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It is known that several sub-universal quantum computing models, such as the
IQP model, the Boson sampling model, the one-clean qubit model, and the random
circuit model, cannot be classically simulated in polynomial time under certain con-
jectures in classical complexity theory. Recently, these results have been improved to
“fine-grained" versions where even exponential-time classical simulations are excluded
assuming certain classical fine-grained complexity conjectures. All these fine-grained
results are, however, about the hardness of strong simulations or multiplicative-error
sampling. It was open whether any fine-grained quantum supremacy result can be
shown for a more realistic setup, namely, additive-error sampling. In this paper, we
show the additive-error fine-grained quantum supremacy (under certain complexity as-
sumptions). As examples, we consider the IQP model, a mixture of the IQP model
and log-depth Boolean circuits, and Clifford+T circuits. Similar results should hold for
other sub-universal models.

1 Introduction
Classically sampling output probability distributions of sub-universal quantum computing models
is known to be impossible under certain classical complexity conjectures. The depth-four model [1],
the Boson Sampling model [2], the IQP model [3, 4], the one-clean qubit model [5, 6, 7, 8, 9],
the HC1Q model [10], and the random circuit model [11, 12, 13] are known examples. These
results prohibit only polynomial-time classical sampling, but recently, impossibilities of some
exponential-time classical simulations have been shown based on classical fine-grained complex-
ity conjectures [14, 15, 16, 17, 18, 19].

These “fine-grained" quantum supremacy results are, however, only for exact computations (i.e.,
strong simulations) or multiplicative-error sampling of output probability distributions. Here,
we say that a quantum probability distribution {pz}z is classically sampled in time T within a
multiplicative error ε if there exists a classical T -time probabilistic algorithm that outputs z with
probability qz such that |pz − qz| ≤ εpz for all z. It was open whether fine-grained quantum
supremacy can be shown for additive-error sampling. Here, we say that a quantum probability
distribution {pz}z is classically sampled in time T within an additive error ε if there exists a classical
T -time probabilistic algorithm that outputs z with probability qz such that

∑
z |pz − qz| ≤ ε.

Additive-error sampling is more realistic for medium-size noisy quantum computers, and therefore
theoretically showing quantum supremacy for additive-error sampling is important for the near-
term experimental demonstrations of quantum supremacy.

In this paper, we show additive-error fine-grained quantum supremacy based on certain classical
fine-grained complexity conjectures. As examples, we consider the IQP model (Sec. 2), a mixture
of the IQP model and log-depth Boolean circuits (Sec. 3), and Clifford+T circuits (Sec. 4). Similar
results should hold for other sub-universal models.
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The second result (IQP plus log-depth Boolean circuit) needs more complicated quantum circuit
than the first one, but the conjecture seems to be more reliable. The first and second results are
about the scaling for the number of qubits, while the third result is about the scaling for the
number of T gates.

The standard proof technique of additive-error quantum supremacy [2, 4], namely, the combi-
nation of Markov’s inequality, Stockmeyer’s theorem, and the anti-concentration lemma, cannot
be directly used for fine-grained quantum supremacy, because Stockmeyer’s theorem is a result for
polynomial-time probabilistic computing. (Markov’s inequality and the anti-concentration lemma
can be used because they are independent of the time complexity.) In order to show fine-grained
additive-error quantum supremacy, we derive a “fine-grained version" of Stockmeyer’s theorem.
Our results, for the first time, demonstrate that the standard proof technique of additive-error
quantum supremacy can be extended to exponential-time hardness.

Because there is a gap between the upper-bound and the lower-bound, the results have a po-
tential to be improved or sharpened. The upper-bound can be improved by faster simulations,
and the lower-bound can be improved by improving the reduction or by introducing other conjec-
tures. Furthermore, possible ways are extensions of the MA algorithm to refute SETH [20], and
the fine-grained reductions from approximate counting to decision [21].

Note: After uploading this paper on arXiv, authors of Ref. [14] told us that they also show
independently additive-error fine-grained quantum supremacy results. (Their additive-error results
are added in their latest version.) They consider an exponential-time version of the SBP 6= SBQP
conjecture. (If SBQP = SBP, the polynomial-time hierarchy collapses to the second level.) At this
moment, we do not know how their conjecture and ours are related.

2 IQP
In this section, we show additive-error fine-grained quantum supremacy of the IQP model. The
IQP model is defined as follows.

Definition 1 An N -qubit IQP model is the following quantum computing model:

1. The initial state is |0N 〉. (Here, |0N 〉 = |0〉⊗N .)

2. H⊗N is applied, where H is the Hadamard gate.

3. Z-diagonal gates (such as eiθZ , Z, CZ, and CCZ) are applied. (In this paper, we consider
only Z, CZ, and CCZ.)

4. H⊗N is applied.

5. All qubits are measured in the computational basis.

Let us consider an n-variable degree-3 polynomial, f : {0, 1}n → {0, 1}, over F2 defined by

f(x1, ..., xn) ≡
n∑
i=1

αixi +
∑
i>j

βi,jxixj +
∑
i>j>k

γi,j,kxixjxk

for any x ≡ (x1, x2, ..., xn) ∈ {0, 1}n, where αi, βi,j , γi,j,k ∈ {0, 1}. If we say that we randomly
choose f , it means that we randomly choose each αi, βi,j , γi,j,k uniformly and independently.

The conjecture on which additive-error fine-grained quantum supremacy of the IQP model is
based is stated as follows.

Conjecture 1 Let f be an n-variable degree-3 polynomial over F2. Let us define

gap(f) ≡
∑

x∈{0,1}n
(−1)f(x).

There exist positive constants a and n0 such that for every n > n0 the following holds. Computing
[gap(f)]2 within a multiplicative error u for at least v fraction of f cannot be done with a classical
probabilistic O∗(2an)-time algorithm that makes queries of length O(2an) to an NTIME[n2] oracle
with a success probability at least w. Here, u, v, w are certain constants. (O∗ means that the
polynomial factor is ignored.)
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Here, the oracle query is the standard one: there is a separate oracle tape and answers can be
returned from the oracle instantaneously. Note that the parameters u, v, w can be adjustable to
some extent. (See the proof.) We do not know whether this conjecture is true or false, but at least
at this moment we do not know how to refute it. (For more discussions, see Sec. 5.1).

Based on Conjecture 1, we show the following result.

Theorem 1 If Conjecture 1 is true, then there exists an N -qubit IQP circuit whose output proba-
bility distribution cannot be classically sampled in O(2aN )-time within a certain constant additive
error ε.

For simplicity, we consider degree-3 polynomials, but it is clear from the following proof that
a similar result holds for degree-k polynomials for any constant k ≥ 3. (The anti-concentration
lemma holds for any degree-k polynomial with k ≥ 2, but the degree-2 case is classically simulatable
because it is a Clifford circuit, so k ≥ 3 is necessary.) If we consider Conjecture 1 for degree-k
polynomials, it becomes more stable for larger k [22].

Proof of Theorem 1. Given an n-variable degree-3 polynomial f , we can construct an n-qubit
IQP circuit such that the probability pz(f) of outputting z ∈ {0, 1}n satisfies

pz(f) = (gap(fz))2

22n ,

where

fz(x1, ..., xn) ≡ f(x1, ..., xn) +
n∑
i=1

zixi.

Assume that there exists a T -time classical probabilistic algorithm that outputs z ∈ {0, 1}n
with probability qz(f) such that ∑

z∈{0,1}n
|pz(f)− qz(f)| ≤ ε

for a certain ε and any f . From Markov’s inequality,

Prz
[
|pz(f)− qz(f)| ≥ ε

2nδ

]
≤ δ

for any f and δ > 0. According to the fine-grained Stockmeyer’s theorem (see Appendix), a
classical O∗(T )-time probabilistic algorithm that makes queries of O(T ) length to the NTIME[n2]
oracle can compute q̃z(f) such that

|qz(f)− q̃z(f)| ≤ ξqz(f),

where

ξ ≡ 2 1
α − 2− 1

α

2 ,

for any f , integer α ≥ 1, and z ∈ {0, 1}n, with a success probability at least w. Due to the
anti-concentration lemma [4],

Prz,f
[
pz(f) ≥ τ

2n
]
≥ (1− τ)2

3

for any 0 < τ < 1.
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Therefore we have

|pz(f)− q̃z(f)| ≤ |pz(f)− qz(f)|+ |qz(f)− q̃z(f)|
≤ |pz(f)− qz(f)|+ ξqz(f) (with a success probability at least w for each f and z)
≤ |pz(f)− qz(f)|+ ξ(pz(f) + |pz(f)− qz(f)|)
= ξpz(f) + |pz(f)− qz(f)|(1 + ξ)

≤ ξpz(f) + ε

2nδ (1 + ξ) (for at least 1− δ fraction of z)

≤ ξpz(f) + σpz(f)(1 + ξ) (for at least (1− ε
σδ )2

3 fraction of (z, f))

= pz(f)
(
σ + (1 + σ)ξ

)
= pz(f)u (We take u ≡ σ + (1 + σ)ξ).

If we take ε and δ such that −δ + 1
3 (1 − ε

σδ )2 = v, the above inequality is correct for at least v
fraction of (z, f). Hence, we obtain

|(gap(fz))2 − 22nq̃z(f)| ≤ u(gap(fz))2

for at least v fraction of (z, f). It means (gap(f))2 is computable within the multiplicative error u
for at least v fraction of f , which contradict Conjecture 1.

Note that w can be arbitrary close to 1, but u is lower-bounded as u ≥ ε
1+
√

3 , and v is upper-
bounded as v ≤ 1− ε

u(1+
√

3) .

3 IQP plus log-depth Boolean circuit
In this section, we show additive-error fine-grained quantum supremacy for the IQP plus log-depth
Boolean circuit model.

Let us consider the following conjecture.

Conjecture 2 Let f : {0, 1}n → {0, 1} be an n-variable degree-2 polynomial over F2, and g :
{0, 1}n → {0, 1} be an n-variable log-depth Boolean circuit. Define

gap(f + g) ≡
∑

x∈{0,1}n
(−1)f(x)+g(x).

There exist g, and positive constants a and n0 such that for every n > n0 the following holds.
Computing [gap(f + g)]2 within a multiplicative error u for at least v fraction of f cannot be done
with a classical probabilistic O∗(2an)-time algorithm that makes queries of length O(2an) to an
NTIME[n2] oracle with a success probability at least w.

Conjecture 2 is “more stable" than Conjecture 1, because log-depth Boolean circuit is more
general than constant-degree polynomials. For constant-degree polynomials, there is a non-trivial
exponential time algorithm to count the number of solutions [23], but we do not know how to
apply it to log-depth Boolean circuits. Furthermore, note that in Conjecture 2, the average case
is considered only for f , and g can be taken as the worst case one.

Based on Conjecture 2, we show the following result.

Theorem 2 If Conjecture 2 is true, then there exists an N -qubit poly(N)-size quantum circuit
(consisting of an IQP circuit and a log-depth Boolean circuit) whose output probability distribution
cannot be classically sampled in O(2aN )-time within a certain constant additive error ε.

Proof of Theorem 2. Given a log-depth Boolean circuit g : {0, 1}n → {0, 1}, we can construct
an (n+ 1)-qubit poly(n)-size quantum circuit U such that

U(|x〉 ⊗ |0〉) = eih(x)|x〉 ⊗ |g(x)〉

for any x ∈ {0, 1}n, where h is a certain function whose detail is irrelevant here [24]. Let us consider
the following circuit.
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1. The initial state is |0n〉 ⊗ |0〉.

2. Apply H⊗n ⊗ I to obtain

1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0〉.

3. Apply U to obtain

1√
2n

∑
x∈{0,1}n

eih(x)|x〉 ⊗ |g(x)〉.

4. Apply Z on the last qubit to obtain

1√
2n

∑
x∈{0,1}n

eih(x)(−1)g(x)|x〉 ⊗ |g(x)〉.

5. Apply U† to obtain

1√
2n

∑
x∈{0,1}n

(−1)g(x)|x〉 ⊗ |0〉.

6. Apply Z and CZ that correspond to f to obtain

1√
2n

∑
x∈{0,1}n

(−1)g(x)+f(x)|x〉 ⊗ |0〉.

7. Apply H⊗n ⊗ I and measure the first n qubits in the computational basis.

The probability of obtaining z ∈ {0, 1}n is

pz(f + g) =
∣∣∣ 1
2n

∑
x∈{0,1}n

(−1)g(x)+f(x)+
∑n

j=1
xjzj

∣∣∣2
= (gap(g + fz))2

22n .

Assume that there exists a T -time classical probabilistic algorithm that outputs z ∈ {0, 1}n
with probability qz(f + g) such that∑

z∈{0,1}n
|pz(f + g)− qz(f + g)| ≤ ε.

From Markov’s inequality,

Prz
[
|pz(f + g)− qz(f + g)| ≥ ε

2nδ

]
≤ δ

for any f , g, and δ > 0. According to the fine-grained Stockmeyer’s theorem, a classical O∗(T )-time
probabilistic algorithm that makes queries of length O(T ) to the NTIME[n2] oracle can compute
q̃z(f + g) such that

|qz(f + g)− q̃z(f + g)| ≤ ξqz(f + g),

where

ξ ≡ 2 1
α − 2− 1

α

2 ,
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for any f , g, integer α ≥ 1, and z ∈ {0, 1}n, with a success probability at least w. Due to the
anti-concentration lemma [4]

Prz,f
[
pz(f + g) ≥ τ

2n
]
≥ (1− τ)2

3

for any 0 < τ < 1.
Then we have

|pz(f + g)− q̃z(f + g)| ≤ |pz(f + g)− qz(f + g)|+ |qz(f + g)− q̃z(f + g)|
≤ |pz(f + g)− qz(f + g)|+ ξqz(f + g)
≤ |pz(f + g)− qz(f + g)|+ ξ(pz(f + g) + |pz(f + g)− qz(f + g)|)
= ξpz(f + g) + |pz(f + g)− qz(f + g)|(1 + ξ)

≤ ξpz(f + g) + ε

2nδ (1 + ξ) (for at least 1− δ fraction of z)

≤ ξpz(f + g) + σpz(f + g)(1 + ξ) (for at least (1− ε
σδ )2

3 fraction of (z, f))

= pz(f + g)
(
σ + (1 + σ)ξ

)
= pz(f + g)u (We take u ≡ σ + (1 + σ)ξ).

If we take ε and δ such that −δ + 1
3 (1 − ε

σδ )2 = v, the above inequality is correct for at least v
fraction of (z, f), which contradict Conjecture 2.

4 Clifford plus T

In this section, we finally show additive-error fine-grained quantum supremacy for Clifford+T
circuits. Let us consider the following conjecture.

Conjecture 3 Let g : {0, 1}n → {0, 1} be a 3-CNF with m clauses, and f : {0, 1}n → {0, 1} be an
n-variable degree-2 polynomial over F2. Define

gap(f + g) ≡
∑

x∈{0,1}n
(−1)f(x)+g(x).

There exist g, and positive constants a and n0 such that for every n > n0 the following holds.
Computing [gap(f + g)]2 within a multiplicative error u for at least v fraction of f cannot be done
with a classical probabilistic O∗(2am)-time algorithm that makes queries of length O(2am) to an
NTIME[n2] oracle with a success probability at least w.

Based on Conjecture 3, we show the following result.

Theorem 3 If Conjecture 3 is true, then there exists a quantum circuit over Clifford gates and
t T gates whose output probability distribution cannot be classically sampled in O(2

a(t+14)
42 )-time

within a certain constant additive error ε.

Proof of Theorem 3. Given a 3-CNF g : {0, 1}n → {0, 1}, we can construct a quantum circuit
U such that

U(|x〉 ⊗ |0ξ〉) = |g(x)〉 ⊗ |junk(x)〉

for any x ∈ {0, 1}n, where ξ ≡ 3m − 1, and junk(x) ∈ {0, 1}n+ξ−1 is a certain bit string whose
detail is irrelevant here. Note that U consists of Clifford and 7(3m− 1) number of T gates. (The
3-CNF g contains 2m OR gates and m− 1 AND gates. Each AND and OR gate can be simulated
with a single Toffoli gate by using a single ancilla qubit. A single Toffoli gate can be simulated
with Clifford and 7 T gates.) Let us consider the following circuit.

1. The initial state is |0n〉 ⊗ |0ξ〉.
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2. Apply H⊗n ⊗ I⊗ξ to obtain

1√
2n

∑
x∈{0,1}n

|x〉 ⊗ |0ξ〉.

3. Apply U to obtain

1√
2n

∑
x∈{0,1}n

|g(x)〉 ⊗ |junk(x)〉.

4. Apply Z ⊗ I⊗n+ξ−1 to obtain

1√
2n

∑
x∈{0,1}n

(−1)g(x)|g(x)〉 ⊗ |junk(x)〉.

5. Apply U† to obtain

1√
2n

∑
x∈{0,1}n

(−1)g(x)|x〉 ⊗ |0ξ〉.

6. Apply Z and CZ that correspond to f to obtain

1√
2n

∑
x∈{0,1}n

(−1)g(x)+f(x)|x〉 ⊗ |0ξ〉.

7. Apply H⊗n ⊗ I⊗ξ and measure all qubits in the first register in the computational basis.

This quantum computing uses t ≡ 14(3m − 1) number of T gates. The probability of obtaining
z ∈ {0, 1}n is

pz(f + g) =
∣∣∣ 1
2n

∑
x∈{0,1}n

(−1)f(x)+
∑n

j=1
xjzj+g(x)

∣∣∣2.
Assume that there exists a T -time classical probabilistic algorithm that outputs z ∈ {0, 1}n

with probability qz(f + g) such that∑
z∈{0,1}n

|pz(f + g)− qz(f + g)| ≤ ε.

From Markov’s inequality,

Prz
[
|pz(f + g)− qz(f + g)| ≥ ε

2nδ

]
≤ δ

for any f , g, and δ > 0. According to the fine-grained Stockmeyer’s theorem, a classical O∗(T )-time
probabilistic algorithm that makes queries of length O(T ) to the NTIME[n2] oracle can compute
q̃z(f + g) such that

|qz(f + g)− q̃z(f + g)| ≤ ξqz(f + g),

where

ξ ≡ 2 1
α − 2− 1

α

2 ,

for any f , g, integer α ≥ 1, and z ∈ {0, 1}n, with a success probability at least w. Due to the
anti-concentration lemma [4]

Prz,f
[
pz(f + g) ≥ τ

2n
]
≥ (1− τ)2

3
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for any 0 < τ < 1.
Then we have

|pz(f + g)− q̃z(f + g)| ≤ |pz(f + g)− qz(f + g)|+ |qz(f + g)− q̃z(f + g)|
≤ |pz(f + g)− qz(f + g)|+ ξqz(f + g)
≤ |pz(f + g)− qz(f + g)|+ ξ(pz(f + g) + |pz(f + g)− qz(f + g)|)
= ξpz(f + g) + |pz(f + g)− qz(f + g)|(1 + ξ)

≤ ξpz(f + g) + ε

2nδ (1 + ξ) (for at least 1− δ fraction of z)

≤ ξpz(f + g) + σpz(f + g)(1 + ξ) (for at least (1− ε
σδ )2

3 fraction of (z, f))

= pz(f + g)
(
σ + (1 + σ)ξ

)
= pz(f + g)u (We take u ≡ σ + (1 + σ)ξ).

If we take ε and δ such that −δ + 1
3 (1 − ε

σδ )2 = v, the above inequality is correct for at least v
fraction of (z, f), which contradict Conjecture 3.

5 Discussion
5.1 Conjectures
In this paper, we have shown additive-error fine-grained quantum supremacy based on several
conjectures. In this subsection, we provide some “evidence" that support these conjectures.

Our conjectures are related to the exponential-time hypothesis (ETH) and the strong exponential-
time hypothesis (SETH) that are standard conjectures in fine-grained complexity theory [25, 26].
ETH and SETH are stronger (or more pessimistic) versions of the famous NP 6= P conjecture that
says that an NP-complete problem cannot be solved in polynomial-time. More precisely, ETH is
stated as follows:

Conjecture 4 (ETH) Any (classical) deterministic algorithm that decides whether #f > 0 or
#f = 0 given (a description of) a 3-CNF with n variables, f : {0, 1}n → {0, 1}, needs 2Ω(n) time.
Here, #f ≡

∑
x∈{0,1}n f(x).

SETH is the stronger version of ETH which says as follows:

Conjecture 5 (SETH) Let A be any (classical) deterministic T (n)-time algorithm such that the
following holds: given (a description of) a CNF, f : {0, 1}n → {0, 1}, with at most cn clauses, A
accepts if #f > 0 and rejects if #f = 0, where #f ≡

∑
x∈{0,1}n f(x). Then, for any constant

a > 0, there exists a constant c > 0 such that T (n) > 2(1−a)n holds for infinitely many n.

All conjectures used in this paper are the average-case hardness of computing GapP functions
within a multiplicative error in classical probabilistic time with an NTIME oracle, and therefore
different from ETH and SETH. There are, however, three reasons that support these conjectures.

First, our conjectures consider GapP functions, while ETH and SETH consider #P functions.
A GapP function is a difference of two #P functions. Furthermore, to our knowledge, only known
way of computing a GapP function is to compute the number of accepting and rejecting paths
(i.e., #P functions). Therefore, computing GapP functions should not be easier than computing
#P functions.

Second, our conjectures study average cases. One might think that solving an average case
could be easier than the worst case, but, at least, SETH has not been refuted even in average
cases. (The best upper-bound is Ref. [27].)

Third, our conjectures allow the algorithm to use an NTIME oracle. We point out that at least
#ETH, which is the counting version of ETH, has not been refuted for MA (which is in ZPPNP)
and AM (which is coNPNP).

It is an important open problem for the research of (not only fine-grained but also non-fine-
grained) quantum supremacy to show additive-error quantum supremacy based on standard con-
jectures.
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5.2 Other models
For simplicity, we have considered the three models, but similar results should hold for other
sub-universal models such as the one-clean qubit model and the random circuit model. For all
sub-universal models, Markov’s inequality and the anti-concentration lemma hold. (For the Boson
sampling model, the anti-concentration is a conjecture.) Therefore if we assume similar average-
case hardness conjectures as we have introduced in this paper, we should be able to show additive-
error fine-grained quantum supremacy for other sub-universal models.
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A Appendix
In this Appendix, we provide a proof of the fine-grained Stockmeyer’s theorem. The proof is a
straightforward generalization of the one given in Ref. [28].

A.1 A pairwise independent hash family and the leftover hash lemma
To show the fine-grained Stockmeyer’s theorem, we need the following two lemmas. Their proofs
can be found in standard text books of complexity theory, such as Ref. [29].

Lemma 1 (A pairwise independent hash family) Let A be a random m× n binary Toeplitz
matrix, and b be a random m-dimensional binary vector. (Here, a Toeplitz matrix is a matrix
whose matrix elements satisfy ai,j = ai+1,j+1.) Then, the family H ≡ {hA,b}A,b of functions,
hA,b : {0, 1}n → {0, 1}m, with hA,b(x) ≡ Ax+ b satisfies

PrA,b[hA,b(x1) = y1 ∧ hA,b(x2) = y2] = 1
22m

for any x1 6= x2 ∈ {0, 1}n and y1, y2 ∈ {0, 1}m.

Lemma 2 (The leftover hash lemma) Let S ⊆ {0, 1}n be a set of n-bit strings. Then

PrA,b
[∣∣∣|{x ∈ S : hA,b(x) = 0m}| − |S|2m

∣∣∣ ≥ ε |S|2m
]
≤ 2m

ε2|S|
.

A.2 Algorithm Ak

In this subsection, we construct the algorithm Ak, which is used for fine-grained Stockmeyer’s
theorem. Let G be an n-time deterministic classical algorithm. Let S ≡ {x ∈ {0, 1}n : G(x) = 1}.
Let k be an integer such that 1 ≤ k ≤ n. We construct a classical probabilistic O(rn)-time
algorithm Ak that gets a description of G as the input, and that makes queries of length O(n) to
the NTIME[n2] oracle such that

• If |S| ≥ 2k+1 then Pr[Ak accepts] ≥ 1− e−r.

• If |S| < 2k then Pr[Ak accepts] ≤ e−r.

To construct Ak, let us consider the following algorithm.

1. If k ≤ 5, query the NTIME[n] oracle whether |S| ≥ 2k+1 or not. (The query to the oracle is
the description of G. Given the description of G, deciding |S| ≥ 2k+1 or not is in NTIME[n].)
Accept if the oracle answer is yes. If the oracle answer is no, reject.
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2. If k ≥ 6, set m ≡ k − 5. Randomly choose an m × n binary Toeplitz matrix A, and an
m-dimensional binary vector b. It takes n + 2m − 1 = O(n) time. Define the function
hA,b : {0, 1}n → {0, 1}m by hA,b(x) ≡ Ax + b. Query the NTIME[n2] oracle whether
|{x ∈ S : hA,b(x) = 0m}| ≥ 48 or not. (The query to the oracle is the description of G, A,
and b. Given the description of G, A, and b, deciding |{x ∈ S : hA,b(x) = 0m}| ≥ 48 or not
is in NTIME[n2].) If the oracle answer is yes, accept. If the oracle answer is no, reject.

Assume that k ≤ 5. Then, if |S| ≥ 2k+1, the probability that the algorithm accepts is 1. If
|S| < 2k, the probability that the algorithm accepts is 0.

Assume that k ≥ 6. If |S| ≥ 2k+1, then |S| ≥ 2m+6 and therefore

Pr[reject] = PrA,b
[
|{x ∈ S : hA,b(x) = 0m}| < 48

]
≤ PrA,b

[
|{x ∈ S : hA,b(x) = 0m}| ≤ 3

4
|S|
2m
]

= PrA,b
[
− |{x ∈ S : hA,b(x) = 0m}|+ |S|2m ≥

1
4
|S|
2m
]

≤ PrA,b
[∣∣∣|{x ∈ S : hA,b(x) = 0m}| − |S|2m

∣∣∣ ≥ 1
4
|S|
2m
]

≤ 2m+4

|S|
≤ 1

4 .

If |S| < 2k, define a superset S′ ⊇ S with |S′| = 2k. Then,

Pr[accept] = PrA,b
[
|{x ∈ S : hA,b(x) = 0m}| ≥ 48

]
≤ PrA,b

[
|{x ∈ S′ : hA,b(x) = 0m}| ≥ 48

]
= PrA,b

[
|{x ∈ S′ : hA,b(x) = 0m}| ≥ 3

2
|S′|
2m
]

= PrA,b
[
|{x ∈ S′ : hA,b(x) = 0m}| ≥ |S

′|
2m + 1

2
|S′|
2m
]

= PrA,b
[
|{x ∈ S′ : hA,b(x) = 0m}| − |S

′|
2m ≥

1
2
|S′|
2m
]

≤ PrA,b
[∣∣∣|{x ∈ S′ : hA,b(x) = 0m}| − |S

′|
2m
∣∣∣ ≥ 1

2
|S′|
2m
]

≤ 2m+2

|S′|
= 1

8 .

Therefore we have constructed the algorithm such that

• If |S| ≥ 2k+1 then Pr[accept] ≥ 3
4 .

• If |S| < 2k then Pr[accept] ≤ 1
8 .

By repeating this algorithm O(r) times, we get the final result.

A.3 Fine-grained Stockmeyer’s theorem
Theorem 4 For any classical probabilistic T -time algorithm that outputs z ∈ {0, 1}N with prob-
ability qz, and any constant integer α ≥ 1, there exists a O(T log(T ) log log(T ))-time classical
probabilistic algorithm that makes queries of length O(T ) to the NTIME[n2] oracle that outputs q̃z
such that

|qz − q̃z| ≤
2 1
α − 2− 1

α

2 qz

with a success probability at least w for any z ∈ {0, 1}N . Here, w is a certain constant.
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Proof of Theorem 4. Let C be a T -time deterministic classical algorithm such that

|{r ∈ {0, 1}T : C(r) = z}|
2T = qz

for all z ∈ {0, 1}N . For each z ∈ {0, 1}N , let us define the set Sz ⊆ {0, 1}T by

Sz ≡ {r ∈ {0, 1}T : C(r) = z}.

For any integer α ≥ 1, define

S×αz ≡ {(r1, ..., rα) ∈ ({0, 1}T )×α : C(r1) = ... = C(rα) = z}.

For S×αz , find an integer η ∈ {1, 2, ..., αT} such that Aη−1 accepts and Aη rejects by the binary
search. It takes classical probabilistic O(T log(T ) log log(T ))-time that makes queries of length
O(T ) to the NTIME[n2] oracle. (For the binary search, O(log T ) steps are necessary, and each
implementation of the algorithm A takes O(T log log(T )) steps.) Then, 2η−1 < |S×αz | < 2η+1 with
a sufficiently small failure probability.

If we define σ ≡ 2
η
α , 1

2σ
α < |Sz|α < 2σα. Hence

(
1
2

) 1
α

σ < |Sz| < 2 1
ασ. If we define q̃z ≡ σ/2T ,

we obtain the result.
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