Time Observables in a Timeless Universe

Tommaso Favalli1,2 and Augusto Smerzi1,1,2

1QSTAR, INO-CNR and LENS, Largo Enrico Fermi 2, I-50125 Firenze, Italy
2Universitá degli Studi di Napoli Federico II, Via Cinthia 21, I-80126 Napoli, Italy

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Time in quantum mechanics is peculiar: it is an observable that cannot be associated to an Hermitian operator. As a consequence it is impossible to explain dynamics in an isolated system without invoking an external classical clock, a fact that becomes particularly problematic in the context of quantum gravity. An unconventional solution was pioneered by Page and Wootters (PaW) in 1983. PaW showed that dynamics can be an emergent property of the entanglement between two subsystems of a static Universe. In this work we first investigate the possibility to introduce in this framework a Hermitian time operator complement of a clock Hamiltonian having an equally-spaced energy spectrum. An Hermitian operator complement of such Hamiltonian was introduced by Pegg in 1998, who named it "Age". We show here that Age, when introduced in the PaW context, can be interpreted as a proper Hermitian time operator conjugate to a "good" clock Hamiltonian. We therefore show that, still following Pegg's formalism, it is possible to introduce in the PaW framework bounded clock Hamiltonians with an unequally-spaced energy spectrum with rational energy ratios. In this case time is described by a POVM and we demonstrate that Pegg's POVM states provide a consistent dynamical evolution of the system even if they are not orthogonal, and therefore partially un-distinguishables.

Note: Equation (35) was corrected post publication – the latest version of this paper is now available at Quantum.

► BibTeX data

► References

[1] W. Pauli, General Principles of Quantum Mechanics, Springer Berlin Heidelberg (1980).

[2] P. Busch, The Time-Energy Uncertainty Relation, (2008) on this topic. In: Muga J., Mayato R. S., Egusquiza Í., Time in Quantum Mechanics. Lecture Notes in Physics, vol. 734. Springer, Berlin, Heidelberg.

[3] R. Lynch, Physics Reports 256, 367 (1995).

[4] C. Rovelli, Phys. Rev. D 43, 442 (1991).

[5] D. N. Page and W. K. Wootters, Phys. Rev. D 27, 2885 (1983).

[6] W. K. Wootters, International Journal of Theoretical Physics, 23, 701–711 (1984).

[7] B. S. DeWitt, Phys. Rev. 160, 1113 (1967).

[8] C. J. Isham, Canonical Quantum Gravity and the Problem of Time, edited by L. A. Ibort, M. A. Rodríguez, 157 (1993).

[9] V. Giovannetti, S. Lloyd and L. Maccone, Phys. Rev. D 92, 045033 (2015).

[10] E. Moreva, M. Gramegna, G. Brida, L. Maccone and M. Genovese, Phys. Rev. D 96, 102005 (2017).

[11] C. Marletto and V. Vedral, Phys. Rev. D 95, 043510 (2017).

[12] V. Vedral, Time, (Inverse) Temperature and Cosmological Inflation as Entanglement. In: R. Renner, S. Stupar, Time in Physics, 27-42, Springer (2017).

[13] L. Maccone and K. Sacha, Phys. Rev. Lett. 124, 110402 (2020).

[14] V. Baumann, F. Del Santo, A. R. H. Smith, F. Giacomini, E. Castro-Ruiz and C. Brukner,.

[15] D. T. Pegg, J. Phys. A: Math. Gen. 24, 3031-3040 (1991).

[16] A. R. H. Smith and M. Ahmadi, Quantum 3, 160 (2019).

[17] C. Foti, A. Coppo, G. Barni, A. Cuccoli and P. Verrucchi,.

[18] E. Moreva, G. Brida, M. Gramegna, V. Giovannetti, L. Maccone and M. Genovese, Phys. Rev. A 89, 052122 (2014).

[19] H. Everett, The Theory of the Universal Wave Function. In: The Many Worlds Interpretation of Quantum Mechanics, Princeton University Press, Department of Physics, 1-140 (1957).

[20] D. T. Pegg, Phys. Rev. A 58, 4307 (1998).

[21] D. T. Pegg and S. M. Barnett, Phys. Rev. A 39, 1665 (1989).

[22] K.V. Kuchar, Proceedings of the 4th Canadian Conference on General Relativity and Relativistic Astrophysics, edited by G. Kunstatter, D. Vincent and J. Williams (World Scientific, Singapore, 1992).

[23] A. Albrecht and A. Iglesias, Phys.Rev. D 77, 063506 (2008).

[24] C. E. Dolby, arXiv:gr-qc/​0406034.

[25] A. Boette and R. Rossignoli, Phys. Rev. A 98, 032108 (2018).

[26] A. Boette, R. Rossignoli, N. Gigena and M. Cerezo, Phys. Rev. A 93, 062127 (2016).

[27] J. Leon, L. Maccone, Found Phys 47, 1597–1608 (2017).

[28] P. A. Hoehn, A. R. H. Smith and M. P. E. Lock,.

[29] K.L.H. Bryan and A.J.M. Medved, arXiv:1811.09660.

[30] L. Maccone, Found Phys 49, 1394–1403 (2019).

[31] A. R. H. Smith and M. Ahmadi, Nat Commun 11, 5360 (2020).

[32] N. L. Diaz, J. M. Matera and R. Rossignoli, Phys. Rev. D 100, 125020 (2019).

[33] N. L. Diaz and R. Rossignoli, Phys. Rev. D 99, 045008 (2019).

[34] L. Loveridge, T. Miyadera and P. Busch, Found Phys 48, 135–198 (2018).

Cited by

[1] N. L. Diaz, J. M. Matera, and R. Rossignoli, "Spacetime quantum and classical mechanics with dynamical foliation", Physical Review D 109 10, 105008 (2024).

[2] Tommaso Favalli and Augusto Smerzi, "Peaceful coexistence of thermal equilibrium and the emergence of time", Physical Review D 105 2, 023525 (2022).

[3] Tommaso Favalli, Springer Theses 89 (2024) ISBN:978-3-031-52351-9.

[4] Tommaso Favalli, Springer Theses 1 (2024) ISBN:978-3-031-52351-9.

[5] Tommaso Favalli, Springer Theses 69 (2024) ISBN:978-3-031-52351-9.

[6] Tommaso Favalli, Springer Theses 135 (2024) ISBN:978-3-031-52351-9.

[7] Philipp A. Höhn, Alexander R. H. Smith, and Maximilian P. E. Lock, "Equivalence of Approaches to Relational Quantum Dynamics in Relativistic Settings", Frontiers in Physics 9, 587083 (2021).

[8] Tommaso Favalli, Springer Theses 47 (2024) ISBN:978-3-031-52351-9.

[9] M. Basil Altaie, Daniel Hodgson, and Almut Beige, "Time and Quantum Clocks: A Review of Recent Developments", Frontiers in Physics 10, 897305 (2022).

[10] Caterina Foti, Alessandro Coppo, Giulio Barni, Alessandro Cuccoli, and Paola Verrucchi, "Time and classical equations of motion from quantum entanglement via the Page and Wootters mechanism with generalized coherent states", Nature Communications 12 1, 1787 (2021).

[11] Tommaso Favalli, Springer Theses 13 (2024) ISBN:978-3-031-52351-9.

[12] Tommaso Favalli, Springer Theses 159 (2024) ISBN:978-3-031-52351-9.

[13] T. Favalli and A. Smerzi, "A model of quantum spacetime", AVS Quantum Science 4 4, 044403 (2022).

The above citations are from Crossref's cited-by service (last updated successfully 2024-06-22 08:51:48) and SAO/NASA ADS (last updated successfully 2024-06-22 08:51:49). The list may be incomplete as not all publishers provide suitable and complete citation data.