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The Born rule provides a fundamental connection between theory and ob-
servation in quantum mechanics, yet its origin remains a mystery. We consider
this problem within the context of quantum optics using only classical physics
and the assumption of a quantum electrodynamic vacuum that is real rather
than virtual. The connection to observation is made via classical intensity
threshold detectors that are used as a simple, deterministic model of photon
detection. By following standard experimental conventions of data analysis on
discrete detection events, we show that this model is capable of reproducing
several observed phenomena thought to be uniquely quantum in nature, thus
providing greater elucidation of the quantum-classical boundary.

1 Introduction
Since the appearance of Bell’s inequality, it has become apparent that local hidden vari-
able models cannot be compatible with the complete mathematical formalism of quantum
mechanics [1, 2, 3, 4]. Indeed, recent loophole-free experiments appear to be consistent
with this conclusion [5, 6, 7, 8]. Nevertheless, there remains the open question of which
observed phenomena, in particular, are truly quantum in nature and have no classical
analogue. This question of elucidating the quantum-classical boundary is of practical im-
portance, as many new and emerging technologies, such as quantum computing, quantum
communication, and quantum sensing, rely upon this distinction for their efficacy and
security [9].

The field of quantum optics would seem to be a good place to explore this question,
as the systems of interest are relatively simple to describe in terms of discrete field modes,
while the important light-matter interactions may be restricted to the physics of photode-
tection devices. One of the more curious aspects of quantum optics is the concept of the
vacuum or zero-point field (ZPF). In quantum electrodynamics (QED), a vacuum state is
defined simply to be the lowest energy state of a given field mode [10]. The number of
photons in this state is taken to be zero, yet its energy is nonzero, giving rise to the notion
of “virtual” photons. Although the quantum vacuum is viewed as being only virtual, its
effects are quite real. Phenomena such as the Casimir force, van der Waals attraction,
Lamb shifts, and spontaneous emission are all believed to have their origin in the quantum
vacuum [11].

The prominence of vacuum states in quantum optics suggests that they may be useful
in developing a physical theory that explores the quantum-classical boundary. In this work,
we shall proceed by supposing that the quantum vacuum of QED is real, not virtual. In
doing so, we shall abandon all formal reference to quantum theory and consider a world
governed solely by classical physics, albeit one in which the presence of a reified vacuum
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field is unavoidable. Our connection to quantum theory will lie solely in the demand that
the statistical description of the real vacuum field match that of the virtual one. Our goal
in doing so will be to explore which observed quantum phenomena can be explained under
this supposition. In particular, we shall explore in this work the emergence of the Born
rule as a statistical prediction that is applicable only within a certain regime of validity
and application.

Several previous attempts have been made to derive the Born rule from first princi-
ples [12]. Max Born, in his original 1926 paper, considered the problem of perturbative
scattering and suggested that the resulting energy may be interpreted as a statistical av-
erage if the scattering amplitudes, when properly squared, are interpreted as probabilities
[13]. Gleason provided the first attempt at a mathematical derivation of the Born rule but
relied on an assumed association of Hermitian operators with measurement observables
[14]. David Deutsch, in 1999, went further to argue that elementary decision theory may
be used to deduce the Born rule as a necessary consequence of the other quantum axioms
[15]. This argument has since been criticized to be circular, as it requires the assumption
of an agent with a particular predilection for L2 norms [16]. Zurek has suggested deco-
herence as an explanation of the Born rule [17], although this view has been criticized as
well to be insufficient [18]. More recently, Masanes et al. have claimed to derive the Born
rule by assuming, among other things, that measurements consist of well-defined trials
and always produce one of a pre-defined set of outcomes [19]. While seemingly innocuous,
this assumption does not always hold in real, experimental settings where, for example,
photons are detected at random times or, more often, not at all. An interesting result
from Allahverdyan et al. provides a derivation of the Born rule from the dynamical law of
quantum mechanics with the context of spin systems [20].

Working within the confines of the formalism does not seem a promising approach to
deriving physical laws. What these and other attempts to derive the Born rule lack is
any attempt to model the actual physics of measurement. This paper seeks to address
that point by considering a deterministic model of measurement together with a reified
quantum vacuum.

A reified quantum vacuum is the premise behind the theory of stochastic electrody-
namics (SED), and we adopt a similar outlook here [21]. Previous work in SED considered
the statistical behavior of physical systems immersed in the zero-point field. These in-
cluded classical descriptions of the quantum harmonic oscillator ground state as well as
spontaneous parametric downconversion [22]. Although these efforts were successful inso-
far as they predicted probability density functions identical to the corresponding quantum
Wigner function, they failed to fully appreciate the critical role of measurement and ex-
perimental procedure in the observation of quantum phenomena. In particular, the role of
post-selection and its relation to contextuality has received little attention within SED.

To address this deficiency, we shall consider here a local, deterministic model of photon
detection wherein the only random variables determining the outcome of a measurement are
those associated with the relevant vacuum states incident upon the device. This approach
differs from previous work in stochastic optics, an offshoot of SED focused on quantum
optics, wherein the intensity of incident waves above a given threshold determines only the
probability of an outcome, leaving the actual realization to be determined by yet another,
implicit, hidden variable [23]. Our approach uses a deterministic amplitude threshold
crossing scheme to define detection events and is similar to the work of other researchers
in this regard [24, 25, 26]. A key difference from previous work is the use of post-selection
and the examination of asymptotic behavior to approximate ideal quantum predictions.

The structure of the paper is as follows. In section 2 we describe the mathematical
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model used to describe the reified vacuum field and use the single-mode approximation to
make the correct correspondence with quantum optics. The connection to observation is
made in section 3, where we describe a deterministic model of quantum measurement using
amplitude threshold detection. From this, the Born rule is shown to arise as an emergent
and approximate property of the model in the presence of measurements. Finally, in
section 4 we consider the general problem of transformations of multiple vacuum modes
under linear optics to arrive at a model approximating single-photon, multi-mode quantum
states. Conclusions are summarized in section 5.

2 The Reified Vacuum Field
2.1 Continuum Description
Any classical electric field may be written in terms of a continuum of plane wave modes.
Thus, the electric field at a point x and time t may be written, in Gaussian units, as

E(x, t) = 1
2π

∫ √
E(k)a(k) eik·x−iω(k)t dk + c.c. , (1)

where E(k) ≥ 0 is a scale factor related to the modal energy for wave vector k ∈ R3,
a(k) ∈ C3 gives the field direction and phase, and ω(k) ≥ 0 is the angular frequency.
For a classical vacuum, ω(k) = ‖k‖c, where ‖k‖ is the magnitude of k and c is the speed
of light. The term “c.c.” represents the complex conjugate of the term to the left. The
magnetic field is similarly described, with a(k) replaced by k × a(k), so that specifying
E(k), a(k), and ω(k) for all k ∈ R3 provides a complete description of the electromagnetic
field. Without loss of generality, we shall take a(k) to be stochastic, while E(k) is assumed
fixed.

For convenience, we may decompose a(k) into orthogonal polarization modes. For
each wave vector k, let ê0(k) and ê1(k) be any two orthogonal polarization vectors (i.e.,
complex vectors such that k̂ · êµ(k) = 0, where k̂ = k/‖k‖, and êµ(k)∗ · êν(k) = δµ,ν for
all µ, ν ∈ {0, 1}). We may then write

a(k) = a0(k) ê0(k) + a1(k) ê1(k) , (2)

where aµ(k) = êµ(k)∗ ·a(k) ∈ C. Note that the choice of polarization vectors is arbitrary,
and may vary with k, but is otherwise taken to be fixed and nonrandom.

We now turn to the correspondence with quantum theory. Consistency with quantum
electrodynamics will require that, at zero temperature,

E(k) = E0(ω(k)) := 1
2~ω(k) , (3)

where we have now introduced ~, Planck’s constant divided by 2π, as setting the fun-
damental scale of the vacuum field. For nonzero temperatures, E0(ω) is replaced by the
expression

ET (ω) = 1
2~ω + ~ω

e~ω/kBT − 1
, (4)

where ω > 0, kB is Boltzmann’s constant, and T > 0 is the absolute temperature. Since
the density of states is given by ω2/(π2c3), the spectral energy density is

ρT (ω) = ~ω3

π2c3

(
1
2 + 1

e~ω/kBT − 1

)
, (5)
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which corresponds to Planck’s “second quantum theory” of blackbody radiation, with a
zero-point energy term included [27]. Note also that, at zero temperature, ρ0(ω) =
~ω3/(2π2c3) is Lorentz invariant, owing to the cubic dependence on frequency, so the
spectral energy density is the same in all inertial reference frames [28].

The stochastic nature of the field is described entirely by a(·), and consistency with
QED requires that it be a complex Gaussian random vector field such that, for any choice
of polarization vectors, E[aµ(k)] = 0 and

E[aµ(k) aν(k′)∗] = δµ,ν δ(k − k′) (6a)
E[aµ(k) aν(k′)] = 0 , (6b)

where E[·] denotes an expectation value [29]. More generally, the n-point correlations of
the field are given by

E
[
n∏
i=1

aµi(ki) aνi(k′i)∗
]

=
n∏
i=1

n∏
j=i

δµi,νj δ(ki − k′j) , (7)

with all other combinations giving a zero expectation value. Of course, this mathematical
correlation structure is only an idealization; on some spatio-temporal scale, the field must
surely be correlated. We would furthermore expect that the statistical character of the
field, its scale and correlations, might also change over time and space. Nevertheless, we
shall proceed with this modest idealization of the zero-point field, as it will provide a useful
model for the quantum vacuum.

2.2 Discrete-Mode Approximation
One can approximate the continuum of wave vector modes by a set of closely spaced
discrete modes in a notional box. Given a cube of length L > 0, we define a set K of
discrete-mode wave vectors as follows:

K =
{2πn1

L
x̂+ 2πn2

L
ŷ + 2πn3

L
ẑ : n1, n2, n3 ∈ Z

}
. (8)

The continuum wave vector space may now be decomposed into notional discrete cells
C(k) = k + [− π

L ,
π
L)3, each centered on a wave vector k ∈ K. Since the cells are disjoint

and their union comprises all of R3, we may rewrite equation (1) as follows:

E(x, t) = 1
2π

∑
k∈K

∑
µ

∫
C(k)

√
E0(ω(k′)) aµ(k′) êµ(k′) eik

′·x−iω(k′)t dk′ + c.c. (9)

Furthermore, if the cells are small (i.e., L is large), we may make the approximation

E(x, t) ≈ 1
2π

∑
k∈K

∑
µ

√
E0(ω(k)) êµ(k) eik·x−iω(k)t

∫
C(k)

aµ(k′) dk′ + c.c. (10)

This last integral yields a complex Gaussian random variable with zero mean and a
variance of ∆k = (2π/L)3 = 8π3/V corresponding to the volume of each cell [30]. We may
therefore write ∫

C(k)
aµ(k′) dk′ = zµ,k

√
∆k , (11)

where zµ,k is a standard complex Gaussian random variable (i.e., a complex Gaussian
random variable such that E[zµ,k] = 0, E[|zµ,k|2] = 1, and E[z2

µ,k] = 0). Equivalently, we
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may write zµ,k in the form zµ,k = (x + iy)/
√

2, where x, y are independent, real-valued
standard normal random variables.

We note that all discrete modes differing in either wave vector or polarization are
independent since, for k,k′ ∈ K,

E[zµ,k z∗ν,k′ ] = 1
∆k

∫
C(k)

∫
C(k′)

E[aµ(k′′)∗aν(k′′′)] dk′′dk′′′

= 1
∆k

∫
C(k)

∫
C(k′)

δµ,ν δ(k′′′ − k′′) dk′′dk′′′

= δµ,ν
1

∆k

∫
C(k)∩C(k′)

dk′′

= δµ,ν δk,k′ .

(12)

We shall chiefly be concerned with descriptions in terms of the discrete-mode approxi-
mation, as this affords the clearest correspondence with quantum optics. In particular, the
lowering operator âµ,k for discrete mode (µ,k) may be associated with the random variable
zµ,k/

√
2 in the sense that the vacuum expectation of the symmetrized number operator

equals the variance of the corresponding random variable. To see this, observe that

〈0| 1
2

(
â†µ,kâµ,k + âµ,kâ

†
µ,k

)
|0〉 = 1

2(0 + 1) = 1
2 , (13)

and, similarly,

E
[

1
2

(
z∗µ,k√

2
zµ,k√

2
+ zµ,k√

2
z∗µ,k√

2

)]
= E

[∣∣∣∣zµ(k)√
2

∣∣∣∣2
]

= 1
2 . (14)

Note that, since zµ,k and z∗µ,k commute, whereas âµ,k and â†µ,k do not, symmetrization of
the operators is important to achieve the correct correspondence.

The connection to quantum optics can be further elucidated by examining the modal
energy. Quantum mechanically, the energy of the vacuum state is given by the expec-
tation value of the Hamilitonian Ĥ = 1

2(â†µ,kâµ,k + âµ,kâ
†
µ,k) ~ω(k), which is simply the

symmetrized number operator scaled by ~ω(k). Thus, 〈0| Ĥ |0〉 = 1
2~ω(k) is identified as

the average energy per vacuum mode.
To find the corresponding classical value, we begin by computing the energy density of

the electromagnetic field for the selected mode, as given by

u(x, t) = 1
8π
[
‖∆E(x, t)‖2 + ‖∆B(x, t)‖2

]
, (15)

where the single-mode electric field is

∆E(x, t) = 1
2π

√
E0(ω) zµ,k êµ(k) eik·x−iωt

√
∆k + c.c. (16)

and the single-mode magnetic field is

∆B(x, t) = 1
2π

√
E0(ω) zµ,k [k̂ × êµ(k)] eik·x−iωt

√
∆k + c.c. . (17)

Using the fact that, for any complex vector v, ‖v + v∗‖2 = 2(v∗ · v + Re[v · v]), we find
that

‖∆E(x, t)‖2 = 2π~ω(k)
V

(
|zµ,k|2 + Re

[
z2
µ,ke

i2(k·x−ω(k)t)
])

, (18)

Accepted in Quantum 2020-10-12, click title to verify. Published under CC-BY 4.0. 5



and, since ‖∆E(x, t)‖2 = ‖∆B(x, t)‖2, we conclude that

u(x, t) = ~ω(k)
2V

(
|zµ,k|2 + Re

[
z2
µ,ke

i2(k·x−ω(k)t)
])

. (19)

Now consider the time average of u(x, t), a spatially independent random variable given
by

ū = ω(k)
2π

∫ 2π/ω(k)

0
u(x, t) dt = ~ω(k)

2V |zµ,k|2 . (20)

The expectation value of this time average over realizations of the ZPF is therefore

E[ū] = 1
2~ω(k)/V . (21)

This result matches the quantum mechanical prediction if one integrates over a box
of volume V to find the total expected energy. Of course, this volume is only notional
and arises as an artifact of our discrete-mode approximation. It describes the degree to
which the single-mode approximation is valid rather than any physical volume. For, say,
a conical beam with a small half-angle of ∆θ and a filtered bandwidth of ∆ω, we have
∆k = π∆θ2∆ω/c. Thus, as the beam is narrowed, the notional volume increases and
the energy density decreases proportionally. An equivalent, and perhaps more physically
meaningful, interpretation of the quantum mechanical energy, then, might be that the
quantity 〈0| Ĥ |0〉 /V gives the expected energy density of a single vacuum mode when the
wave vector is filtered and collimated to a resolution of ∆k = 8π3/V . In this context,
we may there identify a correspondence between the Hamiltonian operator Ĥ and the
time-averaged classical electromagnetic energy H = ūV .

2.3 Coherent States
In quantum optics, coherent states are considered the closest analogue to a classical state.
Previous work in SED has identified coherent states as arising from, for example, classical
driven harmonic oscillators coupled to the ZPF [31]. Here we shall consider an optical
analogue in which we add a classical plane wave to a single mode of the ZPF.

Recall that, previously, we had defined the ZPF to be of the form

E(x, t) = 1
2π

∫ √
E0(ω(k))a(k) eik·x−iω(k)t dk + c.c. . (22)

We now add to this a plane wave with wave vector k0 and polarization ê0 of the form

F (x, t) = E0 ê0 e
ik0·x−iω0t + E∗0 ê

∗
0 e
−ik0·x−iω0t , (23)

where E0 ∈ C is a complex number representing the amplitude and phase of the external
plane wave. The total electric field is now

F (x, t) +E(x, t) =
∫ [

E0 ê0 δ(k − k0) + 1
2π

√
E0(ω(k))a(k)

]
ei(k·x−ωt) dk + c.c. (24)

In the single-mode approximation with ∆k = 8π3/V , the total field becomes

F (x, t) + ∆E(x, t) ≈
[
E0 + 1

2π

√
E0(ω0) z

√
∆k

]
ê0 e

i(k0·x−ω0t) + c.c. (25)

where z is a standard complex Gaussian random variable. For reasons that will soon
become apparent, we shall express E0 in the form

E0 = α

√
2π~ω0
V

, (26)
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where α ∈ C is a complex number that will later be identified as the coherent state
parameter. The combined field in the single-mode approximation may now be written

F (x, t) + ∆E(x, t) =

√
2π~ω0
V

(
α+ z√

2

)
ê0 e

i(k0·x−ω0t) + c.c. (27)

The energy density of the corresponding electromagnetic field is

u(x, t) = 1
8π‖F (x, t) + ∆E(x, t)‖2 × 2

= 1
4π
[
‖F (x, t)‖2 + ‖∆E(x, t)‖2 + 2F (x, t) ·∆E(x, t)

]
,

(28)

where
‖F (x, t)‖2 = 4π~ω0

V

(
|α|2 + Re

[
α2ei2(k0·x−ω0t)

])
(29)

‖∆E(x, t)‖2 = 4π~ω0
V

1
2
(
|z|2 + Re

[
z2ei2(k0·x−ω0t)

])
(30)

F ·∆E(x, t) = 4π~ω0
V

1√
2

Re
[
αz∗ + αz ei2(k0·x−ω0t)

]
. (31)

Taking the time average of u(x, t) gives

ū = ~ω0
V

(
|α|2 + |z|2 +

√
2Re[αz∗]

)
=
∣∣∣∣α+ z√

2

∣∣∣∣2 ~ω0
V

, (32)

and the expectation value of ū over realizations of the ZPF is

E[ū] =
(
|α|2 + 1

2

) ~ω0
V

. (33)

This result matches the familiar energy density 〈α| Ĥ |α〉 /V of a quantum optical coherent
state |α〉.

For general thermal states, E0 is replaced by ET , as defined in equation (4), and, hence,
z/
√

2 is replaced by the scaled quantity σz, where

σ =
√
ET (ω0)/(~ω0) . (34)

In this case, the average energy density becomes (|α|2 + σ2)~ω0/V . Note that nonzero
temperatures merely have the effect of rescaling the ZPF for the given mode. At high
temperatures (σ � |α|), the coherent state becomes indistinguishable from thermal noise.
Conversely, at large amplitudes (|α| � σ), the coherent state becomes indistinguishable
from a classical plane wave of fixed amplitude and phase.

3 Amplitude Threshold Detection
We have described a mathematical model for the QED vacuum in terms of a stochastic
electromagnetic field. To make the important connection to observation and discrete de-
tection events, we now introduce a simple deterministic model of photon detection based
on amplitude threshold crossings and motivated by the observed behavior of real detectors.

Suppose that we have, to arbitrary precision, isolated a single angular frequency ω0,
polarization mode ê0, and wave vector mode k0 of the vacuum in the discrete-mode ap-
proximation with wave vector resolution ∆k. For the vacuum and coherent states, the
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energy density u(x, t) at position x and time t varies sinusoidally in time and space. We
imagine a detection device that reacts slowly enough as to be sensitive only to the time
average, ū, of the energy density and note that this averaging eliminates both the temporal
and spatial dependence of the energy density. Using a time average is justified by the fact
that a typical period of light is orders of magnitude shorter than the corresponding lag
time for the photoelectric effect [32].

Now, although ū is constant across space and time, it varies from one vacuum field
realization to another due to the presence of the random variable z. We now ask whether
this time-averaged energy density falls above some threshold Γ2 ≥ 0. Such an outcome
will be deemed a detection event or “click” of a detector, and the probability of such an
event occurring will be denoted Pr[ū > Γ2]. Note that the vacuum realization z is the only
source of randomness in determining this probability, and, in the single-mode limit, the
coherence time of the given vacuum mode is infinite.

3.1 Dark Counts
The time-averaged energy density of the vacuum is given by equation (32) with α = 0
and, being the sum of two squared independent normal distributions, has an exponential
distribution with a mean of 1

2~ω0/V . The probability of a detection event is therefore

Pr
[
ū > Γ2

]
= exp(−2V Γ2/~ω0) . (35)

Since we have assumed V is large, we may take Γ2 to be comparably small. In particular,
we shall adopt the single-mode limit, analogous to the thermodynamic limit, in which

lim
V→∞

V Γ2

~ω
= γ2 (36)

for some γ ≥ 0. (Note that γ may be specific to a particular polarization, frequency and
wave vector resolution.) In the single-mode limit, the probability of a detection event is
exp(−2γ2), which we interpret as the probability of a dark count for the vacuum state at
zero temperature. In a thermal state (T > 0), we replace 1

2~ω with σ2~ω, so the probability
of a dark count becomes exp(−γ2/σ2). This, again, becomes an effective rescaling of the
detection threshold, so there is no loss of generality in supposing T = 0.

The prediction of a nonzero dark count rate at zero temperature is, strictly speaking,
at variance with quantum mechanical predictions. Even under ideal conditions, our model
predicts a nonzero probability of a vacuum detection event; quantum mechanically this
probability should be exactly zero. However, even at extremely low temperatures, nonzero
dark count rates are experimentally observed [33].

For an explicit, albeit notional, example of a physical detection mechanism, one may
consider a classical charged particle in a bifurcating harmonic potential. Such a potential
has the quadratic form 1

2mω
2x2 for mass m and displacement x for |x| ≤ `. For |x| > `, the

potential is strongly repulsive and the particle quickly accelerates away, thereby creating an
observable event. Since the trapped particle behaves as a high-Q linear filter, its behavior
will closely match that of the resonant vacuum mode. If the polarization is linear and
aligned with the displacement of the potential, the particle’s motion will bifurcate and run
away if the modal amplitude is sufficiently high.

Despite some similarities, the adoption of a threshold detection scheme for modeling
photon detection should not be construed as a semi-classical treatment, as we are still
completely within the confines of classical physics. Although we have adopted a very simple
model of single-photon detection, these general qualitative observations are expected to
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hold in a more detailed physical model. In what follows, we shall make no further reference
to the particular physical mechanism used for detection and will instead focus on the more
abstract notion of threshold detection in the single-mode limit.

3.2 Emergence of the Born Rule
For coherent states, a detection event in the single-mode limit may be written∣∣∣∣α+ z√

2

∣∣∣∣2 > γ2 . (37)

With detection events so defined, we may identify the complex amplitude a, given by

a = α+ z√
2
, (38)

and note that 4|a|2 follows a non-central χ2 distribution with two degrees of freedom and a
noncentrality parameter of 4|α|2. Thus, the cumulative distribution function (cdf) of |a|2
is given by the expression [34]

Pr
[
|a|2 ≤ γ2

]
= 1−Q1 (2|α|, 2γ) , (39)

where Q1(·, ·) is the Marcum Q-function, defined by

Q1(µ, ν) =
∫ ∞
ν

x e−(x2+µ2)/2 I0(µx) dx , (40)

and I0(·) is the zeroth-order modified Bessel function of the first kind.
The probability distribution for |a|2 can be related to the familiar Poisson distribution

of photon number in coherent states as follows. For integers k ≥ 1, the moments E[|a|2k]
all exist and, therefore, uniquely determine the probability distribution of |a|2. We observe
that the number operator n̂ = â†â provides a quantum mechanical analog of |a|2 in the
sense that 〈α| S(n̂k) |α〉 = E[|a|2k], where S(n̂k) is the symmetrized form (or Weyl ordering)
of n̂k, by the optical equivalence theorem [35]. Furthermore, S(n̂k) can be written as a
degree-k polynomial Pk(n̂) in n̂; for example, P1(n̂) = n̂+ 1

2 , P2(n̂) = n̂2 + n̂+ 1
2 , etc. [36].

In terms of the photon number basis, then, we may write the moments as

E[|a|2k] = 〈α| S(n̂k) |α〉 =
∞∑
n=0
Pk(n) | 〈n|α〉 |2 , (41)

where | 〈n|α〉 |2 = e−|α|
2 |α|2n/n! is the probability associated with photon number n. The

discrete Poisson distribution for photon number could therefore be interpreted as a calcu-
lational device, a mathematical artifice, so to speak, for determining the distribution of the
continuous random variable |a|2. The begs the question of whether threshold exceedances
may be interpreted as photon detection events.

The probability of such a detection event is given by

Pr
[
|a|2 > γ2

]
= Q1 (2|α|, 2γ) =

∫ ∞
2γ

xe−(x2+4|α|2)/2 1
π

∫ π

0
e2|α|x cos θdθ dx . (42)

We now note that, to fourth order in |α|,

Pr
[
|a|2 > γ2

]
=
∫ ∞

2γ
xe−x

2/2
[
1 + (x2 − 2)|α|2 + 1

4(x4 − 8x2 + 8)|α|4
]
dx+O(|α|6)

= e−2γ2 (1 + 4γ2|α|2 + 4γ2(γ2 − 1)|α|4
)

+O(|α|6) .
(43)
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The presence of |α|2 is the lowest-order approximation is the first indication of the emer-
gence of the Born rule, although the correspondence is subtle and requires some discussion.

According to quantum mechanics, the probability of observing n photons given a co-
herent state |α〉 is pn = | 〈n|α〉 |2 = e−|α|

2 |α|2n/n!. Hence, the probability of observing
no photons at all is p0 = e−|α|

2 , while the probability of observing at least one photon is
1 − p0 = 1 − e−|α|2 ≈ |α|2 for |α| � 1. According to equation (42), for α = 0 we have
Pr[|a|2 > γ2] = e−2γ2 , which we interpret as the dark count probability of the vacuum
state. For α 6= 0, equation (43) will be a good approximation for |α|2 � 1/(4γ2). Further-
more, for γ2 � 1

2 we will have low dark counts. So, for |α|2 � 1/(4γ2)� 1
2 (i.e., |α| small

and γ large) we expect to be in the near-single-photon regime. However, taking both |α|
to be small and γ to be large does not necessarily provide the best agreement with the
Born rule, as we shall see.

Figure 1 shows an example using α = 0.707 cos θ, γ = 1, and N = 104 random realiza-
tions. Examining N Pr[|a|2 > γ2] as a function of θ, we observe a near-perfect sinusoidal
pattern with a period of π that has a minimum of Ne−2γ2 ≈ 1353 and a maximum of
NQ1(1.414, 2) ≈ 3942. Subtracting the dark counts and renormalizing by the result-
ing maximum value, as one normally does in practice, gives a good approximation to the
cos2 θ probability law one would expect for an application of the Born rule to single-photon
detection. Furthermore, reducing the magnitude of α, and of course ignoring the many
non-detection events, gives arbitrarily good agreement. (If α is identically zero we will
have a constant dark count rate which, when subtracted out, gives the quantum mechani-
cal prediction of zero.)
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Figure 1: Plot of simulated counts (blue circles) for N = 104 trials versus the linear polarization angle
θ for α = 0.707 cos θ and γ = 1. The detection probability (thick solid black line) given by equation
(42) and its approximation (thin dashed red line) given by equation (43), both scaled by N , are shown
as well.

Now, for a general coherent state |α〉, quantum mechanics does not actually predict a
probability of cos2 θ, as our detector only indicates the presence of one or more photons.
The actual predicted probability is 1 − e−|α|

2 , which is only approximately sinusoidal.
Comparing this to equation (42), suitably normalized, we observe a subtle difference. For
α = cos θ and γ = 1, our model predicts a slightly lower probability than the quantum
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prediction of 1− e−|α|2 . (See figure 2.) For γ = 0.5 it is slightly higher. Treating γ as an
adjustable parameter, then, allows for an arbitrarily good fit.
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Figure 2: Plot of predicted probabilities for a coherent state with α = cos θ and γ = 1. The black
solid line is the baseline cos2 θ prediction. The dashed red line is our prediction based on a normalized
version of equation (42). The dotted blue line is the quantum mechanical prediction for detecting one
or more photons.

The Poissonian nature of detection events is also an important characteristic of co-
herent light. Strictly speaking, the single-mode approximation we have made entails an
infinite coherence time, so the temporal distribution of events is not well defined within the
present model. Under realistic conditions, however, there will be some non-zero bandwidth
associated with any given mode and, hence, an associated coherence time τ inversely pro-
portional to this bandwidth. For laser light, this is typically on the order of nanoseconds
to microseconds. We may therefore suppose that over a time T � τ , there are about
N = T/τ independent detection opportunities. Under our model, the probability of a de-
tection for each such opportunity, after subtracting for dark counts and assuming γ|α| � 1,
is about p = 4γ2e−2γ2 |α|2. Now, the number of detections out of these N trials is bino-
mially distributed with a mean of Np and a variance of Np(1− p). If N is large and p is
small (e.g., |α| � 1 for fixed γ), this distribution becomes approximately Poissonian. The
average number of counts, Np, may be interpreted as the product of an incident photon
rate |α|2/τ , a detection efficiency 4γ2e−2γ2 , and an observation time T . Deviations from
Poissonian behavior are to be expected when |α| is large, the detection efficiency is high,
or the observation time is short.

A further comparison to experimental observations can be made by considering de-
tection efficiency. For Poisson-distributed photon statistics, experimentalists often use a
parametric model of the form

p = 1− (1− δ)e−η|α|2 , (44)

where p is the probability of a detection event, δ is the dark count probability, and η ∈ [0, 1]
is the detection efficiency [37, 38]. Our model conforms with this general expression in the
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small |α| limit if we take δ = e−2γ2 and

η = 4γ2 e−2γ2

1− e−2γ2 . (45)

Note that, in this interpretation, the effective detection efficiency increases as the threshold
γ is decreased, attaining near unit efficiency for γ ≈ 0.8; however, for values much lower
than this the efficiency is over unity and this interpretation is no longer valid.

Finally, another important quantity in experimental quantum optics is the interfero-
metric visibility, which measures the degree of coherence in the prepared state. This may
be defined as the ratio of the difference in maximum and minimum probabilities to their
sum, which in our case is

V = Q1(2|α|, 2γ)− e−2γ2

Q1(2|α|, 2γ) + e−2γ2 . (46)

Taking γ to be large, with α fixed, therefore gives a fringe visibility arbitrarily close to unity.
For larger values of |α|, corresponding more closely to the classical regime, the convergence
to unity occurs more rapidly. We illustrate this in figure 3, plotting visibility as a function
of the threshold for different values of α. It is important to note that the visibility described
here is in terms of the probability of detection, Pr[|a|2 > γ2], not the intensity, |a|2, which
is random, nor the expected intensity, E[ |a|2], which would give a visibility of one half.
This point is important for a proper comparison with quantum mechanics, which predicts
visibilities as high as one for actual measured counts, not classical intensities.
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Figure 3: Plot of the interferometric visibility as a function of the detection threshold γ. The lower
blue dotted curve is for α = 0.5, the middle black solid curve is for α = 1, and the upper red dashed
curve is for α = 1.5.

In summary, we expect to find good agreement with quantum mechanical predictions
when |α| is small and γ is large, with optimal but imperfect agreement for suitable finite,
nonzero choices of both. Parameter regimes in which agreement with the Born rule is best,
such as low values of |α|, may produce lower visibility. In general, no combination of α and
γ can give both arbitrarily good agreement with the Born rule and a visibility arbitrarily
close to unity. The detailed tradeoffs between these and other competing metrics are
discussed further in section 4.
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3.3 Dual-mode Detection
Previously, we considered measurements along a single polarization mode and found that
the associated probabilities follow the Born rule, albeit with a threshold-dependent rescal-
ing and fixed offset in accordance with equation (44). Such measurements cannot distin-
guish between a missed detection and an event that would have resulted in a detection
in an orthogonal polarization. Dual-modal detection provides an alternative method for
comparing against the Born rule that overcomes this deficiency.

Let êH and êV denote the horizontal and vertical polarization unit vectors for given
wave vector. A linearly polarized coherent state for this wave vector may be described by
the complex amplitude vector

a = aH êH + aV êV =
(
α cos θ + zH√

2

)
êH +

(
α sin θ + zV√

2

)
êV , (47)

where zH and zV are independent standard complex Gaussian random variables. Note
that θ = 0 corresponds to a vacuum state in the orthogonal polarization mode, which is
always assumed to be present.

As a consequence of the independence of zH and zV , the random variables |aH |2 and
|aV |2 are also independent, and their joint cdf is given by the product of their marginal
distributions. Let us suppose a dual-mode detector that will register separate events if
either |aH | > γ or |aV | > γ are true. This would be the case if the detector were, say, a
pair of bifurcating harmonic oscillators oriented in the horizontal and vertical polarization
directions. Equivalently, we may consider a polarizing beam splitter that separates the
components to two single-mode detectors. The probability of no detection occurring is
then

P0 = Pr
[
|aH |2 ≤ γ2, |aV |2 ≤ γ2

]
=
[
1−Q1(2|α cos θ|, 2γ)

][
1−Q1(2|α sin θ|, 2γ)

] (48)

Likewise, the probabilities for the three possible detection events are

PH = Q1(2|α cos θ|, 2γ)
[
1−Q1(2|α sin θ|, 2γ)

]
(49)

PV =
[
1−Q1(2|α cos θ|, 2γ)

]
Q1(2|α sin θ|, 2γ) (50)

PHV = Q1(2|α cos θ|, 2γ)Q1(2|α sin θ|, 2γ) , (51)

where PH is the probability of a single detection of H, PV is the probability of a single
detection of V , and PHV is the probability of both.

In actual experiments with coherent light it is common to reject events in which there
are two detections and, of course, ignore those with none. Out of a notional, unknown
number N of independent trials, one measures SH = NPH single counts for H, SV = NPV
single counts for V , and NPHV “accidental” coincidence counts. If we post-select on single
detection events, the conditional probability, pH , of detecting H is

pH = SH
SH + SV

= PH
PH + PV

. (52)

We may now compare pH with the Born rule prediction of cos2 θ. An example is
plotted in figure 4 for |α|2 = 0.5 and γ = 1. The agreement is perfect when θ = 45◦, 135◦
(diagonal and anti-diagonal polarization, respectively), resulting in balanced probabilities
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and a conditional probability of 1
2 . For other values of θ, we find

1
2(1−V) ≤ pH ≤ 1

2(1+V),
where

V = Q1(2|α|, 2γ)(1− e−2γ2)− [1−Q1(2|α|, 2γ)]e−2γ2

Q1(2|α|, 2γ)(1− e−2γ2) + [1−Q1(2|α|, 2γ)]e−2γ2 (53)

is the visibility. For our particular case, V = 0.61, so 0.19 ≤ pH ≤ 0.81.
The maximum discrepancy arises when θ is 0◦ or 90◦. For θ = 0◦, the polarization of

the wave is horizontal, but we are still not guaranteed an H outcome, even conditionally,
because the probability of a “false” V detection is still nonzero. Similarly, for θ = 90◦,
the polarization of the wave is vertical, but an H outcome is still possible due to dark
counts. In any realistic experiment, such events will be unavoidable and are quantified by
a visibility below unity. Such anomalous events are effectively removed by renormalization,
resulting in a modified conditional probability of the form

p̂H = 1
V

(
pH −

1
2

)
+ 1

2 . (54)

This renormalized conditional probability gives excellent agreement with the Born rule
prediction, as shown in figure 4.
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Figure 4: Plot of the conditional probability pH (blue dotted line) and renormalized conditional probabil-
ity p̂H (red dashed line) against the cos2 θ Born rule prediction (black solid line), versus the polarization
angle θ for |α|2 = 0.5 and γ = 1.

3.4 Particle-like Behavior
Consider a coherent state prepared in some polarization mode ê0 and spatial mode kR
traveling to the right that is incident upon a 50/50 beam splitter (BS). The outgoing
beams have orthogonal spatial modes of kR and kD traveling right and down, respectively,
each with the same polarization mode. The initial state may be described by the vector

a =
[
α+ zR/

√
2

zD/
√

2

]
= α

[
1
0

]
+ 1√

2

[
zR
zD

]
, (55)
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where zR and zD are independent standard complex Gaussian random variables corre-
sponding to the ZPF components of the two spatial modes. For simplicity, we ignore the
orthogonal polarization modes.

The beam splitter acts as a Hadamard gate H, transforming a into

a′ = Ha = α√
2

[
1
1

]
+ 1

2

[
zR + zD
zR − zD

]
. (56)

Note that z′R = (zR + zD)/
√

2 and z′D = (zR − zD)/
√

2 are again independent standard
complex Gaussian random variables, so the noise term for a′ has the same form as that
for a.

If we place single-mode detectors at each output port of the beam splitter, there will
be four possible outcomes with four corresponding probabilities: no detections (P0), a
single detection for mode kR (PR), a single detection for mode kD (PD), and coincident
detections on both modes (PRD). These probabilities are as follows:

P0 =
[
1−Q1(

√
2|α|, 2γ)

]2
(57)

PR = PD =
[
1−Q1(

√
2|α|, 2γ)

]
Q1(
√

2|α|, 2γ) (58)

PRD = Q1(
√

2|α|, 2γ)2 . (59)

Note that PRD ≥ PRPD, since each detection event is independent of the other. A
similar result is found in the semiclassical treatment of photon detection [39]. In the single-
photon regime (|α| � 1) one would expect particle-like behavior, so coincident detections
should be quite rare. Quantum mechanically, the probability of a coincident detection for
a true, single-photon state would be exactly zero.

Experimentally, one counts the number of single-detection events, SR = NPR and
SD = NPD, for transmitted and reflected light, respectively, as well as the number of
coincidences, C = NPRD, where N is the nominal number of trials. The difficulty with
such experiments is that N is often unknown or perhaps unknowable. If N is known,
the ratio R = CN/(SRSD), more commonly associated with the degree of second-order
temporal coherence g(2)(0), would be expected to have a value no less than one, since

R = CN

SRSD
= PRD
PRPD

≥ 1 . (60)

If C = 0, as predicted by quantum mechanics, and SR, SD > 0, then R = 0, thereby
violating the inequality. Early experiments of this sort were performed by Grangier et al.
using both a light-emitting diode (LED) [40] and a heralded photon source [41]. The LED
light source was turned on briefly using a controlled electronic trigger, allowing N to be
know precisely. Since the LED light was strongly attenuated, a value of R near unity, and
consistent with the inequality R ≥ 1, was measured, as one might expect.

In the case of the heralded photon source, N was taken to be the number of trigger
events, Nt, each of which was taken to indicate the presence of a single, heralded photon.
Under this assumption, the experimenters obtained a value of Rt = CNt/(SRSD) signifi-
cantly less than one. A value less than one is generally considered to be evidence of photon
antibunching. The true value of N , however, could not be known and may well have been
much larger than Nt, in which case a value below unity would not be surprising. A simi-
lar experiment, also using heralded events, was performed recently by Thorn et al. using a
modern parametric downconversion source and avalanche photodiodes, with similar results
[42].
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For our model, the single-photon regime provides a good approximation to a true,
single-photon state, so long as we ignore non-detection events. Taking N to be Nd =
SR+SD +C, the total number of detection events, we obtain a result similar to heralding.
From this we may compute the ratio

Rd = CNd

SRSD
= PRD(1− P0)

PRPD
. (61)

This may equivalently be seen as replacing the absolute probabilities PR, PD, PRD in the
expression for R with the conditional probabilities pR = PR/(1 − P0), pD = PD/(1 −
P0), pRD = PRD/(1 − P0). Such conditioning is similar to the experimental procedure of
using heralding to define the number of trials. It is now easy to show that Rd can be less
than unity when either |α| � 1 or γ � 1. As an example, figure 5 shows the values of R
and Rd as a function of |α| for γ = 1. For this example, Rd achieves a minimum value of
about 0.34, whereas quantum mechanics predicts R = 0 for an ideal single-photon state.
By increasing the value of γ, however, this minimum can be made arbitrarily small. For
example, the observed value of Rd = 0.018 in reference [42] could be achieved with α = 0.3
and γ = 1.6. In this way, a purely classical model of light, when analyzed in a similar way,
can exhibit the same anomalous quantum behavior.

0 0.2 0.4 0.6 0.8 1 1.2 1.4

| |

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

D
eg

re
e 

of
 S

ec
on

d-
O

rd
er

 C
oh

er
en

ce

R
R

d

Figure 5: Plot of R (dotted blue line) and Rd (solid red line) as a function of |α| for γ = 1. Values
below one indicate particle-like behavior.

4 General Linear Transformations
4.1 Single-Photon, Four-Mode Entanglement
In quantum mechanics, a single photon can be entangled across multiple modes. Similar
behavior can be modeled classically. Consider a coherent state prepared with polarization
êH traveling to the right and incident upon a 50/50 beam splitter (BS). The initial, four-
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mode state may be written

a =

(α+ z1√
2

)
êH + z2√

2 êV
z3√

2 êH + z4√
2 êV

 = α


1
0
0
0

+ 1√
2


zRH
zRV
zDH
zDV

 (62)

where zRH , zRV , zDH , zDV are independent and identically distributed (iid) standard com-
plex Gaussian random variables arising from the zero-point field and corresponding to the
two spatial modes (kR and kD) and polarization modes (êH and êV ).

After the beam splitter, the state becomes

a′ = (H⊗ I)a = α√
2


1
0
1
0

+ 1
2


zRH + zDH
zRV + zDV
zRH − zDH
zRV − zDV

 , (63)

where ⊗ is the Kronecker product and I is the 2× 2 identity. Finally, we may apply an X
gate (i.e., a half-wave plate rotated 45◦) on the downward mode to change the polarization.
This has the effect of performing a controlled NOT gate C, with the spatial mode (i.e., the
optical path) as the control and the polarization as the target. The resulting state is now

a′′ = C(H⊗ I)a = α√
2


1
0
0
1

+ 1
2


zRH + zDH
zRV + zDV
zRV − zDV
zRH − zDH

 (64)

Note that the second term is again a vector of iid standard complex Gaussian random
variables. We may therefore rewrite a′′ as

a′′ = α√
2


1
0
0
1

+ 1√
2


z′RH
z′RV
z′DH
z′DV

 = αψ + z′√
2
, (65)

where z′ = [z′RH , . . . , z′DV ]T and ψ is a column vector of unit amplitude. The vector ψ
has the mathematical form of an entangled Bell state

ψ = |R,H〉+ |D,V 〉√
2

, (66)

where |R,H〉 = |R〉 ⊗ |H〉 = [1, 0]T ⊗ [1, 0]T and |D,V 〉 = |D〉 ⊗ |V 〉 = [0, 1]T ⊗ [0, 1]T.
To perform a measurement of all four modes, each spatial mode is put into a dual-

mode detector and threshold detection is performed. There are four components and, so,
16 possible outcomes, including multiple detections. For |α| � 1, the most likely outcome
is no detections at all, with single detections being the next most likely outcome. At the
opposite extreme, for |α| � 1 the most likely outcome is detection on all four modes. For
small values of |α|, the probability of a single detection on either |R,H〉 or |D,V 〉 (both
equally likely) is much more likely than a single detection on |D,H〉 or |R, V 〉.

Let Pr[R,H] = Pr[D,V ] and Pr[R, V ] = Pr[D,H] denote the probabilities for single-
detection events on each of the four modes. These will be given by

Pr[R,H] = Pr[D,V ] =
(
1− e−2γ2)2

Q1(
√

2|α|, 2γ)
[
1−Q1(

√
2|α|, 2γ)

]
(67)

Pr[R, V ] = Pr[D,H] = e−2γ2 (1− e−2γ2) [1−Q1(
√

2|α|, 2γ)
]2

(68)
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These probabilities are illustrated in figure 6 for α = 1. We see that the dominant modes
peak in probability at threshold values somewhat greater than 1 but are relatively much
larger than the other two modes. This comports with the general behavior one would expect
of a single-photon state that is hyperentangled in spatial and polarization modes [43]. If
we consider only single-mode detection events (i.e., detections on one spatial mode and one
polarization mode), then the conditional probability of each dominant mode converges to
0.5, the ideal quantum prediction, when γ is large. Conversely, the conditional probability
converges to a nonzero value, which is dependent on α, when γ is small. Qualitatively
similar behavior is found when |α| is varied while holding γ fixed. Thus, a correspondence
with quantum mechanical predictions is achieved, but only in the limit of larger threshold
values and only when one post-selects on single-mode detection events. This asymptotic
behavior is a result of the symmetry of the Bell state and would not be expected more
generally. Correlations between the modes are purely a result of post-selection, as the
modes themselves are statistically independent. Of course, this model reproduces only local
correlations between single-photon modes and not the nonlocal correlations one expects
from a multi-photon entangled state.
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Figure 6: Plots of Pr[R,H] = Pr[D,V ] (red dashed line), Pr[R, V ] = Pr[D,H] (dotted blue line), and
the conditional probability of mode |R,H〉 given any single-mode detection (solid black line) versus γ
and for |α| = 1.

4.2 Wave/Particle Duality
In quantum mechanics, photons can exhibit both particle- and wave-like behavior. This,
too, can be modeled classically. Consider, an initial quantum state |R,H〉 that undergoes
a transformation via a 50/50 beam splitter and a phase shifter in the |D,H〉 mode. Using
a pair of mirrors, the two paths are recombined in a second beam splitter to form a Mach-
Zehnder interferometer. The two output ports are then measured with detectors. Quantum
mechanically, the final state (before measurement) is

ψ = (H⊗ I)(Rφ ⊗ I)(H⊗ I) |R,H〉
= 1

2(1 + eiφ) |R,H〉 + 1
2(1− eiφ) |D,H〉 ,

(69)
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where Rφ is the phase shift gate

Rφ =
(

1 0
0 eiφ

)
. (70)

Accordingly, the probability of finding a photon in the |R,H〉 mode is cos2(φ/2).
We can model the problem classically by starting with an initial coherent state a =

α |R,H〉+ z/
√

2 and transforming it via the same linear operations into

aMZ = (H⊗ I)(Rφ ⊗ I)(H⊗ I)a = αψ + z′√
2
. (71)

The conditional probability of a detection in mode |R,H〉, given a single detection in either
mode |R,H〉 or |D,H〉, is now found to be

pMZ(φ) =
(

1 + Q1(|α(1− eiφ)|, 2γ)
Q1(|α(1 + eiφ)|, 2γ) ·

1−Q1(|α(1 + eiφ)|, 2γ)
1−Q1(|α(1− eiφ)|, 2γ)

)−1

. (72)

The resulting interference pattern, as shown in figure 7, is similar to what one would expect
from classical light if one were observing intensities; however, we are showing probabilities.
The pattern also reflects the nonlocal (i.e., spatially distributed) nature of the interferom-
eter: light travels along both arms and interferes only when recombined. In this way, our
classical model exhibits the wave-like nature of light in terms of discrete detection events.

Figure 7 also affords an interesting comparison to experimental data. Reference [44] de-
scribes an experimental realization of Wheeler’s delayed-choice experiment using a nitrogen-
vacancy center single-photon source. The experimenters report an anti-correlation param-
eter of Rd = 0.12 and a visibility of V = 94%, after subtracting dark counts, when the
second beam splitter is in place. An estimated 2600 photons were used for each measure-
ment sample, and the resulting data points were fit to a cosine wave with a period of 2π.
We have followed a similar analysis procedure in figure 7, using a set of fitted samples with
a standard deviations of 1/

√
2600 and subtracting the expected dark count probability of

e−2γ2 . Using parameter values of γ = 1.6 and α = 0.95 gives Rd = 0.12, V = 94%, and
a root-mean-square error of 0.04, in excellent agreement with the experimental results.
Although the two light sources are quite different, our model is nevertheless capable of
reproducing similar observations.

To recover the particle-like nature of the system, we may create a Wheeler delayed-
choice experiment by removing the final beam splitter The resulting state is now

aDC = (Rφ ⊗ I)(H⊗ I)a = α√
2

(
|R,H〉+ eiφ |D,H〉

)
+ z′′√

2
. (73)

The conditional probability of a detection in mode |R,H〉 given a single photon detection
in either mode |R,H〉 or |D,H〉 is now 1

2 , independent of φ. In addition, the probability
of a double detection in both modes may be made arbitrarily small by decreasing |α| or,
equivalently, increasing γ. This is the behavior one would expect from a localized particle.
Note that it does not matter when the choice to remove the final beam splitter is made.

A similar result is obtained if we simply provide “which way” information by marking
one of the two arms with, say, a change in polarization. If we apply an X gate on the lower
arm before the final beam splitter, the resulting state will be

aWW = (H⊗ I)C(Rφ ⊗ I)(H⊗ I)a

= α

2
(
|R,H〉+ eiφ |R, V 〉+ |D,H〉 − eiφ |D,V 〉

)
+ z′′′√

2
.

(74)
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Figure 7: Plot of the idealized Mach-Zehnder interference pattern given by cos2(φ/2) (black solid line)
and the interference pattern predicted by pMZ(φ) of equation (72) (blue dashed line) for α = 0.95 and
γ = 1.6. The red circles are fitted samples analogous to those in reference [44].

The interference pattern is once again lost (i.e., the detection probabilities are independent
of φ). Each of the four modal outcomes occurs now with equal probability, with the
likelihood of multiple detections again vanishing as |α| is decreased or γ is increased.
Replacing the NOT gate with a unitary gate that is close to the identity will result in a
diminished but still discernible interference pattern, so one may consider measuring the
path information weakly as well. So, if there is only partial which-way information, the
interference pattern will simply diminish by degrees.

Finally, if one considers the total number of single-detection events on either mode, it
is natural to suppose that this should be insensitive to whether the final beam splitter is
present or not. Under the present model, this need not be the case. Although the total
intensity is the same, since the beam splitter constitutes a unitary transformation, the
probability of a count on either detector with the beam splitter is

PMZ = 1−
[
1−Q1

(
|α(1 + eiφ)|, 2γ

)] [
1−Q1

(
|α(1− eiφ)|, 2γ

)]
, (75)

while the probability of this event without the final beam splitter is

PDC = 1−
[
1−Q1

(√
2|α|, 2γ

)] [
1−Q1

(√
2|αeiφ|, 2γ

)]
. (76)

In general, these two probabilities are different; quantum mechanics predicts that they
should be the same. Nevertheless, for fixed γ and |α| → 0 we do find that PMZ/PDC → 1,
as one might expect. This is consistent with previous observation that the approximation
Q1(2|α|, 2γ) ≈ e−2γ(1 + 4γ2|α|2) is valid when γ|α| is small but not necessarily otherwise.
The subtlety of this relationship will elaborated upon further in the next section.

4.3 General Multimodal States
The transformation of coherent light via a sequence of linear optical components can be
described, in general, by a d × d unitary matrix U. Without loss of generality, we may
suppose that the initial state is of the form

a = α


1
0
...
0

+ 1√
2


z1
z2
...
zd

 = αψ + z√
2
, (77)
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where z is a d-dimensional vector of iid standard complex Gaussian random variables and
α ∈ C. Following the transformation, the new state is

a′ = αUψ + z′√
2
, (78)

where z′ = Uz is, again, a d-dimensional vector of iid standard complex Gaussian random
variables, owing to the unitarity of U.

Detection measurements on the d modes will result in one of 2d possible outcomes. Let
(n1, . . . , nd) ∈ {0, 1}d denote the outcome in which mode 1 has n1 detections, mode 2 has
n2, etc., and let P (n1, . . . , nd) denote the probability of this outcome occurring. Since the
random variables z′1, . . . , z′d are statistically independent, this probability is given by

P (n1, . . . , nd) =
d∏
i=1

qni
i (1− qi)1−ni , (79)

where qi = Q1(2|αψ′i|, 2γ) is the probability of a threshold crossing event for mode i. (We
assume, for simplicity, that all detectors have the same threshold.)

We will be most particularly concerned with single-detection events (i.e., those for
which n1 + · · · + nd = 1), as these would be interpreted as single-photon detections.
Although such events occur with vanishingly small probability as |α| becomes large (and
low probability for |α| small), we may condition, via post-selection, on only such events
and thereby obtain a nonvanishing probability. Specifically, let pi denote the probability
that a single-detection event occurs on mode i, given that a single-detection event occurs
on any one mode. It follows that

pi = qi
∏
j 6=i

(1− qj)

 d∑
k=1

qk
∏
`6=k

(1− q`)

−1

= qi
1− qi

[
d∑

k=1

qk
1− qk

]−1

, (80)

provided that qk 6= 1 for all k. Note that, if there exists an i such that |ψi| > |ψj | for all
j 6= i, then pi → 1 as |α| → ∞. In other words, for bright light only the most probable
mode will have a single detection. For states with no unique maximum, the asymptotic
probability is spread uniformly amongst the maxima. The latter case is consistent with
the quantum mechanical predictions, while the former is not. The right correspondence
with quantum mechanics is then to be expected for small or intermediate values of |α|.

To examine the validity of our model, we performed linear quantum state tomography
(QST) on a random sample of pure states formed by applying unitary matrices drawn
from a Haar measure [45]. For a given transformed state ψ, QST was performed using a
complete set of d-dimensional Hermitian basis matrices B1, . . . ,Bd2 that are orthonormal
in the Hilbert-Schmidt inner product. Each Bk is diagonalized by a unitary matrix Uk

such that (U†kBkUk)ij = βkiδij . To measure in this basis, we therefore transformed ψ to
ψ′ = U†kψ and computed pi according to equation (80). The expectation value of Bk was
taken to be p1βk1 + · · ·+ pdβk1, so the inferred density matrix for ψ is defined to be

ρ =
d2∑
k=1

Bk

d∑
i=1

pi βki . (81)

Since the basis matrices are such that Tr[B†1B1] = 1 and Tr[B†kBk] = 0 for k > 1, the trace
Tr[ρBk] gives the expectation value of Bk, as defined above. This allows us to identify ρ
as playing the role of a quantum mechanical density operator.
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With ρ so computed, we examined the fidelity, defined by the vector inner product

F = 〈ψ|ρ |ψ〉 =
∑
ij

ψ∗i ρijψj , (82)

as a function of d, |α|, and γ over an ensemble of pure states ψ. In figure 8 we have plotted
F versus |α| for d = 4 and γ = 1 for an ensemble of 30 randomly drawn pure states.
For this case, tensor products of the Pauli matrices were used for the orthonormal basis.
We observe that F = 1/d (corresponding to pi = 1/d) for |α| = 0, as expected for pure
vacuum noise. As |α| increases, F increases monotonically to a value near unity. However,
for sufficiently large values of |α| the inferred density matrix acquires negative eigenvalues
and becomes invalid. For general quantum states, taking |α| ∼ γ

√
d/2 tends to give near

unity fidelity, albeit with invalid density matrices. For “classical” states (i.e., those for
which |ψi| = 1 for exactly one index i) the density matrix remains valid for all |α| and
the fidelity asymptotically approaches unity as |α| → ∞. Qualitatively similar behavior is
found when γ is varied while holding α fixed.
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Figure 8: Plot of the fidelity of the QST solution versus the state amplitude |α| for γ = 1 over an
ensemble of 30 pure states with d = 4. The red portion of the curves indicates where one or more
eigenvalues in the density matrix are negative.

Negative eigenvalues in density matrices obtained through linear state tomography
are a common occurrence in experimental quantum optics, particularly for low-entropy,
high fidelity states. Their presence might be interpreted as an observed deviation from
the Born rule, but they are more commonly ascribed to mere “experimental inaccuracies
and statistical fluctuations” [46]. According to our model, such results are an inevitable
consequence of the parameter regime investigated and the data analysis methods used
to infer the quantum state. Since we compute the probabilities exactly to perform state
tomography, we may also conclude that the potential for negative eigenvalues is an intrinsic
property of the model and not one due to mere sampling errors.

To address the problem of invalid density matrices obtained from linear state tomog-
raphy, maximum-likelihood estimation (MLE) methods are often used [47, 48, 49]. In this
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approach, one parameterizes a general, positive semi-definite density matrix and estimates
the parameters of this matrix using an optimization scheme based on an assumption of
Gaussian errors. By construction, this approach always yields a valid density matrix. We
reexamined our results using the MLE-based state tomography tools provided by the Kwiat
Quantum Information Group [50]. The results of five randomly sampled states with d = 4
are shown in figure 9. For |α| less than or close to unity, the MLE results agree with the
previous linear tomography results. However, for larger values of |α|, the curves peak near
unity and then slowly decrease as we approach the classical regime of |α| � 1. Qualita-
tively similar behavior is found when γ is varied while holding α fixed. This shows that
it is possible to infer density matrix estimates from our model that are both valid and of
high fidelity.
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Figure 9: Plot of the fidelity of the QST solution using the MLE method versus the state amplitude
|α| for γ = 1 over an ensemble of five pure states with d = 4.

The density matrix derived from QST may also be used to examine entanglement.
According to the Peres-Horodecki positive partial transpose (PPT) criterion, a density
operator that acts on a tensor product Hilbert space HA ⊗ HB will be separable with
respect to HA and HB if all the eigenvalues of its partial transpose are positive [51]. In
our case, ⊗ is the Kronecker product, HA = CdA , and HB = CdB , for dA, dB ∈ N. If we
write the density matrix ρ as

ρ =
∑
ij

∑
k`

ρij;k` e
A
i (eAj )† ⊗ eBk (eB` )† , (83)

where eAi , eAj and eBk , e
B
` are the standard unit vectors in CdA and CdB , respectively, then

the partial transpose with respect to HB is

ρTB =
∑
ij

∑
k`

ρij;k` e
A
i (eAj )† ⊗ eB` (eBk )† . (84)

Negative eigenvalues of the partial transpose are a necessary, though not sufficient,
condition for the density matrix to be nonseparable (i.e., entangled). For certain cases,
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such as dA = dB = 2, this condition is also sufficient and therefore may be used as an
entanglement witness [52]. In figure 10 we have plotted the minimum eigenvalue of the
partial transpose for dA = dB = 2 as a function of |α| for a maximally entangled Bell state
using a detection threshold of γ = 1 and the aforementioned MLE method to infer the
quantum state. It is perhaps surprising that, although our inferred density matrix does
not have perfect fidelity, it is nevertheless entangled (i.e., nonseparable), as witnessed by
the negative eigenvalues of the partial transpose for values of |α| above 0.6. The behavior
for large |α| shows an asymptotic approach to −0.5, the value predicted by quantum
mechanics for an ideal Bell state. Qualitatively similar behavior is found when γ is varied
while holding α fixed.
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Figure 10: Plot of the PPT entanglement witness for d = 4 versus the state amplitude |α| for a
maximally entangled Bell state using a detection threshold of γ = 1.

In the above examples we have considered fidelity as a function of |α|; the dependency
on both |α| and γ is more subtle. In figure 11 we have plotted the fidelity of the QST
solution using the MLE method as a function of both |α| and γ, averaged over an ensemble
of 100 pure states with d = 4. For any given γ > 0, we see that there is a unique value
of |α| giving locally optimal fidelity. Generally, small values of |α| and large values of γ
give good, albeit imperfect, fidelity. The globally optimal fidelity is found to be about 0.98
and occurs near |α| = 1.2 and γ = 1.5. The fidelity for some states can be higher and
qualitatively different. For example, states with a high degree of symmetry, such as the
Bell states, can exhibit fidelities approaching unity when either |α| or γ is large.

In addition to fidelity, we also considered visibility as a metric of agreement with
quantum predictions. Visibility converges monotonically to one as either |α| or γ tends to
infinity, but optimal fidelity occurs only for finite values of these parameters, so optimally
satisfying both may not be possible. We have plotted the visibility as a function of |α|
and γ in figure 12. The point of maximum fidelity, from figure 11, corresponds to a
visibility of 0.94. Taking γ to be large and |α, suitably chosen, to be small, can achieve
higher visibility while still maintaining a high fidelity, but the two metrics cannot be made
arbitrarily close to unity. Experimentally, fidelities and visibilities as high as 0.99 have
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Figure 11: Contour plot of fidelity using the MLE method versus the state amplitude |α| and detection
threshold γ over an ensemble of 100 pure states with d = 4. The black dot indicates a maximum
fidelity of 0.98 for |α| = 1.2 and γ = 1.5. The black curve is a spline-interpolation of the local maxima
for each given value of γ.

been observed, though not necessarily in the same context. A more detailed analysis of
specific experiments would therefore be needed for a proper comparison.

5 Conclusion
Assuming a classical zero-point field and deterministic threshold detectors, we have shown
that one is able to reproduce many of the experimentally observed phenomena attributed
to single photons and thought to be uniquely quantum in nature. In so doing we have
established that such phenomena do, in fact, have classical analogues. Weak coherent
light in combination with a reified zero-point field considered in the single-mode regime
are found to give probabilistic outcomes that are in close agreement with the Born rule
for single-photon, multi-mode states when post-selection on single-detection events is per-
formed. This agreement was verified explicitly by performing quantum state tomography
and computing the fidelity of the resulting density matrix. The model results are not
always in perfect agreement with the idealized quantum mechanical predictions, but they
are largely consistent with experimental observations and data analysis methods in the
appropriate parameter regimes. Deviations are, however, expected in regimes in which
either the amplitude of the light or the threshold of detection is large. The best overall
agreement appears to be for a set of parameter values in which the amplitude is small and
threshold is large. This model therefore provides a local, realistic picture of wave/particle
duality and single-photon entanglement that is grounded in a physical and wholly classical
model. A similar classical description of homodyne measurements, temporal behavior, and
multi-photon entanglement are left for future work.
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Figure 12: Plot of visibility versus the state amplitude |α| and detection threshold γ for d = 4. The
black dot at |α| = 1.2 and γ = 1.5 corresponds to a visibility of 0.94.
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