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We devise a method to certify nonclassical
features via correlations of phase-space distri-
butions by unifying the notions of quasipro-
babilities and matrices of correlation func-
tions. Owur approach complements and ex-
tends recent results that were based on Cheby-
shev’s integral inequality [Phys. Rev. Lett.
124, 133601 (2020)]. The method developed
here correlates arbitrary phase-space functions
at arbitrary points in phase space, including
multimode scenarios and higher-order corre-
lations. Furthermore, our approach provides
necessary and sufficient nonclassicality crite-
ria, applies to phase-space functions beyond
s-parametrized ones, and is accessible in ex-
periments. To demonstrate the power of
our technique, the quantum characteristics of
discrete- and continuous-variable, single- and
multimode, as well as pure and mixed states
are certified only employing second-order cor-
relations and Husimi functions, which always
resemble a classical probability distribution.
Moreover, nonlinear generalizations of our ap-
proach are studied. Therefore, a versatile and
broadly applicable framework is devised to un-
cover quantum properties in terms of matrices
of phase-space distributions.

1 Introduction

Telling classical and quantum features of a physical
system apart is a key challenge in quantum physics.
Besides its fundamental importance, the notion of
(quantum-optical) nonclassicality provides the basis
for many applications in photonic quantum technol-
ogy and quantum information [1, 2, 3, 4, 5]. Nonclassi-
cality is, for example, a resource in quantum networks
[6], quantum metrology [7], boson sampling [8], or dis-
tributed quantum computing [9]. The corresponding
free (i.e., classical) operations are passive linear opti-
cal transformations and measurement. By exceeding
such operations, protocols which utilize nonclassical
states can be realized. Furthermore, nonclassicality
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is closely related to entanglement. Each entangled
state is nonclassical, and single-mode nonclassicality
can be converted into two- and multi-mode entangle-
ment [10, 11, 12].

Consequently, a plethora of techniques to detect
nonclassical properties have been developed, each
coming with its own operational meanings for appli-
cations. For example, quantumness criteria which are
based on correlation functions and phase-space repre-
sentations have been extensively studied in the con-
text of nonclassical light [13, 14].

The description of physical systems using the
phase-space formalism is one of the cornerstones of
modern physics [15, 16, 17]. Beginning with ideas in-
troduced by Wigner and others [18, 19, 20, 21], the
notion of a phase-space distribution for quantum sys-
tems generalizes principles from classical statistical
theories (including statistical mechanics, chaos the-
ory, and thermodynamics) to the quantum domain.
However, the nonnegativity condition of classical
probabilities does not translate well to the quantum
domain. Rather, the notion of quasiprobabilities—
i.e., normalised distributions that do not satisfy all
axioms of probability distributions and particularly
can attain negative values—was established and found
to be the eminent feature that separates classical
concepts from genuine quantum effects. (See Refs.
[22, 14] of thorough introductions to quasiproabili-
ties.)

In particular, research in quantum optics signif-
icantly benefited from the concept of phase-space
quasiprobability distributions, including prominent
examples, such as the Wigner function [19], the
Glauber-Sudarshan P function [23, 24], and the
Husimi @ function [25]. In fact, the very definition
of nonclassicality—the impossibility of describing the
behaviour of quantum light with classical statistical
optics—is directly connected to negativities in such
quasiprobabilities, more specifically, the Glauber-
Sudarshan P function [26, 27]. Because of the general
success of quasiprobabilities, other phase-space distri-
butions for light have been conceived [28, 29, 30], each
coming with its own advantages and drawbacks. For
example, squeezed states are represented by nonneg-
ative (i.e., classical) Wigner functions although they
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form the basis for continuous-variable quantum infor-
mation science and technology [31, 32, 33|, also having
a paramount role for quantum metrology [34, 35].

Another way of revealing nonclassical effects is by
using correlation constraints which, when violated,
witness nonclassicality. Typically, such conditions are
formulated in terms of inequalities involving expec-
tation values of different observables. Examples in
optics are photon anti-bunching [36, 37, 38] and sub-
Poissonian photon-number distributions [39, 40], us-
ing intensity correlations, as well as various squeez-
ing criteria, being based on field-operator correlations
[41, 42, 43, 44]. They can follow, for instance, from
applying Cauchy-Schwartz inequalities [45] and un-
certainty relations [46], as well as from other viola-
tions of classical bounds [47, 48, 49]. Remarkably,
many of these different criteria can be jointly de-
scribed via so-called matrix of moments approaches
[50, 51, 52, 53, 54|. However, each of the mentioned
kinds of nonclassicality, such as squeezed and sub-
Poissonian light, requires a different (sub-)matrix of
moments, a hurdle we aim at overcoming.

Over the last two decades, there had been many at-
tempts to unify matrix-of~-moment-based criteria with
quasiprobabilities. For example, the Fourier trans-
form of the P function can be used, together with
Bochner’s theorem, to correlate such transformed
phase-space distributions through determinants of a
matrix [55, 56|, being readily available in experimen-
tal applications [57, 58, 59, 60|, and further extending
to the Laplace transformation [61]. Furthermore, a
joint description of field-operator moments and trans-
formed phase-space functions has been investigated as
well [62]. Rather than considering matrices of phase-
space quasiproabilities, concepts like a matrix-valued
distributions enable us to analyzed nonclassical hy-
brid systems [63, 64]. Very recently, a first successful
strategy that truly unifies correlation functions and
phase-space functions has been conceived [65]. How-
ever, these first demonstrations of combining phase-
space distributions and matrices of moments are still
restricted to rather specific scenarios.

In this contribution, we formulate a general frame-
work for uncovering quantum features through cor-
relations in phase-space matrices which unifies these
two fundamental approaches to characterizing quan-
tum systems. By combining matrix of moments
and quasiprobabilities, this method enables us to
probe nonclassical characteristics in different points
in phase space, even using different phase-space dis-
tributions at the same time. We specifically study
implications from the resulting second- and higher-
order phase-space distribution matrices for single- and
multimode quantum light. Furthermore, a direct
measurement scheme is proposed and non-Gaussian
phase-space distributions are analyzed. To bench-
mark our method, we consider a manifold of exam-
ples, representing vastly different types of quantum

features. In particular, we show that our matrix-
based approach can certify nonclassicality even if
the underlying phase-space distribution is nonnega-
tive. In summary, our approach renders it possi-
ble test for nonclassicality by providing easily ac-
cessible nonclassicality conditions. While previously
derived phase-space-correlation conditions [65] were
restricted to single-mode scenarios, the present ap-
proach straightforwardly extends to multimode cases.
In addition, our phase-space matrix technique in-
cludes nonclassicality-certification approaches based
on phase-space distributions and matrices of moments
as special cases, resulting in an overarching structure
that combines both previously separated techniques.

The paper is structured as follows. Some initial
remarks are provided in Sec. 2. Our method is rig-
orously derived and thoroughly discussed in Sec. 3.
Section 4 concerns several generalizations and poten-
tial implementations of our toolbox. Various exam-
ples are analyzed in Sec. 5. Finally, we conclude in
Sec. 6.

2 Preliminaries

In their seminal papers [23, 24|, Glauber and Su-
darshan showed that all quantum states of light can
be represented diagonally in a coherent-state ba-
sis through the Glauber-Sudarshan P distribution.
Specifically, a single-mode quantum state can be ex-
panded as

p= / d®a P(a)|a) o, (1)

where |a) denotes a coherent state with a complex
amplitude a. Then, classical states are identified as
statistical (i.e., incoherent) mixtures of pure coher-
ent states, which resemble the behavior of a classical
harmonic oscillator most closely [66, 67]. For this di-
agonal representation to exist for nonclassical states
as well, the Glauber-Sudarshan distribution has to
exceed the class of classical probability distributions
[26, 27], particularly violating the nonnegativity con-
straint, P # 0. This classification into states which
have a classical correspondence and those which are
genuinely quantum is the common basis for certifying
nonclassical light.

As laid out in the introduction, nonclassicality is a
vital resource for utilizing quantum phenomena, rang-
ing from fundamental to applied [6, 7, 8, 9]. In this
context, it is worth adding that, contrasting other
notions of quantumness, nonclassicality is based on
a classical wave theory. That is, it is essential to
discern nonclassical coherence phenomena from those
which are accessible with classical statistical optics,
as formalized through Eq. (1) with P > 0. See, e.g.,
Ref. [68] for a recent experiment that separates clas-
sical and quantum interference effects in such a man-
ner. For instance, free operations, i.e., those maps
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which preserve classical states, do include beam split-
ter transformations, resulting in the generation of en-
tanglement from single-mode nonclassical states via
such a free operation [10, 11, 12] that is vital for many
quantum protocols.

2.1 Phase-space distributions

Since the Glauber-Sudarshan distribution can be a
highly singular distribution (see, e.g., Ref. [69]),
generalized phase-space functions have been devised.
Within the wide range of quantum-optical phase-
space representations, the family of s-parametrized
distributions [29, 30] is of particular interest. Such
distributions can be expressed as

P(ajo) = % (rexp (—oh(a)):), (2)

where colons indicate normal ordering [70] and 7(«) =
(@ — a)f(@ — a) is the displaced photon-number op-
erator, written in terms of bosonic annihilation and
creation operators, @ and a', respectively. It is worth
recalling that the normal ordering acts on the expres-
sion surrounded by the colons in such a way that cre-
ation operators are arranged to the left of annihila-
tion operators whilst ignoring commutation relations.
Note that, for convenience, we parametrize distribu-
tions via the width parameter o, rather than using s.
Both are related via

2
=1 (3)
From this relation, we can identify the Husimi func-
tion, Q(a) = P(a;1), for s = —1 and ¢ = 1;
the Wigner function, W(a) = P(«a;2), for s = 0
and ¢ = 2; and the Glauber-Sudarshan function,
P(a) = P(a;0), for s =1 and 0 = 0.

Whenever a phase-space distribution contains a
negative contribution, i.e., P(a;0) < 0 for at least
one pair («; o), the underlying quantum state is non-
classical [26, 27]. In such a case, the distribution
P(«a;0) refers to as a quasiprobability distribution
which is incompatible with classical probability the-
ory. Nonetheless, for any ¢ > 0 and any state, this
function represents a real-valued distribution which is
normalized, P(a;0) = P(a;0)* and [ d*a P(a;0) =
1. In addition, it is worth mentioning that the nor-
malization of the state is guaranteed through the limit

o

lim EP(a;o) = (exp(0):) = (1) = 1. (4)

oc—0 0

2.2 Matrix of moments approach

Besides phase-space distributions, a second family of
nonclassicality criteria is based on correlation func-
tions; see, e.g., Refs. [71, 72] for introductions. For
this purpose, we can consider an operator function
f = f(a,at). Then,

CF ) = / o Pa)|f(ea”) S0 (5)

holds true for all P > 0. Now, one can expand f in
terms of a given set of operators, e.g., f => ¢;0;, re-
sulting in (:fTf:) = doii cfcj<:OjOj:>. Furthermore,
this expression is nonnegative [cf. Eq. (5)] iff the ma-
trix ((OAIOAJ>)Z] is positive semidefinite. This con-
straint can, for example, be probed using Sylvester’s
criterion [73] which states that a Hermitian matrix is
positive-definite if and only if all its leading princi-
pal minors have a positive determinant. It is worth
mentioning that Eq. (5) defines the notion of a non-
classicality witness, where (: ft f} < 0 certifies non-
classicality.

The above observations form the basis for many ex-
perimentally accessible nonclassicality criteria, such
as using basis operators which are powers of quadra-
ture operators [50|, photon-number operators [44],
and general creation and annihilation operators |71,
72]. See Refs. [13] for an overview of moment-
based inequalities. In the following, we are going to
combine the phase-space distribution technique with
the method of matrices of moments to arrive at the
sought-after unifying approach of both techniques.

3 Matrix of phase-space distributions

Both phase-space distributions and matrices of mo-
ments exhibit a rather dissimilar structure when it
comes to formulating constraints for classical light.
Consequently, a full unification of both approaches
is missing to date, excluding the few attempts men-
tioned in Sec. 1. In this section, we bridge this gap
and derive a matrix of phase-space distributions which
leads to previously unknown nonclassicality criteria,
also overcoming the limitations of earlier methods.

3.1 Derivation

For the purpose of deriving our criteria, we consider
an operator function f = >, ciexp[—o;n;(a;)]. Then,
the normally ordered expectation value of f t f can be
expanded as

<:fo:> = Z C;kcj<:670'i’f74(0éi)670'j’ﬁ(06]‘):>
2%

_ * _ 0i0; a2
_;cjclexp{ O'i+0'j|az aj|} (6)

) o P 00y + 050 .
><<.exp[ (az—l—a])n(m_’_aj >}>

Based on the above relation, we may define two ma-
trices, one for classical amplitudes,

MO = (exp |——T% |0 — a2 7
(o0 |- eal])
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and one for the quantum-optical expectation values,

M@ = <<:exp |:—(O'Z‘ +o0,)n <W>} >>
0;+0j 4,J

_< ; P<Jiai+ajaj;oi+0j>> ’
0;+0j o;+0; i

which can be expressed in terms of phase-space distri-
butions using Eq. (2). Specifically, M@ corresponds
to a matrix of phase-space distributions. Moreover,
the fact that the normally ordered expectation value
of fif is nonnegative for classical light [Eq. (5)]
is then identical to the entry-wise product (i.e., the
Hadamard product o) of both matrices being positive
semidefinite,

cl.

defining our phase-space matrix M.

For classical light, all principal minors of M have
to be nonnegative according to Sylvester’s criterion.
Conversely, the violation of this constraint certifies a
nonclassical state,

det(M) < 0, (10)

where M is defined through arbitrary small or large
sets of parameters ¢; and o; and coherent ampli-
tudes ; and ;. Therefore, inequality (10) enables us
to formulate various nonclassicality conditions which
correlate distinct phase-space distributions as it typ-
ically only done for matrix-of-moments-based tech-
niques when using different kinds of observables. We
finally remark that the expression in Eq. (10) resem-
bles a nonlinear nonclassicality witnessing approach.
As a first example, we may explore the first-order
criterion, i.e., a 1 x 1 matrix of quasiprobabilities.
Selecting arbitrary o-parameters and coherent ampli-
tudes, i.e., (a1;01) = (a;0), we find the following
restriction for classical states [cf. Eq. (10)]:

T cl.
—P(w;20) > 0. (11)
20

This inequality reflects the fact that finding nega-
tivities in a parametrized phase-space distribution
P(a;20) is sufficient to certify nonclassicality. Also
recall that we retrieve the Glauber-Sudarshan distri-
bution in the limit ¢ — oco. Since the nonnegativity
of this distribution defines the very notion of a non-
classical state [26, 27], we can conclude from this ex-
amples that our approach is necessary and sufficient
for certifying nonclassicality.

However, the Glauber-Sudarshan distribution has
the disadvantage of being a highly singular for many
relevant nonclassical states of light and, thus, hard to
reconstruct from experimental data. Consequently,
it is of practical importance (see Secs. 4 and 5) to
consider higher-order criteria beyond this trivial one.

3.2 Second-order criteria

We begin our consideration with an interesting
second-order case. We chose (ag;01) = (0;0) and
(ag;02) = (a;0). This yields the 2 x 2 phase-space
matrix

B 1 (:exp(—on(a)):)
M= ((:exp(—aﬁ(a)):> <1€Xp(_20ﬁ(a)):>> -2

Up to a positive scaling, the determinant of this ma-
trix results in the following nonclassicality criterion:

21

g

P(a;20) — (P(a; 0))2 < 0. (13)
In particular, we can set ¢ = 1 to relate this condi-
tion to the Wigner and Husimi functions, leading to
W (a)—27Q(a)? < 0. This special case of our general
approach has been recently derived using a very dif-
ferent approach, using Chebyshev’s integral inequal-
ity [65]. There it was shown that, by applying the
inequality (13) for o = 1, it is possible to certify non-
classicality even if the Wigner function of the state
under study is nonnegative. In this context, remem-
ber that the Husimi function, Q(«) = («|p|a)/7, is
always nonnegative, regardless of the state p.

Beyond this scenario, we now study a more gen-
eral 2 x 2 phase-space matrix M. For an efficient
description, it is convenient to redefine transformed
parameters as

o101 + 02002

Aa=as —a; and A = , (14a)
o1 + 02
5 =212 and X = g1 + 02. (14b)
o1+ 09

Note that these parameters relate to the two-body
problem. That is, the quantities in Eq. (14a) define
the relative position and barycenter in phase-space,
respectively; and the two quantities in Eq. (14b) re-
semble the reduced and total mass in a mechanical
system, respectively.

In this alternative parametrization, the two matri-
ces, giving the total phase-space matrix M = M(©) o
M@ read

—&|Aal?
M© = <e_&|1AO‘2 c . ) , and (15a)
B <:e*201ﬁ(0¢1):> :efzﬁ(A):>
M(Q) - < <:e—2ﬁ(A):> <:e—202ﬁ(a2):> . (15b)

Hence, the determinant of the Hadamard product of
both matrices then gives

det(M) = (ze~201M@1);) (;g=2020(a2).)

—6_2&|Aa|2<16_2ﬁ(‘4):>2. (16)

If this determinant is negative for the state of light
under study, its nonclassicality is proven. In terms of
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phase-space distributions, this condition can be also
recast into the form

46

~ 2
P(en;201)P(az; 202) = e~712eFpa )| <.

(17)

Interestingly, this nonclassicality criterion correlates
different points in phase space for different distribu-
tions, P(ay;201) and P(ag;209), with a phase-space
distribution with the total width 3 at the barycenter
A of coherent amplitudes, P(4;X).

3.3 Higher-order cases

The next natural extension concerns the analysis of
higher-order correlations. Clearly, one can obtain an
increasingly large set of nonclassicality tests with an
increasing dimensionality of M, determined by the
number of pairs (o;;0;). In order to exemplify this
potential, let us focus on one specific 3 x 3 scenario
and more general scenarios for specific choices of pa-
rameters.

Let us discuss the 3 x 3 case firstly, for which we are going to consider o3 = 0. From this, one obtains the

following phase-space matrix:

(:exp(—2017(a1)):)
(rexp(—o1n(ar) — oofi(az)):)
(:exp(—o17(ar)):)

M =

(:exp(— 0’177,(0&1)*
(-exp(—2020(as
(rexp(—o2i(az)

2n(az2)):)  (-exp(—o1f(an)):)
)):) { a(az)):) |- (18)
):) 1

Again, directly expressing this matrix in terms of phase-space functions, as done previously, we get a third-order
nonclassicality criterion from its determinant [74]. It reads

2

T 201 o1

P(A;Y)

det(M) _ (P(oel;Zal) . <P(a1;01)

) ) (Moo (P )

(19)

- (exp<—a|Aa|2> <

using the parameters defined in Egs.

(14a) and (14b).

3 71_P(oq;o*l) P(a2;02)>2 <0,

g1 02

In fact, this condition combines the earlier derived

criteria of the forms (13) and (16) in a manner similar to cross-correlations nonclassicality conditions known

from matrices of moments [61].

Another higher-order matrix scenario corresponds
to having identical coherent amplitudes, i.e., a; = «
for all 7. In this case, we find that the two Hadamard-
product components of the matrix M simplify to

M(C) = (1)i,j and

Mm)z( - P(Oé;ffrirgj)) ;
0i+0j

i,J

(20)

thus resulting in M = M9, Therefore, we can for-
mulate nonclassicality criteria which correlate an ar-
bitrary number of different phase-space distributions,
defined via o;, at the same point in phase-space, a.
Analogously, one can consider a scenario in which
all 0 parameters are identical, o0; = o. Then, we get

M(C) :(e—a\at—a_7|2/2)i . and

,

Mo (Zp(wtmiag))
20 2 i

Consequently, we obtain nonclassicality criteria which
correlate an arbitrary number of different points in
phase space, «;, for a single phase-space distribution,
parametrized by o.

3.4 Comparison with Chebyshev's integral in-
equality approach

As mentioned previously, a related method based on
Chebyshev’s integral inequality has been introduced
recently [65]. It also provides inequality conditions for
different phase-space distributions. The nonclassical-
ity conditions based on Chebyshev’s integral inequal-
ity take the form

D

inl [;P(a;ai)} <0, (22

Pla; %) —

where ¥ = Zi’il oi. To compare both approaches, let
us discuss their similarities and differences.

In its simplest form, involving only o1 and o9, the
condition in Eq. (22) resembles the tests based on the
2 x 2 matrix in Eq. (12). In particular, for the case
o1 = 09 = 0 both methods yield the exact same con-
ditions. For o1 # 09 such an agreement of both meth-
ods cannot be found because of the inherent symmetry
of the phase-space matrix approach, M = M, which
stems from its construction via a quadratic form; cf.
Eq. (6). Also, for more general, higher-order condi-
tions, i.e. D > 2, such similarities cannot be found
either. Conditions of the form in Eq. (22) consist of

Accepted in {Yuantum 2020-10-04, click title to verify. Published under CC-BY 4.0. 5



only two summands. The first term is a single phase-
space function with the width parameter ¥ which is
associated to the highest o parameter involved in the
inequality. The second term is a product of D phase-
space distributions, each individual distribution has
a width parameter o;, together bound by the condi-
tion ¥ = Zil ;. By comparison, our phase-space
matrix approach yields, in general, a richer and more
complex set of higher-order nonclassicality tests, such
as demonstrated in Sec. 3.3.

Let us point out further differences between the
two approaches. Firstly, we observe that the inequal-
ities based on Chebyshev’s integral inequality only
apply to one single point in phase space. In con-
trast, the phase-space matrix method devised here
includes conditions that combine different points in
phase space; cf. Eq. (6). Secondly, Chebyshev’s inte-
gral inequality approach cannot be extended to mul-
timode settings. Such a limitation does not exist for
the matrix approach either, as we show in the follow-
ing Sec. 4.1. We conclude that both the technique in
Ref. [65] and our phase-space matrix approach for ob-
taining phase-space inequalities yield similar second-
order conditions but, in general, give rise to rather
different nonclassicality criteria. In particular, the
phase-space matrix framework offers a broader range
of variables—be it coherent amplitudes or widths—
that lead to a richer set of nonclassicality conditions.

3.5 Extended relations to nonclassicality crite-
ria

To finalize our first discussions we now focus on the
relation to matrices of moments. Previously, we have
shown that, already in the first order, our criteria are
necessary and sufficient to verify the nonclassicality,
and we discussed our method in relation to Cheby-
chev’s integral inequality. Furthermore, indirect tech-
niques using transformed phase-space functions, such
as the characteristic function [62] and the two-sided
Laplace transform [61], have been previously related
to moments. Thus, the question arises what the rela-
tion of our direct technique to such matrices of mo-
ments is.

For showing that our framework includes the ma-
trix of moments technique, we may remind ourselves
that derivatives can be understood as a linear combi-
nation, specifically as a limit of a differential quotient,
Omg(z) = limeoe ™ Y0 (M) (=)™ Fg(z + ke).
This enables us to write [75]

— 2 — o
atman = g—(m+n) 82182*6(7'0“ e o),

a=0 and o=0 ’

(23)
expressing arbitrary moments a'a" via linear com-
binations of the normally ordered operators that
represent o-parametrized phase-space distributions.
Thus, in the corresponding limits, we can iden-
tify the operator f in Eq. (5) with f =

mecmyna*(mwaglag*ev\al2;efaﬁ<a>;\a:07620 =
S, Emm@™a". For such a choice f, (:f1f:) < 0is
in fact identical to the most general form of the matrix
of moments criterion for nonclassicality [71, 72].

In conclusion, we find that our necessary and suf-
ficient methodology not only includes nonclassicality
criteria based on phase-space functions themselves [cf.
Eq. (11)], but it also includes the technique of ma-
trices of moments as a special case. In a hierarchical
picture, this means that our family of nonclassicality
criteria, including arbitrary orders of o-parametrized
phase-space functions, encompasses both negativities
of phase-space functions and matrices of moments.
Because of the above relation, the order of moments
that is required to certify nonclassicality also sets an
upper bound to the size of the matrix of phase-space
distributions so that it certifies nonclassicality. There-
fore, our approach unifies and subsumes both earlier
types of nonclassicality conditions.

4 Generalizations and implementation

In this section, we generalize our approach to arbi-
trary multimode nonclassical light and propose a mea-
surement scheme to experimentally access the matrix
of phase-space distributions. In addition, we show
that our approach applies to phase-space distributions
which are no longer limited to ¢ parametrizations and
relate these findings to the response of nonlinear de-
tection devices.

4.1 Multimode case

After our in-depth analysis of single-mode phase-
space matrices, the multimode case follows almost
straightforwardly. For the purpose of such a gener-
alization, we consider N optical modes, represented
via the annihilation operators a,, for m = 1,... N
and extending to the displaced photon-number oper-
ators Ay, (™) = (4, — ™) (a,, — a™). Now,
o-parametrized multimode phase-space functions can
be expressed as

<:6,G(1)ﬁ1(a(1)) o B,U(N)ﬁN(a(N)):>

N (24)

7T Loy,

= (1) (N). (1)
U(l)...O—(N)P(a yre & O

where we allow for different s parameters for each
mode, with s(™ =1 —2/0(™ [Eq. (3)]. As in the
single-mode case, we can now formulate a matrix M
of multimode phase-space functions,

N N
-~ Gim)ﬁm(asm)) _ Z Uyn)ﬁm(a;m))
M= e m=0 e m=0 :
4,J

Consequently, this matrix of phase-space functions
also has to be positive semidefinite if the underlying
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state of multimode light is classical. That is,

cl.
M=>0 (25)

holds true for classical light and for any dimension (or
order) of the multimode matrix M and any sigma and
alpha values. Conversely, det(M) < 0 is a nonlinear
witness of multimode nonclassicality. Similarly to the
single-mode case, an increasingly large matrix M with
increasingly dense sets of parameters for the various
alpha and sigma values then enables one to probe the
nonclassicality of arbitrary multimode states.

Since we have already exemplified various scenarios
for single-mode phase-space correlations, in the fol-
lowing, we restrict ourselves to a particular multimode
case. Specifically, we focus on two optical modes and
a 3 x 3 phase-space matrix M is,

1 TI'P(CK(1>;0') TI'P(CK(Q);O')
o
7\'P(Ot(1);0') ﬂ'P(oz?l);Za) 7T2P(Dé(1),0t(2);0',0')
a 20 a2 !
7P(a®;0) 72P(a™M,a®;0,0) 7P(a®;20)
o o2 20

where quasiprobabilities as a function of single-mode
parameters indicate marginal phase-space distribu-
tions. Adopting a notation of pairs of coherent am-
plitudes and widths, M is thus defined via the fol-
lowing two-mode parameters: (agl), ozg?)' agl), a§2)) =
(0,0;0,0), (aél),ag);aél),aém) = (a,0;0,0), and
(aél),a§2);0§1),0§2)) = (0,a?;0,0). In particular,
we can express the nonclassicality constraint from the
determinant of M [74] for 0 = 1 via joint and marginal

Wigner and Husimi functions,

det M _ {W(a(l)) _ Q(Oé(l))ﬂ [%Wm) — Q(a(2))2]

7.(.4 2

2 cl.

— [@®,a®) = Qa)QE®)]" = 0.
(26)

Violating this inequality verifies the nonclassicality of
the two-mode state under study.

4.2 Direct measurement scheme

The reconstruction of phase-space distributions can
be a challenging task [76]. For this reason, we are
going to devise a directly accessible setup to infer
the phase-space matrix. See Fig. 1 for an outline
which is based on the approaches in Refs. [77, 72, 78].
For convenience, we restrict ourselves to a single
optical mode; the extension to multiple modes fol-
lows straightforwardly. That is, each of the multiple
modes can be detected individually by a correlation-
measurement setup as depicted in Fig. 1. Further-
more, it is noteworthy that our phase-space matrix
approach is not limited to this specific measurement
scheme proposed here and generally applies to any de-
tection scenario which allows for a reconstruction of
quasiprobability distributions.

matrix
entry M;;

I1(A)

Figure 1: Outline of phase-space matrix correlation mea-
surement. The signal, i.e., the state p of the light field under
study, is split into two identical outputs at a 50:50 beam split-
ter. Each of the resulting beams is combined with a local os-
cillator (LO) on a |t|* : |r|? beam splitter and measured with
a photon-number-based detector, represented through II(7).
The resulting correlations yield the entries of our phase-space
matrix M.

For the setup in Fig. 1, we begin our considera-
tions with a coherent state |3), representing our sig-
nal p = |8)(8]. Firstly, we split this signal equally
into 2 modes, resulting in a two-mode coherent state
18/v/2,3/+/2). In addition, local oscillator states are
prepared, |3;) and |3;) for each mode. Each of the
two signals is then mixed with its local oscillator on
a [t|%:|r|* beam splitter, where [t|? + |r|> = 1. One
output of each beam splitter is discarded, namely the
lower and upper one for the top and bottom path in
Fig. 1, respectively. This results in the input-output
relation

|B) — tﬁi + 1B, t\% + rﬁj> , (27)
which is then detected as follows.

Each of the resulting modes is measured with a
detector or detection scheme based on photon ab-
sorption, thus being described by a positive operator-
valued measure (POVM) which is diagonal in the
photon-number representation [79]. Consequently,
one or a combination of detector outcomes (e.g., in
a generating-function-type combination [80]) corre-
sponds to a POVM element of the form TI(n) =
e T Using |m)(m| = e ™a™/m!: for an
m-photon projector, this means that we identify
S o Tm|my(m| = ey wn™/ml: = I(R) =
e P where the eigenvalues m,, corresponds to
the Taylor expansion coefficients of the function z —
exp[z — I'(z)]. Accordingly, the function I'(%) models
the detector response [79, 70]. Finally, the correlation
measurement of this response for our coherent signal
states takes the form

r(pee).
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Now it is convenient to define I'(n) = T'(|t|*n/2)

and
V26
t )

@ (29)
for all LO choices ¢ and, similarly, for j. Further-
more, we generalize this treatment to arbitrary states,
p = [d*BP(B)|B)(B], using the Glauber-Sudarshan
representation [Eq. (1)]. Therefore, the correlations
measured as described above [Eq. (28)] obey

M = <;e—f(ﬁ<ai>>e—f(ﬁ<am:>’ (30)

which corresponds to a directly measured phase-space
matrix element, e.g., for a linear detector response
['(2) = on. The other way around, we can choose
f =3, ciexp(~T(A(a))) for the general classicality
constraint in Eq. (5), even for nonlinear detector re-
sponses. Then, the matrix of phase-space distribution
approach applies, regardless of a linear or nonlinear
detection model. (See also Refs. [81, 80] in this con-
text.)

As an example, we consider a case with two single
on-off click detectors (represented by II(7) in Fig. 1)
with a non-unit quantum efficiency 74t and a non-
vanishing dark-count rate § [82], which represents re-
alistic detectors in experiments. In addition, we can
introduce neutral density (ND) filters to attenuate the
light that impinges on each detector. The POVM el-
ement for the no-click event in combination with the
ND filters then reads II(7) = : exp(— (i +4)):, where
0 < 1 < nget is a controllable efficiency. The measured
correlation for this scenario takes the form

M, ; = exp(—20)(: exp (—mift(ay) — n;f(a;)) ). (31)

Therein, the adjustable efficiency n; plays role of ;.
Also, the positive factor that includes the dark counts
is irrelevant because it does not change the sign of the
determinant of M, i.e., the verified nonclassicality.
In summary, the measurement layout in Fig. 1 en-
ables us to directly measure the entries of our phase-
space matrix M. As an experimental setup, this
scheme also underlines the strong connection between
correlations and their measurements and phase-space
quasiprobabilities and their reconstruction. We may
emphasize that all experimental techniques and com-
ponents that are used in the proposed setup are read-
ily available; see, e.g., the related quantum state re-
construction experiments reported in Refs. [83, 80].

4.3 Generalized phase-space functions

The o-parametrized phase-space distributions we con-
sidered so far are related to each other via con-
volutions with Gaussian distributions [28, 29, 30].
However, there are additional means to represent a
state without relying on Gaussian convolutions only.

Such generalized phase-space function can be ob-
tained from the Glauber-Sudarshan P function via

}bm%:/fdP@MHm@dﬂzcﬂmﬁﬁU§
(32)
for a kernel 2 > 0 [30, 84]. The construction of this so-
called filter or regularizing function {2 can be done so
that the resulting distribution Py, is regular (i.e., with-
out the singular behavior known from the P function)
and is positive semidefinite for all classical states [84].
For instance, a non-Gaussian filter 2 has been used to
experimentally characterize squeezed states via regu-
lar distributions which exhibit negativities in phase
space [85]; this cannot be done with s-parametrized
quasiprobability distributions, which are either non-
negative or highly singular for squeezed states.
As done for the previously considered distributions,
we can define an operator f = > il a, at),
which leads to a phase-space matrix with the entries

M;j = (:Qi(a;a,a")Q(aza,a"):) = Po,q,(a). (33)

This expression utilizes product of filters
Qe; &,6") = Q(a; &, a*)Qj(a; &,6%) to be convo-
luted with the P function. From this definition of a
regularized phase-space matrix, we can proceed as
we did earlier to formulate nonclassicality criteria in
terms of phase-space functions.

Moreover, the non-Gaussian filter functions can be
even related to nonlinear detectors. For this purpose,
we assume that Q(a; &, a*) = Q(|a — af?) (likewise,
Qa, a,a"): = :Q(7(a)): in the normally ordered op-
erator representation). In this form, the function is
invariant under rotations. As we did for the general
POVM element II(72), we can now identify

T(7) = — InQ(n). (34)

This enables us to associate non-Gaussian filters and
nonlinear detectors and, by extension, generalized
phase-space matrices for certifying nonclassical states
of light. An example for this treatment is studied in
Sec. 5.5.

5 Examples and benchmarking

In the following, we apply our method of phase-space
matrices to various examples and benchmark its per-
formance. For the latter benchmark, we could con-
sider different phase-space functions. Using the P
function would be impractical as it is often a highly
singular distribution. The Wigner function is regu-
lar and can exhibit negativities. But error estima-
tions from measured data can turn out to be rather
difficult because it requires diverging pattern func-
tions [86, 87] (see Ref. [88] for an in-depth analysis).
Beyond those practical hurdles, we focus on the @
function here because, already in theory, it is always
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nonnegative. Thus, it is hard to verify nonclassical
features based on this particular phase-space distribu-
tion. Additionally, the @ function is easily accessible
in experiments and can be directly measured via the
widely-used double-homodyne (aka, eight-port homo-
dyne) detection scheme [70].

Nonetheless, we are going to demonstrate that, with
our method, it is already sufficient for many examples
to consider second-order correlations of () functions.
For this purpose, we use the condition in Eq. (17),
which follows from the 2 x 2 matrix condition with
o1 = 02 = 1/2. This special case of that condition
then reads as

det(M) = Q(a1)Q(az) — €7|a27a1|2/2Q (7“13%)2 <0.

(35)

Meaning that, when the correlations from @ functions
at different points in phase space fall below the clas-
sical limit zero, nonclassical light is certified with the
nonnegative family of @) distributions.

Moreover, since ) functions are nonnegative, the
second term in Eq. (35) is subtractive in nature.
Thus, it is sufficient to find a point «; in phase space
for which Q(co;) = 0 holds true—together with an
as with Q(as/2) > 0, which has to exist because
of normalization—in order to certify nonclassicality
through Eq. (35). Setting a; = «, this leads to the
simple nonclassicality condition Q(«) = 0, which ap-
plies to arbitrary quantum states. In Ref. [89], this
specific condition has been independently verified as
a nonclassical signature of non-Gaussian states. Here,
we see that this nonclassical signature is indeed a
corollary of our general approach. Furthermore, we
remark that this condition only holds if the @ function
is exactly zero. In experimental scenarios, in which
errors have to be accounted for, it is infeasible to get
this exact value. Therefore, the condition Eq. (35) is
more practical as it allows us to certify nonclassical-
ity through a finite negative value. Furthermore, this
condition is applicable even if Q(«) = 0 does not hold
true.

5.1 Discrete-variable states

We start our analysis of nonclassicality by consider-
ing discrete-variable states for a single mode. In the
case of quantized harmonic oscillators, such as elec-
tromagnetic fields, a family of discrete-variable states
that are of particular importance are number states
|n). They represent an n-fold excitation of the under-
lying quantum field and show the particle nature of
said fields, thus being nonclassical when compared to
classical electromagnetic wave phenomena. However,
photon-number states require Glauber-Sudarshan P
distributions that are highly singular because they
involve up to 2nth-order derivatives of delta distri-
butions [70]. On the other hand, the @ function of

log;o(—det(M))
>

-10

1 2 3 4 5 6 7 8 9 10
photon number n

Figure 2: Nonclassicality of number states |n) via Eq. (35)
on a logarithmic scale. We choose a; = 0 and determined
an optimal a.x = v/2n as points in phase space to correlate Q
functions. The largest certification of nonclassicality is found
for a single photon, n = 1, and it decreases thereafter.

photon-number states,

2n 5
Quy(a) = 2L elar?, (36)

mn!

is an accessible and smooth, but nonnegative function.
Thus, by itself, it cannot behave as a quasiprobabil-
ity which includes negative contributions that uncover
nonclassicality.

Except for vacuum, the @, function is zero for
a = 0 and positive for all other arguments « [Eq.
(36)]. Consequently, we can apply Eq. (35) with
a; = 0 and ap # 0, yielding det(M) < 0. Fur-
thermore, a straightforward optimization shows that
|aa| = v/2n results in the minimal value det(M) =
—e~?"(n/2)?"/(rn!)®.  Note that this family of
discrete-variable number states is rotationally invari-
ant, rendering the phase of g irrelevant. In Fig. 2,
we visualize the results of our analysis. For all number
states, we observe a successful verification of nonclas-
sicality in terms of inequality Eq. (35). The single-
photon state shows the largest violation for this spe-
cific nonclassicality test, and the negativity of det(M)
decreases with the number of photons. A possible
explanation for this behavior is that this condition
is most sensitive towards the particle nature of the
quantum states, being most prominent in the single
excitation of the quantized radiation field. Again, let
us emphasize that we verified nonclassciality via a
matrix M of classical (i.e., nonnegative) phase-space
functions.

5.2 Continuous-variable states

After studying essential examples of discrete-
variable quantum states, we now divert our
attention to typical examples of continuous-
variable states. For this reason, we consider
squeezed vacuum states which are defined as |§) =

(coshr)~1/235°% (=™ tanh[r]/2)"\/(2n)!|2n) /n!,
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squeezing in dB
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Figure 3: The maximally negative value for inequality (35)
as a function of the squeezing parameter r is depicted, for
the choice a; = 0. Because of det(M) < 0, nonclassicality
is certified via @ functions for all r # 0 [with Q(a) = 0
for all a]. A maximal violation of the classical constraint
det(M) > 0 for the considered 2 x 2 matrix M is found for
4.95dB [= 10 log,(e~2") for r ~ 0.57] squeezing.

for a squeezing parameter r = |¢| and a phase
p = arg(¢). Without a loss of generality, we set
¢ = 0. Squeezed states are widely used in quan-

tum optical experiments and provide the basis of
continuous-variable quantum information processing
[31]. Their parametrized phase-space distributions
are known to be either highly singular or nonnegative
Gaussian functions (see, e.g., Refs. [32, 69]). For
example, the @ function of the states under study
can be written as

Qe (@) = exp [—|a| — tanh(r)Re(« )] . (37)

7 cosh(r)

In the context of earlier discussions, note that this @
function is not zero for a = 0, or anywhere else.

In Fig. 3, the left-hand side of inequality Eq. (35)
is shown for the Q¢ function of a squeezing param-
eter r. The points in phase space are determined
by choosing a; = 0 and minimizing det(M), being
solved for ap = [(2/A\) In[(14 \)/(1 4 A/2)]]*/2, where
A = tanh(r). We observe negative values as a di-
rect signature of the nonclassicality of squeezed states.
Remarkably, this is achieved using the same criterion
that applies to photon-number states, typically vastly
different correlation functions are required (using ei-
ther photon numbers [39] or quadratures [41]). While
inequality Eq. (35) is violated for any squeezing pa-
rameter 7 > 0, we see that there exists an optimal
region of squeezing values around r = 0.6 (likewise,
5 dB of squeezing) for which the considered criterion is
optimal. In particular, this shows that this condition
works optimally in a range of moderate squeezing val-
ues and, thus, is compatible with typical experiments.
We also want to recall that the Q¢ are a Gaussian
distributions which do not have any zeros in the phase
space. Thus, criteria based on the zeros of the Husimi

Q function

(b)

det(M) x 106

Figure 4: In plot (a), the two-mode @ function in Eq. (39) for
the mixed and weakly correlated state j is depicted for |A|? =
1/2 and phase-space points with Im(a?) = Im(a®) = 0.
Part (b) visualizes the application of the nonclassicality in-
equality (40) to this state for N = 2 modes and for the pa-
rameter pairs (aﬁ”,a@) = (@,0) and (", al?) = (0,8).
Nonclassicality is verified because of det(M) < 0, and max-
imized for || and |3| around one.

Q@ function [89] cannot detect nonclassicality in this
scenario. In contrast, our inequality condition can
even certify this Gaussian nonclassicality, hence pro-
viding a more sensitive approach to detecting quan-
tum light.

5.3 Mixed two-mode states

To further challenge our approach, we now con-
sider a bipartite mixed state. =~ We begin with
a two-mode squeezed vacuum state, [\) =

V1I—=|APY07 A" |n,n). This state undergoes a full
phase diffusion, leading to the mixed state

27
1 A .
p= 5 [ dee e
0

(38)

=Y (A=AP)AP [0, n)(n, nl.
n=0

This state presents a particular challenge for nonclas-
sicality verification because it shows only weak non-
classicality and quantum correlations. Namely, this
state is not entangled, has zero quantum discord, and
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Figure 5: Determinant (x10*) of the multimode 2 x 2 phase-
space matrix M of Q functions [det(M) in Eq. (40)] for the
skew-symmetric, tripartite state |\I/<773)
a(Qm) = 0 for m = 1,2,3. Nonclassicality is verified for all
coherent amplitudes «, which, without loss of generality, can
be chosen as a nonnegative number.

), with alm) = a7 and

has classical marginal single-mode states (i.e., the par-
tial traces tri(p) = tra(p) yield thermal states) [90].
However, it shows nonclassical photon-photon corre-
lations [91, 90, 92]. The state’s two-mode @ function
can be computed using Gaussian functions and the
phase averaging in Eq. (38), which gives
1—[A? _ a2 10@) 2
Q(aV), a®) — 7T\2| NGOG )
x Io(2|A Mo,

where Iy denotes the zeroth modified Bessel function
of the first kind. See also Fig. 4(a) in this context.
To apply our approach, whilst using ) functions
only, we can directly generalize our criterion in Eq.
(35) to the multimode case (see also Sec. 4.1). For N

modes, this results in the nonclassicality criterion
N N
det(M) =Q(a'”,...,ai™)Q(aV, ..., al™)
e o lafM —a{™ /2

1 1 N N\ 2
><Q<O‘g);o‘é),...,o‘g );O‘g )> <0.

(40)

In Fig. 4(b), we apply the case N = 2 of this in-
equality to identify the nonclassicality of p for |A\|> =
1/2. Again, the same approach as used in both single-
mode scenarios enables us yet again to uncover the
nonclassical behavior of this bipartite state for all
nonzero choices of parameters |a| and |3]|. Note in
this context that the phase of these parameters does
not contribute because of the fully phase-randomized
structure of the mixed state in Eq. (38).

5.4 Multimode superposition states

To further exceed the previous, bipartite state, we
consider an N-mode state in this part. Specifically,
we focus on a multimode superposition of coherent
states [93],

), _ MV E[=p)eN
N =
’ 2 (1 £ e 2NNP%)

; (41)

which consists of two N-fold tensor products of polar
opposite coherent states, |£~). Specifically, the skew-
symmetric state |\Il(_12,> is of interest because it yields
a GHZ state for || — oo and W state for |y| — 0,
combining in an asymptotic manner two inequivalent
forms of multipartite entanglement [94, 14].

The @ functions for the states in Eq. (41) can be straightforwardly computed; they read

()
Qe 2N [1 £ 2V P P]

To apply our criteria in Eq. (40), and for simplicity,
we set ag-m) = o for all mode numbers m and points
in phase space, a;. In Fig. 5, we exemplify the cer-
tification of nonclassicality for the state \\II({;> [Eq.
(41)] as a function of ey = Re(aq) and for a fixed
as = 0. We remark that, for other mode numbers
N, the plot looks quite similar. Most pronounced are
nonclassical features for v close to zero, relating to
a W state in which a single photon is uniformly dis-
tributed over three modes. For large v values, relating

to a GHZ state, the negativities decrease, but det(M)

N2 |a®)2 a2
N e~ NP e=latV]? L p=lat™)]
(N)) = cosh

+ cos

N
2 Re(y* Z a(m)>

m=1

nf )

(42)

remains below zero. We reiterate that our relatively
simple, second-order correlations of () functions ren-
der it possible to certify the nonclassical properties of
multimode, non-Gaussian states.

5.5 Generalized phase-space representations
and nonlinear detection model

For demonstrating how our phase-space matrix ap-
proach functions beyond s-parametrized distribu-
tions, we consider an on-off detector that is based on
two-photon absorption [95]. In this case, the POVM
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Figure 6: Application of the nonclassicality criterion in Eq.
(44) as a function of Re(a1) and Im(az), while fixing
Im(c1) = Re(az) = 0. Nonlinear detectors—thus, a nonlin-
ear Q) function—with n = o =1 and x = 0.01 are used, Eq.
(43). Because of the negativities for the considered single-
mode, symmetric state [cf. Eq. (41) for N =1 and v = 1],
this state is shown to be nonclassical.

element for no click is approximated by

ﬁ — :e—nﬁ+xﬁ2: — i (277‘)' (X)n . (Uﬁ)% e—nﬁ:’
— nl 7 (2n)!
(43)

where :(nn)?"e~""/(2n)!: describes a measurement
operator for 2n-photon states with a linear quantum
efficiency 7. In this context, it is worth mentioning
that x < [en?]/[4n] has to be satisfied to ensure that
the approximated POVM element correctly applies
for photon numbers up to 2n [96]. The parameter
x relates to the nonlinear absorption efficiency.

Based on such a nonlinear detector, we then
define the non-Gaussian operator (a;n,x) =
:e*"ﬁ(aHxﬁ(aﬁ:, as described in Secs. 4.2 and 4.3.
For a correlation measurement with two detectors (see
Fig. 1), this then results in the correlation matrix el-
ements <:Q(ai;m,xi)fl(aj;nj,xj):>. For specific pa-
rameters and up to a scaling with =, this correla-
tion function also results in the nonlinear Qg (a) =
(:Q(e;1,%)(0;0,0):) function (cf. Sec. 4.3 for the
similarly defined Pg), where o = n = 1. By extension,
and using Y = X’ and n = 1 = 7/, these phase-space
correlation functions also provide the entries required
for the nonclassicality criterion. Here, it reads

(:Q(al; 1, X)Q(al; 1, X):><:Q(a2; 1, X)Q(ag; 1,x):)
—<:Q(a1; 1,)()@(0@; 1,x):)? <0,
(44)

which applies to the nonlinear detection scenario un-
der study.

In Fig. 6, we apply this approach and consider the
single-mode even coherent state |\Il,(y+1)> [cf. Eq. (41)
for N = 1], which is a non-Gaussian state, because
we focused on the odd coherent state in the previous

example. It is worth emphasizing that other meth-
ods to infer nonclassical light (e.g., the Chebyshev
approach from Ref. [65]) are incapable to detect this
state’s quantum features. Here, we can directly cer-
tify nonclassicality of this non-Gaussian state despite
the challenge of also having a non-Gaussian detection
model.

6 Conclusion

In summary, we devised a generally applicable method
that unifies nonclassicality criteria from correla-
tion functions with quasiprobability distributions.
Thereby, we created an advanced toolbox of non-
classicality tests which exploit the capabilities of
both phase-space distributions and matrices of mo-
ments to probe for nonclassical effects. Furthermore,
our framework is applicable to an arbitrary num-
ber of modes, arbitrary orders of correlation, and
even phase-space functions perturbed through convo-
lutions with non-Gaussian kernels. A measurement
scheme was proposed to directly determine the ele-
ments of the phase-space matrix, the underlying key
quantities of our method. In addition, we showed
and discussed in detail that our treatment includes
previous findings as special cases, is experimentally
accessible even if other methods are not, and over-
comes challenges of previous techniques when identi-
fying nonclassicality.

The phase-space-matrix approach incorporates
nonclassicality tests based on negativities of the
phase-space distributions, including the Glauber-
Sudarshan P function, and the matrix-of-moments
approach as special cases. Thus, we were able to unify
two major techniques for certification of nonclassical-
ity. As the P function and the matrix of moments
themselves are already necessary and sufficient con-
ditions for the detection of nonclassicality, the intro-
duced phase-space-matrix approach obeys the same
universal feature. In other words, for any nonclassi-
cal state there exists a phase-space matrix condition
which certifies its nonclassicality.

By applying our nonclassicality criteria to a di-
verse set of examples, we further demonstrated the
power and versatility of our method. These exam-
ples covered discrete- and continuous-variable, single-
and multimode, Gaussian and non-Gaussian, as well
as pure and mixed quantum states of light. Remark-
ably, we used for all these states only the family of
second-order correlations and phase-space distribu-
tions which are always nonnegative. Nevertheless,
these basic criteria were already sufficient to certify
distinct nonclassical effects on one common ground,
further demonstrating the strength of our method.
When compared to matrices of moments, the kinds
of nonclassicality under study would require very dif-
ferent moments for determining the states’ distinct
quantum properties. Finally, we put forward an ex-
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perimental scheme, only relying on readily available
optical components, to directly measure the quanti-
ties required to apply our method. This scheme ap-
plies even for imperfect detectors with a nonlinear re-
sponse. Furthermore, we want to add that the practi-
cality and strength of the matrix of phase-space distri-
butions in certifying nonclassicality of lossy and noisy
quantum state can be experimentally demonstrated
[97].

Here, we focused on nonclassical effects of light, ow-
ing to their relevance for photonic quantum compu-
tation and optical quantum communication. The in-
troduced approach may be further developed for the
certification of other quantum features, such as non-
Gaussianity. Currently, our method detects nonclas-
sicality for Gaussian and non-Gaussian states equally,
which could be further developed for a more fine-
grained quantumness analysis. However, instead of
applying normal ordering, the construction of linear
and nonlinear witnesses has to be adapted for this
purpose. Furthermore, other kinds of quantum ef-
fects, such as entanglement, can be interpreted in
terms of quasiprobabilities [22] and are similarly wit-
nessed through correlations [98]. Thus, an extension
to entanglement might be feasible as well. Therefore,
our findings may provide the starting point for un-
covering quantum characteristics through matrices of
quasiprobabilities in other physical systems. Addi-
tionally, the derived framework can be utilized in the
context of quantum information theory, such as in
recently formulated resource theories of nonclassical-
ity [6, 7] and other measures of nonclassicality [99],
which employ the phase-space formalism [22], thus
potentially benefiting from our phase-space correla-
tion conditions for future applications.

Note added. After finalizing this work, we have
been made aware of a related work in preparation by
J. Park, J. Lee, and H. Nha [100].
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