Genovese, Phys. Rev. D 96, 102005 (2017).
https:/​/​doi.org/​10.1103/​PhysRevD.96.102005

[11] C. Marletto and V. Vedral, Phys. Rev. D 95, 043510 (2017).
https:/​/​doi.org/​10.1103/​PhysRevD.95.043510

[12] V. Vedral, Time, Inverse Time and Cosmological Inflation as Entanglement. In: R. Renner, S. Stupar, Time in Physics, 27-42, Springer (2017).
https:/​/​doi.org/​10.1007/​978-3-319-68655-4

[13] L. Maccone and K. Sacha, Phys. Rev. Lett. 124, 110402 (2020).
https:/​/​doi.org/​10.1103/​PhysRevLett.124.110402

[14] V. Baumann, F. Del Santo, A. R. H. Smith, F. Giacomini, E. Castro-Ruiz and C. Brukner, arXiv:1911.09696.
arXiv:1911.09696

[15] D. T. Pegg, J. Phys. A: Math. Gen. 24, 3031-3040 (1991).
https:/​/​doi.org/​10.1088/​0305-4470/​24/​13/​018

[16] A. R. H. Smith and M. Ahmadi, Quantum 3, 160 (2019).
https:/​/​doi.org/​10.22331/​q-2019-07-08-160

[17] C. Foti, A. Coppo, G. Barni, A. Cuccoli and P. Verrucchi, arXiv:2006.12103.
arXiv:2006.12103

[18] E. Moreva, G. Brida, M. Gramegna, V. Giovannetti, L. Maccone and M. Genovese, Phys. Rev. A 89, 052122 (2014).
https:/​/​doi.org/​10.1103/​PhysRevA.89.052122

[19] H. Everett, The Theory of the Universal Wave Function. In: The Many Worlds Interpretation of Quantum Mechanics, Princeton University Press, Department of Physics, 1-140 (1957).
https:/​/​doi.org/​10.1515/​9781400868056-002

[20] D. T. Pegg, Phys. Rev. A 58, 4307 (1998).
https:/​/​doi.org/​10.1103/​PhysRevA.58.4307

[21] D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).
https:/​/​doi.org/​10.1103/​PhysRevA.39.1665

[22] K.V. Kuchar, Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, edited by G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore, 1992).
https:/​/​doi.org/​10.1142/​S0218271811019347

[23] A. Albrecht and A. Iglesias, Phys.Rev. D 77, 063506 (2008).
https:/​/​doi.org/​10.1103/​PhysRevD.77.063506

[24] C. E. Dolby, arXiv:gr-qc/​0406034.
arXiv:gr-qc/0406034

[25] A. Boette and R. Rossignoli, Phys. Rev. A 98, 032108 (2018).
https:/​/​doi.org/​10.1103/​PhysRevA.98.032108

[26] A. Boette, R. Rossignoli, N. Gigena and M. Cerezo, Phys. Rev. A 93, 062127 (2016).
https:/​/​doi.org/​10.1103/​PhysRevA.93.062127

[27] J. Leon, L. Maccone, Found Phys 47, 1597–1608 (2017).
https:/​/​doi.org/​10.1007/​s10701-017-0115-2

[28] P. A. Hoehn, A. R. H. Smith and M. P. E. Lock, arXiv:1912.00033.
arXiv:1912.00033

[29] K.L.H. Bryan and A.J.M. Medved, arXiv:1811.09660.
arXiv:1811.09660

[30] L. Maccone, Found Phys 49, 1394–1403 (2019).
https:/​/​doi.org/​10.1007/​s10701-019-00311-w

[31] A. R. H. Smith and M. Ahmadi, Nat Commun 11, 5360 (2020).
https:/​/​doi.org/​10.1038/​s41467-020-18264-4

[32] N. L. Diaz, J. M. Matera and R. Rossignoli, Phys. Rev. D 100, 125020 (2019).
https:/​/​doi.org/​10.1103/​PhysRevD.100.125020

[33] N. L. Diaz and R. Rossignoli, Phys. Rev. D 99, 045008 (2019).
https:/​/​doi.org/​10.1103/​PhysRevD.99.045008

[34] L. Loveridge, T. Miyadera and P. Busch, Found Phys 48, 135–198 (2018).
https:/​/​doi.org/​10.1007/​s10701-018-0138-3

Cited by

[1] Philipp A. Hoehn, Alexander R. H. Smith, and Maximilian P. E. Lock, "Equivalence of approaches to relational quantum dynamics in relativistic settings", arXiv:2007.00580.

[2] Caterina Foti, Alessandro Coppo, Giulio Barni, Alessandro Cuccoli, and Paola Verrucchi, "There is only one time", arXiv:2006.12103.

The above citations are from SAO/NASA ADS (last updated successfully 2020-12-05 20:52:32). The list may be incomplete as not all publishers provide suitable and complete citation data.

On Crossref's cited-by service no data on citing works was found (last attempt 2020-12-05 20:52:30).