Quantum computing with neutral atoms
1Pasqal, 2 avenue Augustin Fresnel, 91120 Palaiseau, France
2Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France
3Quantonation, 58 rue d'Hauteville, 75010 Paris, France
Published: | 2020-09-21, volume 4, page 327 |
Eprint: | arXiv:2006.12326v2 |
Doi: | https://doi.org/10.22331/q-2020-09-21-327 |
Citation: | Quantum 4, 327 (2020). |
Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.
Abstract
The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the main characteristics of these devices from atoms / qubits to application interfaces, and propose a classification of a wide variety of tasks that can already be addressed in a computationally efficient manner in the Noisy Intermediate Scale Quantum[1] era we are in. We illustrate how applications ranging from optimization challenges to simulation of quantum systems can be explored either at the digital level (programming gate-based circuits) or at the analog level (programming Hamiltonian sequences). We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range and introduce prospects for universal fault tolerant quantum computing and applications beyond quantum computing.
► BibTeX data
► References
[1] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. 10.22331/q-2018-08-06-79. URL https://doi.org/10.22331/q-2018-08-06-79.
https://doi.org/10.22331/q-2018-08-06-79
[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G S L Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574: 505–510, 2019. ISSN 1476-4687. 10.1038/s41586-019-1666-5. URL https://doi.org/10.1038/s41586-019-1666-5.
https://doi.org/10.1038/s41586-019-1666-5
[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien. Quantum computers. Nature, 464 (7285): 45–53, March 2010. 10.1038/nature08812.
https://doi.org/10.1038/nature08812
[4] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with Rydberg atoms. Reviews of Modern Physics, 82 (3): 2313–2363, July 2010. 10.1103/RevModPhys.82.2313.
https://doi.org/10.1103/RevModPhys.82.2313
[5] M. Saffman. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B Atomic Molecular Physics, 49 (20): 202001, October 2016. 10.1088/0953-4075/49/20/202001.
https://doi.org/10.1088/0953-4075/49/20/202001
[6] Antoine Browaeys and Thierry Lahaye. Many-body physics with individually controlled rydberg atoms. Nature Physics, 16 (2): 132–142, Feb 2020. ISSN 1745-2481. 10.1038/s41567-019-0733-z. URL https://doi.org/10.1038/s41567-019-0733-z.
https://doi.org/10.1038/s41567-019-0733-z
[7] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv e-prints, art. arXiv:1411.4028, November 2014.
arXiv:1411.4028
[8] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Computers. Springer Publishing Company, Incorporated, 1st edition, 2018. ISBN 3319964232. 10.1007/978-3-319-96424-9.
https://doi.org/10.1007/978-3-319-96424-9
[9] H. J. Metcalf and P. van der Straten. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B, 20 (5): 887–908, May 2003. 10.1364/JOSAB.20.000887. URL http://josab.osa.org/abstract.cfm?URI=josab-20-5-887.
https://doi.org/10.1364/JOSAB.20.000887
http://josab.osa.org/abstract.cfm?URI=josab-20-5-887
[10] Nicolas Schlosser, Georges Reymond, Igor Protsenko, and Philippe Grangier. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature, 411 (6841): 1024–1027, Jun 2001. ISSN 1476-4687. 10.1038/35082512. URL https://doi.org/10.1038/35082512.
https://doi.org/10.1038/35082512
[11] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys. Single-atom trapping in holographic 2d arrays of microtraps with arbitrary geometries. Phys. Rev. X, 4: 021034, May 2014. 10.1103/PhysRevX.4.021034. URL https://link.aps.org/doi/10.1103/PhysRevX.4.021034.
https://doi.org/10.1103/PhysRevX.4.021034
[12] Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc, Thierry Lahaye, and Antoine Browaeys. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561 (7721): 79–82, Sep 2018. ISSN 1476-4687. 10.1038/s41586-018-0450-2. URL https://doi.org/10.1038/s41586-018-0450-2.
https://doi.org/10.1038/s41586-018-0450-2
[13] A. Fuhrmanek, R. Bourgain, Y. R.P. Sortais, and A. Browaeys. Free-space lossless state detection of a single trapped atom. Phys. Rev. Lett., 106 (13): 133003, mar 2011. ISSN 00319007. 10.1103/PhysRevLett.106.133003. URL https://link.aps.org/doi/10.1103/PhysRevLett.106.133003.
https://doi.org/10.1103/PhysRevLett.106.133003
[14] Evan Jeffrey, Daniel Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O'Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 112: 190504, May 2014. 10.1103/PhysRevLett.112.190504. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.190504.
https://doi.org/10.1103/PhysRevLett.112.190504
[15] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011. ISBN 1107002176. 10.1017/CBO9780511976667.
https://doi.org/10.1017/CBO9780511976667
[16] D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman. Fast ground state manipulation of neutral atoms in microscopic optical traps. Phys. Rev. Lett., 96: 063001, Feb 2006. 10.1103/PhysRevLett.96.063001. URL https://link.aps.org/doi/10.1103/PhysRevLett.96.063001.
https://doi.org/10.1103/PhysRevLett.96.063001
[17] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123: 170503, Oct 2019. 10.1103/PhysRevLett.123.170503. URL https://link.aps.org/doi/10.1103/PhysRevLett.123.170503.
https://doi.org/10.1103/PhysRevLett.123.170503
[18] Ivaylo S. Madjarov, Jacob P. Covey, Adam L. Shaw, Joonhee Choi, Anant Kale, Alexandre Cooper, Hannes Pichler, Vladimir Schkolnik, Jason R. Williams, and Manuel Endres. High-fidelity entanglement and detection of alkaline-earth rydberg atoms. Nature Physics, 16 (8): 857–861, Aug 2020. ISSN 1745-2481. 10.1038/s41567-020-0903-z. URL https://doi.org/10.1038/s41567-020-0903-z.
https://doi.org/10.1038/s41567-020-0903-z
[19] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman. Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett., 104: 010503, Jan 2010. 10.1103/PhysRevLett.104.010503. URL https://link.aps.org/doi/10.1103/PhysRevLett.104.010503.
https://doi.org/10.1103/PhysRevLett.104.010503
[20] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 85: 2208–2211, Sep 2000. 10.1103/PhysRevLett.85.2208. URL https://link.aps.org/doi/10.1103/PhysRevLett.85.2208.
https://doi.org/10.1103/PhysRevLett.85.2208
[21] Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. High-fidelity control and entanglement of rydberg-atom qubits. Phys. Rev. Lett., 121: 123603, Sep 2018. 10.1103/PhysRevLett.121.123603. URL https://link.aps.org/doi/10.1103/PhysRevLett.121.123603.
https://doi.org/10.1103/PhysRevLett.121.123603
[22] N. Rach, M. M. Müller, T. Calarco, and S. Montangero. Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape. Phys. Rev. A, 92: 062343, Dec 2015. 10.1103/PhysRevA.92.062343. URL https://link.aps.org/doi/10.1103/PhysRevA.92.062343.
https://doi.org/10.1103/PhysRevA.92.062343
[23] Mohammadsadegh Khazali and Klaus Mølmer. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of rydberg atoms and superconducting circuits. Phys. Rev. X, 10: 021054, Jun 2020. 10.1103/PhysRevX.10.021054. URL https://link.aps.org/doi/10.1103/PhysRevX.10.021054.
https://doi.org/10.1103/PhysRevX.10.021054
[24] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Dieter Jaksch. Variational quantum algorithms for nonlinear problems. Phys. Rev. A, 101 (1): 010301, January 2020. 10.1103/PhysRevA.101.010301.
https://doi.org/10.1103/PhysRevA.101.010301
[25] P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macrì, T. Pohl, I. Bloch, and C. Gross. Crystallization in ising quantum magnets. Science, 347 (6229): 1455–1458, 2015. ISSN 0036-8075. 10.1126/science.1258351. URL https://science.sciencemag.org/content/347/6229/1455.
https://doi.org/10.1126/science.1258351
https://science.sciencemag.org/content/347/6229/1455
[26] Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain de Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys. Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models. Nature, 534 (7609): 667–670, Jun 2016. ISSN 1476-4687. 10.1038/nature18274. URL https://doi.org/10.1038/nature18274.
https://doi.org/10.1038/nature18274
[27] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551 (7682): 579–584, November 2017. 10.1038/nature24622.
https://doi.org/10.1038/nature24622
[28] Sylvain de Léséleuc, Sebastian Weber, Vincent Lienhard, Daniel Barredo, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Accurate mapping of multilevel rydberg atoms on interacting spin-$1/2$ particles for the quantum simulation of ising models. Phys. Rev. Lett., 120: 113602, Mar 2018a. 10.1103/PhysRevLett.120.113602. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.113602.
https://doi.org/10.1103/PhysRevLett.120.113602
[29] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2: 5, 2014. ISSN 2296-424X. 10.3389/fphy.2014.00005. URL https://www.frontiersin.org/article/10.3389/fphy.2014.00005.
https://doi.org/10.3389/fphy.2014.00005
[30] Sylvain Ravets, Henning Labuhn, Daniel Barredo, Thierry Lahaye, and Antoine Browaeys. Measurement of the angular dependence of the dipole-dipole interaction between two individual Rydberg atoms at a Förster resonance. Phys. Rev. A, 92 (2): 020701, aug 2015. ISSN 10941622. 10.1103/PhysRevA.92.020701. URL http://fr.arxiv.org/pdf/1504.00301 http://link.aps.org/doi/10.1103/PhysRevA.92.020701.
https://doi.org/10.1103/PhysRevA.92.020701
[31] A. Reinhard, T. Cubel Liebisch, B. Knuffman, and G. Raithel. Level shifts of rubidium rydberg states due to binary interactions. Phys. Rev. A, 75: 032712, Mar 2007. 10.1103/PhysRevA.75.032712. URL https://link.aps.org/doi/10.1103/PhysRevA.75.032712.
https://doi.org/10.1103/PhysRevA.75.032712
[32] L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, and A. Browaeys. Direct measurement of the van der waals interaction between two rydberg atoms. Phys. Rev. Lett., 110: 263201, Jun 2013. 10.1103/PhysRevLett.110.263201. URL https://link.aps.org/doi/10.1103/PhysRevLett.110.263201.
https://doi.org/10.1103/PhysRevLett.110.263201
[33] Daniel Barredo, Henning Labuhn, Sylvain Ravets, Thierry Lahaye, Antoine Browaeys, and Charles S. Adams. Coherent excitation transfer in a spin chain of three rydberg atoms. Phys. Rev. Lett., 114: 113002, Mar 2015. 10.1103/PhysRevLett.114.113002. URL https://link.aps.org/doi/10.1103/PhysRevLett.114.113002.
https://doi.org/10.1103/PhysRevLett.114.113002
[34] A. Piñeiro Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges, S. Whitlock, and M. Weidemüller. Relaxation of an isolated dipolar-interacting rydberg quantum spin system. Phys. Rev. Lett., 120: 063601, Feb 2018. 10.1103/PhysRevLett.120.063601. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.063601.
https://doi.org/10.1103/PhysRevLett.120.063601
[35] Leon Balents. Spin liquids in frustrated magnets. Nature, 464 (7286): 199–208, Mar 2010. ISSN 1476-4687. 10.1038/nature08917. URL https://doi.org/10.1038/nature08917.
https://doi.org/10.1038/nature08917
[36] G. Günter, H. Schempp, M. Robert-de Saint-Vincent, V. Gavryusev, S. Helmrich, C. S. Hofmann, S. Whitlock, and M. Weidemüller. Observing the dynamics of dipole-mediated energy transport by interaction-enhanced imaging. Science, 342 (6161): 954–956, 2013. ISSN 0036-8075. 10.1126/science.1244843. URL https://science.sciencemag.org/content/342/6161/954.
https://doi.org/10.1126/science.1244843
https://science.sciencemag.org/content/342/6161/954
[37] Robert M. Clegg. The History of Fret, pages 1–45. Springer US, Boston, MA, 2006. ISBN 978-0-387-33016-7. 10.1007/0-387-33016-X_1. URL https://doi.org/10.1007/0-387-33016-X_1.
https://doi.org/10.1007/0-387-33016-X_1
[38] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms. Science, 365 (6455): 775–780, 2019a. ISSN 0036-8075. 10.1126/science.aav9105. URL https://science.sciencemag.org/content/365/6455/775.
https://doi.org/10.1126/science.aav9105
https://science.sciencemag.org/content/365/6455/775
[39] S. Bettelli, D. Maxwell, T. Fernholz, C. S. Adams, I. Lesanovsky, and C. Ates. Exciton dynamics in emergent rydberg lattices. Phys. Rev. A, 88: 043436, Oct 2013. 10.1103/PhysRevA.88.043436. URL https://link.aps.org/doi/10.1103/PhysRevA.88.043436.
https://doi.org/10.1103/PhysRevA.88.043436
[40] A Signoles, T Franz, R Ferracini Alves, M Gärttner, S Whitlock, G Zürn, and M Weidemüller. Observation of glassy dynamics in a disordered quantum spin system. arXiv preprint arXiv:1909.11959, 2019.
arXiv:1909.11959
[41] Shannon Whitlock, Alexander W Glaetzle, and Peter Hannaford. Simulating quantum spin models using rydberg-excited atomic ensembles in magnetic microtrap arrays. Journal of Physics B: Atomic, Molecular and Optical Physics, 50 (7): 074001, mar 2017. 10.1088/1361-6455/aa6149. URL https://doi.org/10.10882F1361-64552Faa6149.
https://doi.org/10.1088/1361-6455/aa6149
[42] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E. A. Demler, and M. D. Lukin. Many-body localization in dipolar systems. Phys. Rev. Lett., 113: 243002, Dec 2014. 10.1103/PhysRevLett.113.243002. URL https://link.aps.org/doi/10.1103/PhysRevLett.113.243002.
https://doi.org/10.1103/PhysRevLett.113.243002
[43] Rahul Nandkishore and David A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6 (1): 15–38, 2015. 10.1146/annurev-conmatphys-031214-014726. URL https://doi.org/10.1146/annurev-conmatphys-031214-014726.
https://doi.org/10.1146/annurev-conmatphys-031214-014726
[44] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nature Physics, 14 (7): 745–749, Jul 2018. ISSN 1745-2481. 10.1038/s41567-018-0137-5. URL https://doi.org/10.1038/s41567-018-0137-5.
https://doi.org/10.1038/s41567-018-0137-5
[45] Christian Gogolin and Jens Eisert. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Reports on Progress in Physics, 79 (5): 056001, May 2016. 10.1088/0034-4885/79/5/056001.
https://doi.org/10.1088/0034-4885/79/5/056001
[46] D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T. Boulier, A. Browaeys, and T. Lahaye. Three-dimensional trapping of individual rydberg atoms in ponderomotive bottle beam traps. Phys. Rev. Lett., 124: 023201, Jan 2020. 10.1103/PhysRevLett.124.023201. URL https://link.aps.org/doi/10.1103/PhysRevLett.124.023201.
https://doi.org/10.1103/PhysRevLett.124.023201
[47] Sylvain de Léséleuc, Sebastian Weber, Vincent Lienhard, Daniel Barredo, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Accurate mapping of multilevel rydberg atoms on interacting spin-$1/2$ particles for the quantum simulation of ising models. Phys. Rev. Lett., 120: 113602, Mar 2018b. 10.1103/PhysRevLett.120.113602. URL https://link.aps.org/doi/10.1103/PhysRevLett.120.113602.
https://doi.org/10.1103/PhysRevLett.120.113602
[48] S. B. Bravyi and A. Yu. Kitaev. Quantum codes on a lattice with boundary. arXiv e-prints, art. quant-ph/9811052, November 1998.
arXiv:quant-ph/9811052
[49] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. Journal of Mathematical Physics, 43 (9): 4452–4505, September 2002. 10.1063/1.1499754.
https://doi.org/10.1063/1.1499754
[50] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86 (3): 032324, September 2012. 10.1103/PhysRevA.86.032324.
https://doi.org/10.1103/PhysRevA.86.032324
[51] Takashi Oka and Sota Kitamura. Floquet engineering of quantum materials. Annual Review of Condensed Matter Physics, 10 (1): 387–408, Mar 2019. ISSN 1947-5462. 10.1146/annurev-conmatphys-031218-013423. URL http://dx.doi.org/10.1146/annurev-conmatphys-031218-013423.
https://doi.org/10.1146/annurev-conmatphys-031218-013423
[52] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. Self-verifying variational quantum simulation of lattice models. Nature, 569 (7756): 355–360, May 2019. ISSN 1476-4687. 10.1038/s41586-019-1177-4. URL https://doi.org/10.1038/s41586-019-1177-4.
https://doi.org/10.1038/s41586-019-1177-4
[53] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. ISSN 0036-8075. 10.1126/science.273.5278.1073. URL https://science.sciencemag.org/content/273/5278/1073.
https://doi.org/10.1126/science.273.5278.1073
https://science.sciencemag.org/content/273/5278/1073
[54] Loïc Henriet. Robustness to spontaneous emission of a variational quantum algorithm. Phys. Rev. A, 101 (1): 012335, January 2020. 10.1103/PhysRevA.101.012335.
https://doi.org/10.1103/PhysRevA.101.012335
[55] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. Quantum algorithms for quantum chemistry and quantum materials science. arXiv e-prints, art. arXiv:2001.03685, January 2020.
arXiv:2001.03685
[56] J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of equilibrium. Nature Physics, 11 (2): 124–130, February 2015. 10.1038/nphys3215.
https://doi.org/10.1038/nphys3215
[57] Vincent Lienhard, Sylvain de Léséleuc, Daniel Barredo, Thierry Lahaye, Antoine Browaeys, Michael Schuler, Louis-Paul Henry, and Andreas M. Läuchli. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions. Phys. Rev. X, 8: 021070, Jun 2018. 10.1103/PhysRevX.8.021070. URL https://link.aps.org/doi/10.1103/PhysRevX.8.021070.
https://doi.org/10.1103/PhysRevX.8.021070
[58] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms. Science, 365 (6455): 775–780, 2019b. ISSN 0036-8075. 10.1126/science.aav9105. URL https://science.sciencemag.org/content/365/6455/775.
https://doi.org/10.1126/science.aav9105
https://science.sciencemag.org/content/365/6455/775
[59] E. Jordan, P.; Wigner. Uber das Paulische Aquivalenzverbot. Z. Physik, 47: 631 – 651, 1928.
[60] M.A. Nielsen. The fermionic canonical commutation relations and the Jordan-Wigner transform. School of Physical Sciences The University of Queensland.
[61] Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic Quantum Computation. Annals of Physics, 298 (1): 210–226, May 2002. 10.1006/aphy.2002.6254.
https://doi.org/10.1006/aphy.2002.6254
[62] Todor M. Mishonov, Joseph O. Indekeu, and Evgeni S. Penev. The 3d-to-4s-by-2p Highway to Superconductivity in Cuprates. International Journal of Modern Physics B, 16 (30): 4577–4585, January 2002. 10.1142/S0217979202014991.
https://doi.org/10.1142/S0217979202014991
[63] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. Strategies for solving the Fermi-Hubbard model on near-term quantum computers. arXiv e-prints, art. arXiv:1912.06007, December 2019.
arXiv:1912.06007
[64] Josef Melcr and Jean-Philip Piquemal. Accurate biomolecular simulations account for electronic polarization. Frontiers in Molecular Biosciences, 6: 143, 2019. ISSN 2296-889X. 10.3389/fmolb.2019.00143. URL https://www.frontiersin.org/article/10.3389/fmolb.2019.00143.
https://doi.org/10.3389/fmolb.2019.00143
[65] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, July 2014. 10.1038/ncomms5213.
https://doi.org/10.1038/ncomms5213
[66] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, February 2016. 10.1088/1367-2630/18/2/023023.
https://doi.org/10.1088/1367-2630/18/2/023023
[67] Ian C. Cloët, Matthew R. Dietrich, John Arrington, Alexei Bazavov, Michael Bishof, Adam Freese, Alexey V. Gorshkov, Anna Grassellino, Kawtar Hafidi, Zubin Jacob, Michael McGuigan, Yannick Meurice, Zein-Eddine Meziani, Peter Mueller, Christine Muschik, James Osborn, Matthew Otten, Peter Petreczky, Tomas Polakovic, Alan Poon, Raphael Pooser, Alessandro Roggero, Mark Saffman, Brent VanDevender, Jiehang Zhang, and Erez Zohar. Opportunities for Nuclear Physics and Quantum Information Science. arXiv e-prints, art. arXiv:1903.05453, March 2019.
arXiv:1903.05453
[68] Alessio Celi, Benoı̂t Vermersch, Oscar Viyuela, Hannes Pichler, Mikhail D. Lukin, and Peter Zoller. Emerging two-dimensional gauge theories in rydberg configurable arrays. Phys. Rev. X, 10: 021057, Jun 2020. 10.1103/PhysRevX.10.021057. URL https://link.aps.org/doi/10.1103/PhysRevX.10.021057.
https://doi.org/10.1103/PhysRevX.10.021057
[69] W. K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE, 68 (12): 1497–1514, Dec 1980. 10.1109/PROC.1980.11899.
https://doi.org/10.1109/PROC.1980.11899
[70] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. Statistical analysis of financial networks. Computational Statistics and Data Analysis, 48: 431 – 443, 2005. ISSN 0167-9473. https://doi.org/10.1016/j.csda.2004.02.004. URL http://www.sciencedirect.com/science/article/pii/S0167947304000258.
https://doi.org/10.1016/j.csda.2004.02.004
http://www.sciencedirect.com/science/article/pii/S0167947304000258
[71] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition edition, 1979. ISBN 0716710455. URL http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455.
http://www.amazon.com/Computers-Intractability-NP-Completeness-Mathematical-Sciences/dp/0716710455
[72] Hannes Pichler, Sheng-Tao Wang, Leo Zhou, Soonwon Choi, and Mikhail D. Lukin. Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays. arXiv e-prints, art. arXiv:1808.10816, August 2018.
arXiv:1808.10816
[73] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Florian Neukart, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O'Brien, Bryan O'Gorman, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Kevin J. Sung, Marco Szalay, Amit Vainsencher, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, and Leo Zhou. Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor. arXiv e-prints, art. arXiv:2004.04197, April 2020.
arXiv:2004.04197
[74] Michel Fabrice Serret, Bertrand Marchand, and Thomas Ayral. Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks. arXiv e-prints, art. arXiv:2006.11190, June 2020.
arXiv:2006.11190
[75] Wolfgang Lechner, Philipp Hauke, and Peter Zoller. A quantum annealing architecture with all-to-all connectivity from local interactions. Science Advances, 1 (9), 2015. 10.1126/sciadv.1500838. URL https://advances.sciencemag.org/content/1/9/e1500838.
https://doi.org/10.1126/sciadv.1500838
https://advances.sciencemag.org/content/1/9/e1500838
[76] A. W. Glaetzle, R. M. W. van Bijnen, P. Zoller, and W. Lechner. A coherent quantum annealer with Rydberg atoms. Nature Communications, 8: 15813, June 2017. 10.1038/ncomms15813.
https://doi.org/10.1038/ncomms15813
[77] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549 (7671): 195–202, September 2017. 10.1038/nature23474.
https://doi.org/10.1038/nature23474
[78] Vojtech Havlicek, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567 (7747): 209–212, March 2019. 10.1038/s41586-019-0980-2.
https://doi.org/10.1038/s41586-019-0980-2
[79] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum Information, 4: 65, December 2018. 10.1038/s41534-018-0116-9.
https://doi.org/10.1038/s41534-018-0116-9
[80] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, 98 (3): 032309, September 2018. 10.1103/PhysRevA.98.032309.
https://doi.org/10.1103/PhysRevA.98.032309
[81] James M. Auger, Silvia Bergamini, and Dan E. Browne. Blueprint for fault-tolerant quantum computation with rydberg atoms. Phys. Rev. A, 96: 052320, Nov 2017. 10.1103/PhysRevA.96.052320. URL https://link.aps.org/doi/10.1103/PhysRevA.96.052320.
https://doi.org/10.1103/PhysRevA.96.052320
[82] Stephen E. Harris. Electromagnetically induced transparency. Physics Today, 50 (7): 36–42, July 1997. 10.1063/1.881806.
https://doi.org/10.1063/1.881806
[83] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 77: 633–673, Jul 2005. 10.1103/RevModPhys.77.633. URL https://link.aps.org/doi/10.1103/RevModPhys.77.633.
https://doi.org/10.1103/RevModPhys.77.633
[84] M. Bajcsy, A. S. Zibrov, and M. D. Lukin. Stationary pulses of light in an atomic medium. Nature, 426 (6967): 638–641, December 2003. 10.1038/nature02176.
https://doi.org/10.1038/nature02176
[85] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414 (6862): 413–418, November 2001. 10.1038/35106500.
https://doi.org/10.1038/35106500
[86] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83: 33–80, Mar 2011. 10.1103/RevModPhys.83.33. URL https://link.aps.org/doi/10.1103/RevModPhys.83.33.
https://doi.org/10.1103/RevModPhys.83.33
[87] Nicolas Maring, Pau Farrera, Kutlu Kutluer, Margherita Mazzera, Georg Heinze, and Hugues de Riedmatten. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 551 (7681): 485–488, November 2017. 10.1038/nature24468.
https://doi.org/10.1038/nature24468
[88] Yong Yu, Fei Ma, Xi-Yu Luo, Bo Jing, Peng-Fei Sun, Ren-Zhou Fang, Chao-Wei Yang, Hui Liu, Ming-Yang Zheng, Xiu-Ping Xie, Wei-Jun Zhang, Li-Xing You, Zhen Wang, Teng-Yun Chen, Qiang Zhang, Xiao-Hui Bao, and Jian-Wei Pan. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578: 240–245, 2020. ISSN 1476-4687. 10.1038/s41586-020-1976-7. URL https://doi.org/10.1038/s41586-020-1976-7.
https://doi.org/10.1038/s41586-020-1976-7
[89] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson, and William D. Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11 (1): 369–395, 2020. 10.1146/annurev-conmatphys-031119-050605. URL https://doi.org/10.1146/annurev-conmatphys-031119-050605.
https://doi.org/10.1146/annurev-conmatphys-031119-050605
[90] Thibault Peyronel, Ofer Firstenberg, Qi-Yu Liang, Sebastian Hofferberth, Alexey V. Gorshkov, Thomas Pohl, Mikhail D. Lukin, and Vladan Vuletić. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature, 488 (7409): 57–60, Aug 2012. ISSN 1476-4687. 10.1038/nature11361. URL https://doi.org/10.1038/nature11361.
https://doi.org/10.1038/nature11361
[91] Ofer Firstenberg, Thibault Peyronel, Qi-Yu Liang, Alexey V. Gorshkov, Mikhail D. Lukin, and Vladan Vuletić. Attractive photons in a quantum nonlinear medium. Nature, 502 (7469): 71–75, Oct 2013. ISSN 1476-4687. 10.1038/nature12512. URL https://doi.org/10.1038/nature12512.
https://doi.org/10.1038/nature12512
[92] Darrick E Chang, Vladan Vuletić, and Mikhail D Lukin. Quantum nonlinear optics — photon by photon. Nature Photonics, 8: 685–694, 2014. ISSN 1749-4893. 10.1038/nphoton.2014.192. URL https://doi.org/10.1038/nphoton.2014.192.
https://doi.org/10.1038/nphoton.2014.192
[93] Andreas Reiserer, Norbert Kalb, Gerhard Rempe, and Stephan Ritter. A quantum gate between a flying optical photon and a single trapped atom. Nature, 508: 237–240, 2014. ISSN 1476-4687. 10.1038/nature13177. URL https://doi.org/10.1038/nature13177.
https://doi.org/10.1038/nature13177
[94] D Paredes-Barato and C S Adams. All-optical quantum information processing using rydberg gates. Phys. Rev. Lett., 112: 40501, 1 2014. 10.1103/PhysRevLett.112.040501. URL https://link.aps.org/doi/10.1103/PhysRevLett.112.040501.
https://doi.org/10.1103/PhysRevLett.112.040501
[95] Daniel Tiarks, Steffen Schmidt, Gerhard Rempe, and Stephan Dürr. Optical $\pi$ phase shift created with a single-photon pulse. Science Advances, 2, 2016. 10.1126/sciadv.1600036. URL http://advances.sciencemag.org/content/2/4/e1600036.
https://doi.org/10.1126/sciadv.1600036
http://advances.sciencemag.org/content/2/4/e1600036
[96] O Firstenberg, C S Adams, and S Hofferberth. Nonlinear quantum optics mediated by rydberg interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 49 (15): 152003, jun 2016. 10.1088/0953-4075/49/15/152003. URL https://doi.org/10.1088.
https://doi.org/10.1088/0953-4075/49/15/152003
[97] C. S. Adams, J. D. Pritchard, and J. P. Shaffer. Rydberg atom quantum technologies. Journal of Physics B Atomic Molecular Physics, 53 (1): 012002, January 2020. 10.1088/1361-6455/ab52ef.
https://doi.org/10.1088/1361-6455/ab52ef
[98] Mazyar Mirrahimi, Zaki Leghtas, Victor V Albert, Steven Touzard, Robert J Schoelkopf, Liang Jiang, and Michel H Devoret. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 16 (4): 045014, Apr 2014. ISSN 1367-2630. 10.1088/1367-2630/16/4/045014. URL http://dx.doi.org/10.1088/1367-2630/16/4/045014.
https://doi.org/10.1088/1367-2630/16/4/045014
[99] Shruti Puri, Samuel Boutin, and Alexandre Blais. Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving. npj Quantum Information, 3 (1), Apr 2017. ISSN 2056-6387. 10.1038/s41534-017-0019-1. URL http://dx.doi.org/10.1038/s41534-017-0019-1.
https://doi.org/10.1038/s41534-017-0019-1
[100] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. Circuit Quantum Electrodynamics. arXiv e-prints, art. arXiv:2005.12667, May 2020.
arXiv:2005.12667
Cited by
[1] Leonardo da Silva Souza, Gonzalo Manzano, Rosario Fazio, and Fernando Iemini, "Collective effects on the performance and stability of quantum heat engines", Physical Review E 106 1, 014143 (2022).
[2] Tomohiro Hashizume, Jad Halimeh, Philipp Hauke, and Debasish Banerjee, "Ground-state phase diagram of quantum link electrodynamics in $(2+1)$-d", SciPost Physics 13 2, 017 (2022).
[3] Andrew Litteken, Jonathan M. Baker, and Frederic T. Chong, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 566 (2022) ISBN:978-1-6654-9113-6.
[4] Stephanie M. Bohaichuk, Donald Booth, Kent Nickerson, Harry Tai, and James P. Shaffer, "Origins of Rydberg-Atom Electrometer Transient Response and Its Impact on Radio-Frequency Pulse Sensing", Physical Review Applied 18 3, 034030 (2022).
[5] Henrique Silvério, Sebastián Grijalva, Constantin Dalyac, Lucas Leclerc, Peter J. Karalekas, Nathan Shammah, Mourad Beji, Louis-Paul Henry, and Loïc Henriet, "Pulser: An open-source package for the design of pulse sequences in programmable neutral-atom arrays", Quantum 6, 629 (2022).
[6] Sven Jandura and Guido Pupillo, "Time-Optimal Two- and Three-Qubit Gates for Rydberg Atoms", Quantum 6, 712 (2022).
[7] Alice Pagano, Sebastian Weber, Daniel Jaschke, Tilman Pfau, Florian Meinert, Simone Montangero, and Hans Peter Büchler, "Error budgeting for a controlled-phase gate with strontium-88 Rydberg atoms", Physical Review Research 4 3, 033019 (2022).
[8] Martin Lanthaler, Clemens Dlaska, Kilian Ender, and Wolfgang Lechner, "Rydberg-Blockade-Based Parity Quantum Optimization", Physical Review Letters 130 22, 220601 (2023).
[9] Boris Albrecht, Constantin Dalyac, Lucas Leclerc, Luis Ortiz-Gutiérrez, Slimane Thabet, Mauro D'Arcangelo, Julia R. K. Cline, Vincent E. Elfving, Lucas Lassablière, Henrique Silvério, Bruno Ximenez, Louis-Paul Henry, Adrien Signoles, and Loïc Henriet, "Quantum feature maps for graph machine learning on a neutral atom quantum processor", Physical Review A 107 4, 042615 (2023).
[10] Tony Jin, Tristan Gautié, Alexandre Krajenbrink, Paola Ruggiero, and Takato Yoshimura, "Interplay between transport and quantum coherences in free fermionic systems", Journal of Physics A: Mathematical and Theoretical 54 40, 404001 (2021).
[11] Eduardo Reck Miranda, Paul Finlay, and Tom Lubowe, Quantum Computer Music 407 (2022) ISBN:978-3-031-13908-6.
[12] Michael Fellner, Anette Messinger, Kilian Ender, and Wolfgang Lechner, "Universal Parity Quantum Computing", Physical Review Letters 129 18, 180503 (2022).
[13] Alexey E. Rastegin and Anzhelika M. Shemet, "Degeneration of the Grover search algorithm with depolarization in the oracle-box wires", Modern Physics Letters A 38 05, 2350030 (2023).
[14] Archismita Dalal and Barry C. Sanders, "Two-qubit gate in neutral atoms using transitionless quantum driving", Physical Review A 107 1, 012605 (2023).
[15] Rodrigo Araiza Bravo, Khadijeh Najafi, Xun Gao, and Susanne F. Yelin, "Quantum Reservoir Computing Using Arrays of Rydberg Atoms", PRX Quantum 3 3, 030325 (2022).
[16] Zakaria Patel, Ejaaz Merali, and Sebastian J Wetzel, "Unsupervised learning of Rydberg atom array phase diagram with Siamese neural networks", New Journal of Physics 24 11, 113021 (2022).
[17] I. I. Ryabtsev, K. Yu. Mityanin, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, N. V. Al’yanova, and I. G. Neizvestnii, "Quantum Information Processing on the Basis of Single Ultracold Atoms in Optical Traps", Optoelectronics, Instrumentation and Data Processing 56 5, 510 (2020).
[18] Xiao-Feng Shi, "Quantum logic and entanglement by neutral Rydberg atoms: methods and fidelity", Quantum Science and Technology 7 2, 023002 (2022).
[19] Joseph Lindon, Arina Tashchilina, Logan W. Cooke, and Lindsay J. LeBlanc, "Complete Unitary Qutrit Control in Ultracold Atoms", Physical Review Applied 19 3, 034089 (2023).
[20] Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song, "Unselective ground-state blockade of Rydberg atoms for implementing quantum gates", Frontiers of Physics 17 2, 22501 (2022).
[21] Matthias M Müller, Ressa S Said, Fedor Jelezko, Tommaso Calarco, and Simone Montangero, "One decade of quantum optimal control in the chopped random basis", Reports on Progress in Physics 85 7, 076001 (2022).
[22] Andrew J. Daley, Immanuel Bloch, Christian Kokail, Stuart Flannigan, Natalie Pearson, Matthias Troyer, and Peter Zoller, "Practical quantum advantage in quantum simulation", Nature 607 7920, 667 (2022).
[23] G. Unnikrishnan, C. Beulenkamp, D. Zhang, K. P. Zamarski, M. Landini, and H.-C. Nägerl, "Long distance optical transport of ultracold atoms: A compact setup using a Moiré lens", Review of Scientific Instruments 92 6, 063205 (2021).
[24] M. A. Aksenov, I. V. Zalivako, I. A. Semerikov, A. S. Borisenko, N. V. Semenin, P. L. Sidorov, A. K. Fedorov, K. Yu. Khabarova, and N. N. Kolachevsky, "Realizing quantum gates with optically addressable Yb+171 ion qudits", Physical Review A 107 5, 052612 (2023).
[25] Yu I Bogdanov, I A Dmitriev, B I Bantysh, N A Bogdanova, and V F Lukichev, "High-precision tomography of ion qubits based on registration of fluorescent photons", Laser Physics Letters 20 6, 065202 (2023).
[26] Robert Wille and Lukas Burgholzer, Proceedings of the 2023 International Symposium on Physical Design 198 (2023) ISBN:9781450399784.
[27] Mohammadsadegh Khazali and Wolfgang Lechner, "Scalable quantum processors empowered by the Fermi scattering of Rydberg electrons", Communications Physics 6 1, 57 (2023).
[28] Meng Li, Jing‐Yang Li, Fu‐Qiang Guo, Xiao‐Yu Zhu, Erjun Liang, Shou Zhang, Lei‐Lei Yan, Mang Feng, and Shi‐Lei Su, " Multiple‐Qubit C k U m Logic Gates of Rydberg Atoms via Optimized Geometric Quantum Operations ", Annalen der Physik 534 4, 2100506 (2022).
[29] M. Morgado and S. Whitlock, "Quantum simulation and computing with Rydberg-interacting qubits", AVS Quantum Science 3 2, 023501 (2021).
[30] Mikkel F. Andersen, "Optical tweezers for a bottom-up assembly of few-atom systems", Advances in Physics: X 7 1, 2064231 (2022).
[31] Xiaoyan Huang, Weijun Yuan, Aaron Holman, Minho Kwon, Stuart J. Masson, Ricardo Gutierrez-Jauregui, Ana Asenjo-Garcia, Sebastian Will, and Nanfang Yu, "Metasurface holographic optical traps for ultracold atoms", Progress in Quantum Electronics 89, 100470 (2023).
[32] Michel Fabrice Serret, Bertrand Marchand, and Thomas Ayral, "Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks", Physical Review A 102 5, 052617 (2020).
[33] A. S. Boev, A. S. Rakitko, S. R. Usmanov, A. N. Kobzeva, I. V. Popov, V. V. Ilinsky, E. O. Kiktenko, and A. K. Fedorov, "Genome assembly using quantum and quantum-inspired annealing", Scientific Reports 11 1, 13183 (2021).
[34] Kilian Ender, Roeland ter Hoeven, Benjamin E. Niehoff, Maike Drieb-Schön, and Wolfgang Lechner, "Parity Quantum Optimization: Compiler", Quantum 7, 950 (2023).
[35] Chiara Vercellino, Paolo Viviani, Giacomo Vitali, Alberto Scionti, Andrea Scarabosio, Olivier Terzo, Edoardo Giusto, and Bartolomeo Montrucchio, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 186 (2022) ISBN:978-1-6654-9113-6.
[36] Jordi R. Weggemans, Alexander Urech, Alexander Rausch, Robert Spreeuw, Richard Boucherie, Florian Schreck, Kareljan Schoutens, Jiří Minář, and Florian Speelman, "Solving correlation clustering with QAOA and a Rydberg qudit system: a full-stack approach", Quantum 6, 687 (2022).
[37] L. Masi, T. Petrucciani, G. Ferioli, G. Semeghini, G. Modugno, M. Inguscio, and M. Fattori, "Spatial Bloch Oscillations of a Quantum Gas in a “Beat-Note” Superlattice", Physical Review Letters 127 2, 020601 (2021).
[38] Daniel Jaschke and Simone Montangero, "Is quantum computing green? An estimate for an energy-efficiency quantum advantage", Quantum Science and Technology 8 2, 025001 (2023).
[39] Hilal Ahmad Bhat, Farooq Ahmad Khanday, and Khurshed Ahmad Shah, Advances in Systems Analysis, Software Engineering, and High Performance Computing 149 (2023) ISBN:9781668466971.
[40] Zhuo Fu, Peng Xu, Yuan Sun, Yang-Yang Liu, Xiao-Dong He, Xiao Li, Min Liu, Run-Bing Li, Jin Wang, Liang Liu, and Ming-Sheng Zhan, "High-fidelity entanglement of neutral atoms via a Rydberg-mediated single-modulated-pulse controlled-phase gate", Physical Review A 105 4, 042430 (2022).
[41] Michael Fellner, Anette Messinger, Kilian Ender, and Wolfgang Lechner, "Applications of universal parity quantum computation", Physical Review A 106 4, 042442 (2022).
[42] Maike Drieb-Schön, Kilian Ender, Younes Javanmard, and Wolfgang Lechner, "Parity Quantum Optimization: Encoding Constraints", Quantum 7, 951 (2023).
[43] Pascal Scholl, Michael Schuler, Hannah J. Williams, Alexander A. Eberharter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul Henry, Thomas C. Lang, Thierry Lahaye, Andreas M. Läuchli, and Antoine Browaeys, "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms", Nature 595 7866, 233 (2021).
[44] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche, "Decoding techniques applied to the compilation of CNOT circuits for NISQ architectures", Science of Computer Programming 214, 102726 (2022).
[45] Ky-Luc Pham, Thomas F. Gallagher, Pierre Pillet, Steven Lepoutre, and Patrick Cheinet, "Coherent Light Shift on Alkaline-Earth Rydberg Atoms from Isolated Core Excitation without Autoionization", PRX Quantum 3 2, 020327 (2022).
[46] José A. S. Lourenço, Gerard Higgins, Chi Zhang, Markus Hennrich, and Tommaso Macrì, "Non-Hermitian dynamics and PT -symmetry breaking in interacting mesoscopic Rydberg platforms", Physical Review A 106 2, 023309 (2022).
[47] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet, "Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits", Physical Review A 104 3, 032416 (2021).
[48] Tony Jin, João S. Ferreira, Michele Filippone, and Thierry Giamarchi, "Exact description of quantum stochastic models as quantum resistors", Physical Review Research 4 1, 013109 (2022).
[49] K. McDonnell, L. F. Keary, and J. D. Pritchard, "Demonstration of a Quantum Gate Using Electromagnetically Induced Transparency", Physical Review Letters 129 20, 200501 (2022).
[50] Marco M. Nicotra, Jieqiu Shao, Joshua Combes, Anne Cross Theurkauf, Penina Axelrad, Liang-Ying Chih, Murray Holland, Alex A. Zozulya, Catie K. LeDesma, Kendall Mehling, and Dana Z. Anderson, "Modeling and Control of Ultracold Atoms Trapped in an Optical Lattice: An Example-driven Tutorial on Quantum Control", IEEE Control Systems 43 1, 28 (2023).
[51] Thorsten Haase, Gernot Alber, and Vladimir M. Stojanović, "Dynamical generation of chiral W and Greenberger-Horne-Zeilinger states in laser-controlled Rydberg-atom trimers", Physical Review Research 4 3, 033087 (2022).
[52] Hilal Ahmad Bhat, Farooq Ahmad Khanday, Brajesh Kumar Kaushik, Faisal Bashir, and Khurshed Ahmad Shah, "Quantum Computing: Fundamentals, Implementations and Applications", IEEE Open Journal of Nanotechnology 3, 61 (2022).
[53] Daniel González-Cuadra, Torsten V. Zache, Jose Carrasco, Barbara Kraus, and Peter Zoller, "Hardware Efficient Quantum Simulation of Non-Abelian Gauge Theories with Qudits on Rydberg Platforms", Physical Review Letters 129 16, 160501 (2022).
[54] Stefania Sciara, Piotr Roztocki, Bennet Fischer, Christian Reimer, Luis Romero Cortés, William J. Munro, David J. Moss, Alfonso C. Cino, Lucia Caspani, Michael Kues, José Azaña, and Roberto Morandotti, "Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies", Nanophotonics 10 18, 4447 (2021).
[55] Alexey E. Rastegin and Anzhelika M. Shemet, "Quantum search degeneration under amplitude noise in queries to the oracle", Quantum Information Processing 21 5, 158 (2022).
[56] Seokho Jeong, Xiao-Feng Shi, Minhyuk Kim, and Jaewook Ahn, "Rydberg Wire Gates for Universal Quantum Computation", Frontiers in Physics 10, 875673 (2022).
[57] Joel Rajakumar, Jai Moondra, Bryan Gard, Swati Gupta, and Creston D. Herold, "Generating target graph couplings for the quantum approximate optimization algorithm from native quantum hardware couplings", Physical Review A 106 2, 022606 (2022).
[58] Maximilian Nägele, Christian Schweizer, Federico Roy, and Stefan Filipp, "Effective nonlocal parity-dependent couplings in qubit chains", Physical Review Research 4 3, 033166 (2022).
[59] Oleksandr Kyriienko and Vincent E. Elfving, "Generalized quantum circuit differentiation rules", Physical Review A 104 5, 052417 (2021).
[60] Nicolas Jolly and Giuseppe Di Molfetta, "Twisted quantum walks, generalised Dirac equation and Fermion doubling", The European Physical Journal D 77 5, 80 (2023).
[61] Tomohiro Hashizume, Gregory S. Bentsen, Sebastian Weber, and Andrew J. Daley, "Deterministic Fast Scrambling with Neutral Atom Arrays", Physical Review Letters 126 20, 200603 (2021).
[62] Luis Fernando dos Prazeres, Leonardo da Silva Souza, and Fernando Iemini, "Boundary time crystals in collectived-level systems", Physical Review B 103 18, 184308 (2021).
[63] Wei Hu, Yang Yang, Weiye Xia, Jiawei Pi, Enyi Huang, Xin-Ding Zhang, and Hua Xu, "Performance of superconducting quantum computing chips under different architecture designs", Quantum Information Processing 21 7, 237 (2022).
[64] Hailong Fu, Pengjie Wang, Zhenhai Hu, Yifan Li, and Xi Lin, "Low-temperature environments for quantum computation and quantum simulation* ", Chinese Physics B 30 2, 020702 (2021).
[65] Jin‐Lei Wu, Yan Wang, Jin‐Xuan Han, Shi‐Lei Su, Yan Xia, Jie Song, and Yongyuan Jiang, "Fast and Robust Multiqubit Gates on Rydberg Atoms by Periodic Pulse Engineering", Advanced Quantum Technologies 5 10, 2200042 (2022).
[66] Julian K. Nauth and Vladimir M. Stojanović, "Quantum-brachistochrone approach to the conversion from W to Greenberger-Horne-Zeilinger states for Rydberg-atom qubits", Physical Review A 106 3, 032605 (2022).
[67] Sudipto Singha Roy, Leon Carl, and Philipp Hauke, "Genuine multipartite entanglement in a one-dimensional Bose-Hubbard model with frustrated hopping", Physical Review B 106 19, 195158 (2022).
[68] Ray LaPierre, The Materials Research Society Series 275 (2021) ISBN:978-3-030-69317-6.
[69] Michael Fellner, Kilian Ender, Roeland ter Hoeven, and Wolfgang Lechner, "Parity Quantum Optimization: Benchmarks", Quantum 7, 952 (2023).
[70] Chang Jae Lee, "Limits of the adiabaticity assumption and conditions for improving laser focusing of atomic matter wave", Bulletin of the Korean Chemical Society 43 3, 460 (2022).
[71] I. I. Beterov, "Quantum Computers Based on Cold Atoms$${}^{\mathbf{\#}}$$ ", Optoelectronics, Instrumentation and Data Processing 56 4, 317 (2020).
[72] Stefano Markidis, "Programming Quantum Neural Networks on NISQ Systems: An Overview of Technologies and Methodologies", Entropy 25 4, 694 (2023).
[73] Anthony N. Ciavarella, Stephan Caspar, Hersh Singh, and Martin J. Savage, "Preparation for quantum simulation of the (1+1) -dimensional O(3) nonlinear σ model using cold atoms", Physical Review A 107 4, 042404 (2023).
[74] Giovanni Cataldi, Ashkan Abedi, Giuseppe Magnifico, Simone Notarnicola, Nicola Dalla Pozza, Vittorio Giovannetti, and Simone Montangero, "Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency", Quantum 5, 556 (2021).
[75] Wesley da Silva Coelho, Loïc Henriet, and Louis-Paul Henry, "Quantum pricing-based column-generation framework for hard combinatorial problems", Physical Review A 107 3, 032426 (2023).
[76] Lindsay Bassman, Miroslav Urbanek, Mekena Metcalf, Jonathan Carter, Alexander F Kemper, and Wibe A de Jong, "Simulating quantum materials with digital quantum computers", Quantum Science and Technology 6 4, 043002 (2021).
[77] Sven Jandura, Jeff D. Thompson, and Guido Pupillo, "Optimizing Rydberg Gates for Logical-Qubit Performance", PRX Quantum 4 2, 020336 (2023).
[78] Joseph C. Bardin, Daniel H. Slichter, and David J. Reilly, "Microwaves in Quantum Computing", IEEE Journal of Microwaves 1 1, 403 (2021).
[79] Lucas Leclerc and Loic Henriet, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 839 (2022) ISBN:978-1-6654-9113-6.
[80] Jonathan M. Baker, Andrew Litteken, Casey Duckering, Henry Hoffmann, Hannes Bernien, and Frederic T. Chong, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) 818 (2021) ISBN:978-1-6654-3333-4.
[81] Valentin Kasper, Daniel González-Cuadra, Apoorva Hegde, Andy Xia, Alexandre Dauphin, Felix Huber, Eberhard Tiemann, Maciej Lewenstein, Fred Jendrzejewski, and Philipp Hauke, "Universal quantum computation and quantum error correction with ultracold atomic mixtures", Quantum Science and Technology 7 1, 015008 (2022).
[82] John M. Doyle, Benjamin L. Augenbraun, and Zack D. Lasner, Proceedings of the 24th International Spin Symposium (SPIN2021) (2022) ISBN:4-89027-150-3.
[83] Craig R. Clark, Holly N. Tinkey, Brian C. Sawyer, Adam M. Meier, Karl A. Burkhardt, Christopher M. Seck, Christopher M. Shappert, Nicholas D. Guise, Curtis E. Volin, Spencer D. Fallek, Harley T. Hayden, Wade G. Rellergert, and Kenton R. Brown, "High-Fidelity Bell-State Preparation with Ca+40 Optical Qubits", Physical Review Letters 127 13, 130505 (2021).
[84] Vladimir Skavysh, Sofia Priazhkina, Diego Guala, and Thomas R. Bromley, "Quantum Monte Carlo for Economics: Stress Testing and Macroeconomic Deep Learning", Journal of Economic Dynamics and Control 104680 (2023).
[85] Matteo Magoni, Federico Carollo, Gabriele Perfetto, and Igor Lesanovsky, "Emergent quantum correlations and collective behavior in noninteracting quantum systems subject to stochastic resetting", Physical Review A 106 5, 052210 (2022).
[86] A. K. Fedorov and M. S. Gelfand, "Towards practical applications in quantum computational biology", Nature Computational Science 1 2, 114 (2021).
[87] Chris Palmer, "Quantum Computing Quickly Scores Second Claim of Supremacy", Engineering 7 9, 1199 (2021).
[88] Donghao Li, Guoqi Bian, Jie Miao, Pengjun Wang, Zengming Meng, Liangchao Chen, Lianghui Huang, and Jing Zhang, "Rydberg excitation spectrum ofK40ultracold Fermi gases", Physical Review A 103 6, 063305 (2021).
[89] Marco Maronese, Lorenzo Moro, Lorenzo Rocutto, and Enrico Prati, Quantum Computing Environments 39 (2022) ISBN:978-3-030-89745-1.
[90] Xianquan Yu, Jinchao Mo, Tiangao Lu, Ting You Tan, and Travis L. Nicholson, "Magneto-optical trapping of a group-III atom", Physical Review A 105 6, L061101 (2022).
[91] Hilal A. Bhat, Gul Faroz A. Malik, and Farooq A. Khanday, "Design and Modelling of Silicon Quantum Dot Based Single Qubit Spin Quantum Gates", International Journal of Theoretical Physics 61 11, 258 (2022).
[92] Marcin Dukalski, Diego Rovetta, Stan van der Linde, Matthias Möller, Niels Neumann, and Frank Phillipson, "Quantum computer-assisted global optimization in geophysics illustrated with stack-power maximization for refraction residual statics estimation", GEOPHYSICS 88 2, V75 (2023).
[93] P. Scholl, H. J. Williams, G. Bornet, F. Wallner, D. Barredo, L. Henriet, A. Signoles, C. Hainaut, T. Franz, S. Geier, A. Tebben, A. Salzinger, G. Zürn, T. Lahaye, M. Weidemüller, and A. Browaeys, "Microwave Engineering of Programmable XXZ Hamiltonians in Arrays of Rydberg Atoms", PRX Quantum 3 2, 020303 (2022).
[94] Till Klostermann, Cesar R. Cabrera, Hendrik von Raven, Julian F. Wienand, Christian Schweizer, Immanuel Bloch, and Monika Aidelsburger, "Fast long-distance transport of cold cesium atoms", Physical Review A 105 4, 043319 (2022).
[95] Zhi-Jin Tao, Li-Geng Yu, Peng Xu, Jia-Yi Hou, Xiao-Dong He, and Ming-Sheng Zhan, "Efficient Two-Dimensional Defect-Free Dual-Species Atom Arrays Rearrangement Algorithm with Near-Fewest Atom Moves", Chinese Physics Letters 39 8, 083701 (2022).
[96] Bin Cheng, Xiu-Hao Deng, Xiu Gu, Yu He, Guangchong Hu, Peihao Huang, Jun Li, Ben-Chuan Lin, Dawei Lu, Yao Lu, Chudan Qiu, Hui Wang, Tao Xin, Shi Yu, Man-Hong Yung, Junkai Zeng, Song Zhang, Youpeng Zhong, Xinhua Peng, Franco Nori, and Dapeng Yu, "Noisy intermediate-scale quantum computers", Frontiers of Physics 18 2, 21308 (2023).
[97] Antoine Michel, Sebastian Grijalva, Loïc Henriet, Christophe Domain, and Antoine Browaeys, "Blueprint for a digital-analog variational quantum eigensolver using Rydberg atom arrays", Physical Review A 107 4, 042602 (2023).
[98] Johannes Weidenfeller, Lucia C. Valor, Julien Gacon, Caroline Tornow, Luciano Bello, Stefan Woerner, and Daniel J. Egger, "Scaling of the quantum approximate optimization algorithm on superconducting qubit based hardware", Quantum 6, 870 (2022).
[99] Malte Schlosser, Sascha Tichelmann, Dominik Schäffner, Daniel Ohl de Mello, Moritz Hambach, Jan Schütz, and Gerhard Birkl, "Scalable Multilayer Architecture of Assembled Single-Atom Qubit Arrays in a Three-Dimensional Talbot Tweezer Lattice", Physical Review Letters 130 18, 180601 (2023).
[100] Anstasiia S. Nikolaeva, Evgeniy O. Kiktenko, and Aleksey K. Fedorov, "Generalized Toffoli Gate Decomposition Using Ququints: Towards Realizing Grover’s Algorithm with Qudits", Entropy 25 2, 387 (2023).
[101] Kai-Niklas Schymik, Sara Pancaldi, Florence Nogrette, Daniel Barredo, Julien Paris, Antoine Browaeys, and Thierry Lahaye, "Single Atoms with 6000-Second Trapping Lifetimes in Optical-Tweezer Arrays at Cryogenic Temperatures", Physical Review Applied 16 3, 034013 (2021).
[102] G Pelegrí, A J Daley, and J D Pritchard, "High-fidelity multiqubit Rydberg gates via two-photon adiabatic rapid passage", Quantum Science and Technology 7 4, 045020 (2022).
[103] Constantin Dalyac, Loïc Henriet, Emmanuel Jeandel, Wolfgang Lechner, Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova, "Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles", EPJ Quantum Technology 8 1, 12 (2021).
[104] Nicola Franco, Tom Wollschlager, Nicholas Gao, Jeanette Miriam Lorenz, and Stephan Gunnemann, 2022 IEEE International Conference on Quantum Computing and Engineering (QCE) 142 (2022) ISBN:978-1-6654-9113-6.
[105] Kai-Niklas Schymik, Bruno Ximenez, Etienne Bloch, Davide Dreon, Adrien Signoles, Florence Nogrette, Daniel Barredo, Antoine Browaeys, and Thierry Lahaye, "In situ equalization of single-atom loading in large-scale optical tweezer arrays", Physical Review A 106 2, 022611 (2022).
[106] Giulia Piccitto, Matteo Wauters, Franco Nori, and Nathan Shammah, "Symmetries and conserved quantities of boundary time crystals in generalized spin models", Physical Review B 104 1, 014307 (2021).
[107] D.B. Tretyakov, V.M. Entin, E.A. Yakshina, I.I. Beterov, and I.I. Ryabtsev, "Dynamics of three-photon laser excitation of mesoscopic ensembles of cold rubidium atoms to Rydberg states", Quantum Electronics 52 6, 513 (2022).
[108] Lorenzo Cardarelli, Sergi Julià-Farré, Maciej Lewenstein, Alexandre Dauphin, and Markus Müller, "Accessing the topological Mott insulator in cold atom quantum simulators with realistic Rydberg dressing", Quantum Science and Technology 8 2, 025018 (2023).
[109] S. Bondza, C. Lisdat, S. Kroker, and T. Leopold, "Two-Color Grating Magneto-Optical Trap for Narrow-Line Laser Cooling", Physical Review Applied 17 4, 044002 (2022).
[110] Joshua Ramette, Josiah Sinclair, Zachary Vendeiro, Alyssa Rudelis, Marko Cetina, and Vladan Vuletić, "Any-To-Any Connected Cavity-Mediated Architecture for Quantum Computing with Trapped Ions or Rydberg Arrays", PRX Quantum 3 1, 010344 (2022).
[111] Thomas Ayral, Pauline Besserve, Denis Lacroix, and Edgar Andres Ruiz Guzman, "Quantum computing with and for many-body physics", arXiv:2303.04850, (2023).
[112] Constantin Dalyac and Loic Henriet, "Embedding the MIS problem for non-local graphs with bounded degree using 3D arrays of atoms", arXiv:2209.05164, (2022).
[113] Alexis Toumi, "Category Theory for Quantum Natural Language Processing", arXiv:2212.06615, (2022).
[114] Karen Wintersperger, Florian Dommert, Thomas Ehmer, Andrey Hoursanov, Johannes Klepsch, Wolfgang Mauerer, Georg Reuber, Thomas Strohm, Ming Yin, and Sebastian Luber, "Neutral Atom Quantum Computing Hardware: Performance and End-User Perspective", arXiv:2304.14360, (2023).
[115] Nicola Franco, Tom Wollschlaeger, Nicholas Gao, Jeanette Miriam Lorenz, and Stephan Guennemann, "Quantum Robustness Verification: A Hybrid Quantum-Classical Neural Network Certification Algorithm", arXiv:2205.00900, (2022).
[116] Evan E. Dobbs, Joseph S. Friedman, and Alexandru Paler, "Efficient Quantum Circuit Design with a Standard Cell Approach", arXiv:2206.04990, (2022).
The above citations are from Crossref's cited-by service (last updated successfully 2023-06-08 14:11:34) and SAO/NASA ADS (last updated successfully 2023-06-08 14:11:35). The list may be incomplete as not all publishers provide suitable and complete citation data.
This Paper is published in Quantum under the Creative Commons Attribution 4.0 International (CC BY 4.0) license. Copyright remains with the original copyright holders such as the authors or their institutions.
Pingback: FAQ: Quantencomputer – Vom Bit zum Qubit - Physicus Minimus
Pingback: FAQ: Quantum computer - From bit to qubit - Physicus Minimus
Pingback: How and when quantum computers will improve machine… – Machine Learning