Quantum computing with neutral atoms

Loïc Henriet1, Lucas Beguin1, Adrien Signoles1, Thierry Lahaye1,2, Antoine Browaeys1,2, Georges-Olivier Reymond1, and Christophe Jurczak1,3

1Pasqal, 2 avenue Augustin Fresnel, 91120 Palaiseau, France
2Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau Cedex, France
3Quantonation, 58 rue d'Hauteville, 75010 Paris, France

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


The manipulation of neutral atoms by light is at the heart of countless scientific discoveries in the field of quantum physics in the last three decades. The level of control that has been achieved at the single particle level within arrays of optical traps, while preserving the fundamental properties of quantum matter (coherence, entanglement, superposition), makes these technologies prime candidates to implement disruptive computation paradigms. In this paper, we review the main characteristics of these devices from atoms / qubits to application interfaces, and propose a classification of a wide variety of tasks that can already be addressed in a computationally efficient manner in the Noisy Intermediate Scale Quantum[1] era we are in. We illustrate how applications ranging from optimization challenges to simulation of quantum systems can be explored either at the digital level (programming gate-based circuits) or at the analog level (programming Hamiltonian sequences). We give evidence of the intrinsic scalability of neutral atom quantum processors in the 100-1,000 qubits range and introduce prospects for universal fault tolerant quantum computing and applications beyond quantum computing.

► BibTeX data

► References

[1] John Preskill. Quantum Computing in the NISQ era and beyond. Quantum, 2: 79, August 2018. ISSN 2521-327X. 10.22331/​q-2018-08-06-79. URL https:/​/​doi.org/​10.22331/​q-2018-08-06-79.

[2] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C Bardin, Rami Barends, Rupak Biswas, Sergio Boixo, Fernando G S L Brandao, David A Buell, Brian Burkett, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Andrew Dunsworth, Edward Farhi, Brooks Foxen, Austin Fowler, Craig Gidney, Marissa Giustina, Rob Graff, Keith Guerin, Steve Habegger, Matthew P Harrigan, Michael J Hartmann, Alan Ho, Markus Hoffmann, Trent Huang, Travis S Humble, Sergei V Isakov, Evan Jeffrey, Zhang Jiang, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Paul V Klimov, Sergey Knysh, Alexander Korotkov, Fedor Kostritsa, David Landhuis, Mike Lindmark, Erik Lucero, Dmitry Lyakh, Salvatore Mandrà, Jarrod R McClean, Matthew McEwen, Anthony Megrant, Xiao Mi, Kristel Michielsen, Masoud Mohseni, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Murphy Yuezhen Niu, Eric Ostby, Andre Petukhov, John C Platt, Chris Quintana, Eleanor G Rieffel, Pedram Roushan, Nicholas C Rubin, Daniel Sank, Kevin J Satzinger, Vadim Smelyanskiy, Kevin J Sung, Matthew D Trevithick, Amit Vainsencher, Benjamin Villalonga, Theodore White, Z Jamie Yao, Ping Yeh, Adam Zalcman, Hartmut Neven, and John M Martinis. Quantum supremacy using a programmable superconducting processor. Nature, 574: 505–510, 2019. ISSN 1476-4687. 10.1038/​s41586-019-1666-5. URL https:/​/​doi.org/​10.1038/​s41586-019-1666-5.

[3] T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O'Brien. Quantum computers. Nature, 464 (7285): 45–53, March 2010. 10.1038/​nature08812.

[4] M. Saffman, T. G. Walker, and K. Mølmer. Quantum information with Rydberg atoms. Reviews of Modern Physics, 82 (3): 2313–2363, July 2010. 10.1103/​RevModPhys.82.2313.

[5] M. Saffman. Quantum computing with atomic qubits and Rydberg interactions: progress and challenges. Journal of Physics B Atomic Molecular Physics, 49 (20): 202001, October 2016. 10.1088/​0953-4075/​49/​20/​202001.

[6] Antoine Browaeys and Thierry Lahaye. Many-body physics with individually controlled rydberg atoms. Nature Physics, 16 (2): 132–142, Feb 2020. ISSN 1745-2481. 10.1038/​s41567-019-0733-z. URL https:/​/​doi.org/​10.1038/​s41567-019-0733-z.

[7] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A Quantum Approximate Optimization Algorithm. arXiv e-prints, art. arXiv:1411.4028, November 2014.

[8] Maria Schuld and Francesco Petruccione. Supervised Learning with Quantum Computers. Springer Publishing Company, Incorporated, 1st edition, 2018. ISBN 3319964232. 10.1007/​978-3-319-96424-9.

[9] H. J. Metcalf and P. van der Straten. Laser cooling and trapping of atoms. J. Opt. Soc. Am. B, 20 (5): 887–908, May 2003. 10.1364/​JOSAB.20.000887. URL http:/​/​josab.osa.org/​abstract.cfm?URI=josab-20-5-887.

[10] Nicolas Schlosser, Georges Reymond, Igor Protsenko, and Philippe Grangier. Sub-poissonian loading of single atoms in a microscopic dipole trap. Nature, 411 (6841): 1024–1027, Jun 2001. ISSN 1476-4687. 10.1038/​35082512. URL https:/​/​doi.org/​10.1038/​35082512.

[11] F. Nogrette, H. Labuhn, S. Ravets, D. Barredo, L. Béguin, A. Vernier, T. Lahaye, and A. Browaeys. Single-atom trapping in holographic 2d arrays of microtraps with arbitrary geometries. Phys. Rev. X, 4: 021034, May 2014. 10.1103/​PhysRevX.4.021034. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.4.021034.

[12] Daniel Barredo, Vincent Lienhard, Sylvain de Léséleuc, Thierry Lahaye, and Antoine Browaeys. Synthetic three-dimensional atomic structures assembled atom by atom. Nature, 561 (7721): 79–82, Sep 2018. ISSN 1476-4687. 10.1038/​s41586-018-0450-2. URL https:/​/​doi.org/​10.1038/​s41586-018-0450-2.

[13] A. Fuhrmanek, R. Bourgain, Y. R.P. Sortais, and A. Browaeys. Free-space lossless state detection of a single trapped atom. Phys. Rev. Lett., 106 (13): 133003, mar 2011. ISSN 00319007. 10.1103/​PhysRevLett.106.133003. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.106.133003.

[14] Evan Jeffrey, Daniel Sank, J. Y. Mutus, T. C. White, J. Kelly, R. Barends, Y. Chen, Z. Chen, B. Chiaro, A. Dunsworth, A. Megrant, P. J. J. O'Malley, C. Neill, P. Roushan, A. Vainsencher, J. Wenner, A. N. Cleland, and John M. Martinis. Fast accurate state measurement with superconducting qubits. Phys. Rev. Lett., 112: 190504, May 2014. 10.1103/​PhysRevLett.112.190504. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.112.190504.

[15] Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and Quantum Information: 10th Anniversary Edition. Cambridge University Press, USA, 10th edition, 2011. ISBN 1107002176. 10.1017/​CBO9780511976667.

[16] D. D. Yavuz, P. B. Kulatunga, E. Urban, T. A. Johnson, N. Proite, T. Henage, T. G. Walker, and M. Saffman. Fast ground state manipulation of neutral atoms in microscopic optical traps. Phys. Rev. Lett., 96: 063001, Feb 2006. 10.1103/​PhysRevLett.96.063001. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.96.063001.

[17] Harry Levine, Alexander Keesling, Giulia Semeghini, Ahmed Omran, Tout T. Wang, Sepehr Ebadi, Hannes Bernien, Markus Greiner, Vladan Vuletić, Hannes Pichler, and Mikhail D. Lukin. Parallel implementation of high-fidelity multiqubit gates with neutral atoms. Phys. Rev. Lett., 123: 170503, Oct 2019. 10.1103/​PhysRevLett.123.170503. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.123.170503.

[18] Ivaylo S. Madjarov, Jacob P. Covey, Adam L. Shaw, Joonhee Choi, Anant Kale, Alexandre Cooper, Hannes Pichler, Vladimir Schkolnik, Jason R. Williams, and Manuel Endres. High-fidelity entanglement and detection of alkaline-earth rydberg atoms. Nature Physics, 16 (8): 857–861, Aug 2020. ISSN 1745-2481. 10.1038/​s41567-020-0903-z. URL https:/​/​doi.org/​10.1038/​s41567-020-0903-z.

[19] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage, T. A. Johnson, T. G. Walker, and M. Saffman. Demonstration of a neutral atom controlled-not quantum gate. Phys. Rev. Lett., 104: 010503, Jan 2010. 10.1103/​PhysRevLett.104.010503. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.104.010503.

[20] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and M. D. Lukin. Fast quantum gates for neutral atoms. Phys. Rev. Lett., 85: 2208–2211, Sep 2000. 10.1103/​PhysRevLett.85.2208. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.85.2208.

[21] Harry Levine, Alexander Keesling, Ahmed Omran, Hannes Bernien, Sylvain Schwartz, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. High-fidelity control and entanglement of rydberg-atom qubits. Phys. Rev. Lett., 121: 123603, Sep 2018. 10.1103/​PhysRevLett.121.123603. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.121.123603.

[22] N. Rach, M. M. Müller, T. Calarco, and S. Montangero. Dressing the chopped-random-basis optimization: A bandwidth-limited access to the trap-free landscape. Phys. Rev. A, 92: 062343, Dec 2015. 10.1103/​PhysRevA.92.062343. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.92.062343.

[23] Mohammadsadegh Khazali and Klaus Mølmer. Fast multiqubit gates by adiabatic evolution in interacting excited-state manifolds of rydberg atoms and superconducting circuits. Phys. Rev. X, 10: 021054, Jun 2020. 10.1103/​PhysRevX.10.021054. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.10.021054.

[24] Michael Lubasch, Jaewoo Joo, Pierre Moinier, Martin Kiffner, and Dieter Jaksch. Variational quantum algorithms for nonlinear problems. Phys. Rev. A, 101 (1): 010301, January 2020. 10.1103/​PhysRevA.101.010301.

[25] P. Schauß, J. Zeiher, T. Fukuhara, S. Hild, M. Cheneau, T. Macrì, T. Pohl, I. Bloch, and C. Gross. Crystallization in ising quantum magnets. Science, 347 (6229): 1455–1458, 2015. ISSN 0036-8075. 10.1126/​science.1258351. URL https:/​/​science.sciencemag.org/​content/​347/​6229/​1455.

[26] Henning Labuhn, Daniel Barredo, Sylvain Ravets, Sylvain de Léséleuc, Tommaso Macrì, Thierry Lahaye, and Antoine Browaeys. Tunable two-dimensional arrays of single rydberg atoms for realizing quantum ising models. Nature, 534 (7609): 667–670, Jun 2016. ISSN 1476-4687. 10.1038/​nature18274. URL https:/​/​doi.org/​10.1038/​nature18274.

[27] Hannes Bernien, Sylvain Schwartz, Alexander Keesling, Harry Levine, Ahmed Omran, Hannes Pichler, Soonwon Choi, Alexander S. Zibrov, Manuel Endres, Markus Greiner, Vladan Vuletić, and Mikhail D. Lukin. Probing many-body dynamics on a 51-atom quantum simulator. Nature, 551 (7682): 579–584, November 2017. 10.1038/​nature24622.

[28] Sylvain de Léséleuc, Sebastian Weber, Vincent Lienhard, Daniel Barredo, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Accurate mapping of multilevel rydberg atoms on interacting spin-$1/​2$ particles for the quantum simulation of ising models. Phys. Rev. Lett., 120: 113602, Mar 2018a. 10.1103/​PhysRevLett.120.113602. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.113602.

[29] Andrew Lucas. Ising formulations of many np problems. Frontiers in Physics, 2: 5, 2014. ISSN 2296-424X. 10.3389/​fphy.2014.00005. URL https:/​/​www.frontiersin.org/​article/​10.3389/​fphy.2014.00005.

[30] Sylvain Ravets, Henning Labuhn, Daniel Barredo, Thierry Lahaye, and Antoine Browaeys. Measurement of the angular dependence of the dipole-dipole interaction between two individual Rydberg atoms at a Förster resonance. Phys. Rev. A, 92 (2): 020701, aug 2015. ISSN 10941622. 10.1103/​PhysRevA.92.020701. URL http:/​/​fr.arxiv.org/​pdf/​1504.00301 http:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.92.020701.

[31] A. Reinhard, T. Cubel Liebisch, B. Knuffman, and G. Raithel. Level shifts of rubidium rydberg states due to binary interactions. Phys. Rev. A, 75: 032712, Mar 2007. 10.1103/​PhysRevA.75.032712. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.75.032712.

[32] L. Béguin, A. Vernier, R. Chicireanu, T. Lahaye, and A. Browaeys. Direct measurement of the van der waals interaction between two rydberg atoms. Phys. Rev. Lett., 110: 263201, Jun 2013. 10.1103/​PhysRevLett.110.263201. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.110.263201.

[33] Daniel Barredo, Henning Labuhn, Sylvain Ravets, Thierry Lahaye, Antoine Browaeys, and Charles S. Adams. Coherent excitation transfer in a spin chain of three rydberg atoms. Phys. Rev. Lett., 114: 113002, Mar 2015. 10.1103/​PhysRevLett.114.113002. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.114.113002.

[34] A. Piñeiro Orioli, A. Signoles, H. Wildhagen, G. Günter, J. Berges, S. Whitlock, and M. Weidemüller. Relaxation of an isolated dipolar-interacting rydberg quantum spin system. Phys. Rev. Lett., 120: 063601, Feb 2018. 10.1103/​PhysRevLett.120.063601. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.063601.

[35] Leon Balents. Spin liquids in frustrated magnets. Nature, 464 (7286): 199–208, Mar 2010. ISSN 1476-4687. 10.1038/​nature08917. URL https:/​/​doi.org/​10.1038/​nature08917.

[36] G. Günter, H. Schempp, M. Robert-de Saint-Vincent, V. Gavryusev, S. Helmrich, C. S. Hofmann, S. Whitlock, and M. Weidemüller. Observing the dynamics of dipole-mediated energy transport by interaction-enhanced imaging. Science, 342 (6161): 954–956, 2013. ISSN 0036-8075. 10.1126/​science.1244843. URL https:/​/​science.sciencemag.org/​content/​342/​6161/​954.

[37] Robert M. Clegg. The History of Fret, pages 1–45. Springer US, Boston, MA, 2006. ISBN 978-0-387-33016-7. 10.1007/​0-387-33016-X_1. URL https:/​/​doi.org/​10.1007/​0-387-33016-X_1.

[38] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms. Science, 365 (6455): 775–780, 2019a. ISSN 0036-8075. 10.1126/​science.aav9105. URL https:/​/​science.sciencemag.org/​content/​365/​6455/​775.

[39] S. Bettelli, D. Maxwell, T. Fernholz, C. S. Adams, I. Lesanovsky, and C. Ates. Exciton dynamics in emergent rydberg lattices. Phys. Rev. A, 88: 043436, Oct 2013. 10.1103/​PhysRevA.88.043436. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.88.043436.

[40] A Signoles, T Franz, R Ferracini Alves, M Gärttner, S Whitlock, G Zürn, and M Weidemüller. Observation of glassy dynamics in a disordered quantum spin system. arXiv preprint arXiv:1909.11959, 2019.

[41] Shannon Whitlock, Alexander W Glaetzle, and Peter Hannaford. Simulating quantum spin models using rydberg-excited atomic ensembles in magnetic microtrap arrays. Journal of Physics B: Atomic, Molecular and Optical Physics, 50 (7): 074001, mar 2017. 10.1088/​1361-6455/​aa6149. URL https:/​/​doi.org/​10.10882F1361-64552Faa6149.

[42] N. Y. Yao, C. R. Laumann, S. Gopalakrishnan, M. Knap, M. Müller, E. A. Demler, and M. D. Lukin. Many-body localization in dipolar systems. Phys. Rev. Lett., 113: 243002, Dec 2014. 10.1103/​PhysRevLett.113.243002. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.113.243002.

[43] Rahul Nandkishore and David A. Huse. Many-body localization and thermalization in quantum statistical mechanics. Annual Review of Condensed Matter Physics, 6 (1): 15–38, 2015. 10.1146/​annurev-conmatphys-031214-014726. URL https:/​/​doi.org/​10.1146/​annurev-conmatphys-031214-014726.

[44] C. J. Turner, A. A. Michailidis, D. A. Abanin, M. Serbyn, and Z. Papić. Weak ergodicity breaking from quantum many-body scars. Nature Physics, 14 (7): 745–749, Jul 2018. ISSN 1745-2481. 10.1038/​s41567-018-0137-5. URL https:/​/​doi.org/​10.1038/​s41567-018-0137-5.

[45] Christian Gogolin and Jens Eisert. Equilibration, thermalisation, and the emergence of statistical mechanics in closed quantum systems. Reports on Progress in Physics, 79 (5): 056001, May 2016. 10.1088/​0034-4885/​79/​5/​056001.

[46] D. Barredo, V. Lienhard, P. Scholl, S. de Léséleuc, T. Boulier, A. Browaeys, and T. Lahaye. Three-dimensional trapping of individual rydberg atoms in ponderomotive bottle beam traps. Phys. Rev. Lett., 124: 023201, Jan 2020. 10.1103/​PhysRevLett.124.023201. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.124.023201.

[47] Sylvain de Léséleuc, Sebastian Weber, Vincent Lienhard, Daniel Barredo, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Accurate mapping of multilevel rydberg atoms on interacting spin-$1/​2$ particles for the quantum simulation of ising models. Phys. Rev. Lett., 120: 113602, Mar 2018b. 10.1103/​PhysRevLett.120.113602. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.120.113602.

[48] S. B. Bravyi and A. Yu. Kitaev. Quantum codes on a lattice with boundary. arXiv e-prints, art. quant-ph/​9811052, November 1998.

[49] Eric Dennis, Alexei Kitaev, Andrew Landahl, and John Preskill. Topological quantum memory. Journal of Mathematical Physics, 43 (9): 4452–4505, September 2002. 10.1063/​1.1499754.

[50] Austin G. Fowler, Matteo Mariantoni, John M. Martinis, and Andrew N. Cleland. Surface codes: Towards practical large-scale quantum computation. Phys. Rev. A, 86 (3): 032324, September 2012. 10.1103/​PhysRevA.86.032324.

[51] Takashi Oka and Sota Kitamura. Floquet engineering of quantum materials. Annual Review of Condensed Matter Physics, 10 (1): 387–408, Mar 2019. ISSN 1947-5462. 10.1146/​annurev-conmatphys-031218-013423. URL http:/​/​dx.doi.org/​10.1146/​annurev-conmatphys-031218-013423.

[52] C. Kokail, C. Maier, R. van Bijnen, T. Brydges, M. K. Joshi, P. Jurcevic, C. A. Muschik, P. Silvi, R. Blatt, C. F. Roos, and P. Zoller. Self-verifying variational quantum simulation of lattice models. Nature, 569 (7756): 355–360, May 2019. ISSN 1476-4687. 10.1038/​s41586-019-1177-4. URL https:/​/​doi.org/​10.1038/​s41586-019-1177-4.

[53] Seth Lloyd. Universal quantum simulators. Science, 273 (5278): 1073–1078, 1996. ISSN 0036-8075. 10.1126/​science.273.5278.1073. URL https:/​/​science.sciencemag.org/​content/​273/​5278/​1073.

[54] Loïc Henriet. Robustness to spontaneous emission of a variational quantum algorithm. Phys. Rev. A, 101 (1): 012335, January 2020. 10.1103/​PhysRevA.101.012335.

[55] Bela Bauer, Sergey Bravyi, Mario Motta, and Garnet Kin-Lic Chan. Quantum algorithms for quantum chemistry and quantum materials science. arXiv e-prints, art. arXiv:2001.03685, January 2020.

[56] J. Eisert, M. Friesdorf, and C. Gogolin. Quantum many-body systems out of equilibrium. Nature Physics, 11 (2): 124–130, February 2015. 10.1038/​nphys3215.

[57] Vincent Lienhard, Sylvain de Léséleuc, Daniel Barredo, Thierry Lahaye, Antoine Browaeys, Michael Schuler, Louis-Paul Henry, and Andreas M. Läuchli. Observing the space- and time-dependent growth of correlations in dynamically tuned synthetic ising models with antiferromagnetic interactions. Phys. Rev. X, 8: 021070, Jun 2018. 10.1103/​PhysRevX.8.021070. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.8.021070.

[58] Sylvain de Léséleuc, Vincent Lienhard, Pascal Scholl, Daniel Barredo, Sebastian Weber, Nicolai Lang, Hans Peter Büchler, Thierry Lahaye, and Antoine Browaeys. Observation of a symmetry-protected topological phase of interacting bosons with rydberg atoms. Science, 365 (6455): 775–780, 2019b. ISSN 0036-8075. 10.1126/​science.aav9105. URL https:/​/​science.sciencemag.org/​content/​365/​6455/​775.

[59] E. Jordan, P.; Wigner. Uber das Paulische Aquivalenzverbot. Z. Physik, 47: 631 – 651, 1928.

[60] M.A. Nielsen. The fermionic canonical commutation relations and the Jordan-Wigner transform. School of Physical Sciences The University of Queensland.

[61] Sergey B. Bravyi and Alexei Yu. Kitaev. Fermionic Quantum Computation. Annals of Physics, 298 (1): 210–226, May 2002. 10.1006/​aphy.2002.6254.

[62] Todor M. Mishonov, Joseph O. Indekeu, and Evgeni S. Penev. The 3d-to-4s-by-2p Highway to Superconductivity in Cuprates. International Journal of Modern Physics B, 16 (30): 4577–4585, January 2002. 10.1142/​S0217979202014991.

[63] Chris Cade, Lana Mineh, Ashley Montanaro, and Stasja Stanisic. Strategies for solving the Fermi-Hubbard model on near-term quantum computers. arXiv e-prints, art. arXiv:1912.06007, December 2019.

[64] Josef Melcr and Jean-Philip Piquemal. Accurate biomolecular simulations account for electronic polarization. Frontiers in Molecular Biosciences, 6: 143, 2019. ISSN 2296-889X. 10.3389/​fmolb.2019.00143. URL https:/​/​www.frontiersin.org/​article/​10.3389/​fmolb.2019.00143.

[65] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán Aspuru-Guzik, and Jeremy L. O'Brien. A variational eigenvalue solver on a photonic quantum processor. Nature Communications, 5: 4213, July 2014. 10.1038/​ncomms5213.

[66] Jarrod R. McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. The theory of variational hybrid quantum-classical algorithms. New Journal of Physics, 18 (2): 023023, February 2016. 10.1088/​1367-2630/​18/​2/​023023.

[67] Ian C. Cloët, Matthew R. Dietrich, John Arrington, Alexei Bazavov, Michael Bishof, Adam Freese, Alexey V. Gorshkov, Anna Grassellino, Kawtar Hafidi, Zubin Jacob, Michael McGuigan, Yannick Meurice, Zein-Eddine Meziani, Peter Mueller, Christine Muschik, James Osborn, Matthew Otten, Peter Petreczky, Tomas Polakovic, Alan Poon, Raphael Pooser, Alessandro Roggero, Mark Saffman, Brent VanDevender, Jiehang Zhang, and Erez Zohar. Opportunities for Nuclear Physics and Quantum Information Science. arXiv e-prints, art. arXiv:1903.05453, March 2019.

[68] Alessio Celi, Benoı̂t Vermersch, Oscar Viyuela, Hannes Pichler, Mikhail D. Lukin, and Peter Zoller. Emerging two-dimensional gauge theories in rydberg configurable arrays. Phys. Rev. X, 10: 021057, Jun 2020. 10.1103/​PhysRevX.10.021057. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevX.10.021057.

[69] W. K. Hale. Frequency assignment: Theory and applications. Proceedings of the IEEE, 68 (12): 1497–1514, Dec 1980. 10.1109/​PROC.1980.11899.

[70] Vladimir Boginski, Sergiy Butenko, and Panos M Pardalos. Statistical analysis of financial networks. Computational Statistics and Data Analysis, 48: 431 – 443, 2005. ISSN 0167-9473. https:/​/​doi.org/​10.1016/​j.csda.2004.02.004. URL http:/​/​www.sciencedirect.com/​science/​article/​pii/​S0167947304000258.

[71] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of NP-Completeness (Series of Books in the Mathematical Sciences). W. H. Freeman, first edition edition, 1979. ISBN 0716710455. URL http:/​/​www.amazon.com/​Computers-Intractability-NP-Completeness-Mathematical-Sciences/​dp/​0716710455.

[72] Hannes Pichler, Sheng-Tao Wang, Leo Zhou, Soonwon Choi, and Mikhail D. Lukin. Quantum Optimization for Maximum Independent Set Using Rydberg Atom Arrays. arXiv e-prints, art. arXiv:1808.10816, August 2018.

[73] Frank Arute, Kunal Arya, Ryan Babbush, Dave Bacon, Joseph C. Bardin, Rami Barends, Sergio Boixo, Michael Broughton, Bob B. Buckley, David A. Buell, Brian Burkett, Nicholas Bushnell, Yu Chen, Zijun Chen, Ben Chiaro, Roberto Collins, William Courtney, Sean Demura, Andrew Dunsworth, Edward Farhi, Austin Fowler, Brooks Foxen, Craig Gidney, Marissa Giustina, Rob Graff, Steve Habegger, Matthew P. Harrigan, Alan Ho, Sabrina Hong, Trent Huang, L. B. Ioffe, Sergei V. Isakov, Evan Jeffrey, Zhang Jiang, Cody Jones, Dvir Kafri, Kostyantyn Kechedzhi, Julian Kelly, Seon Kim, Paul V. Klimov, Alexander N. Korotkov, Fedor Kostritsa, David Landhuis, Pavel Laptev, Mike Lindmark, Martin Leib, Erik Lucero, Orion Martin, John M. Martinis, Jarrod R. McClean, Matt McEwen, Anthony Megrant, Xiao Mi, Masoud Mohseni, Wojciech Mruczkiewicz, Josh Mutus, Ofer Naaman, Matthew Neeley, Charles Neill, Florian Neukart, Hartmut Neven, Murphy Yuezhen Niu, Thomas E. O'Brien, Bryan O'Gorman, Eric Ostby, Andre Petukhov, Harald Putterman, Chris Quintana, Pedram Roushan, Nicholas C. Rubin, Daniel Sank, Kevin J. Satzinger, Andrea Skolik, Vadim Smelyanskiy, Doug Strain, Michael Streif, Kevin J. Sung, Marco Szalay, Amit Vainsencher, Theodore White, Z. Jamie Yao, Ping Yeh, Adam Zalcman, and Leo Zhou. Quantum Approximate Optimization of Non-Planar Graph Problems on a Planar Superconducting Processor. arXiv e-prints, art. arXiv:2004.04197, April 2020.

[74] Michel Fabrice Serret, Bertrand Marchand, and Thomas Ayral. Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks. arXiv e-prints, art. arXiv:2006.11190, June 2020.

[75] Wolfgang Lechner, Philipp Hauke, and Peter Zoller. A quantum annealing architecture with all-to-all connectivity from local interactions. Science Advances, 1 (9), 2015. 10.1126/​sciadv.1500838. URL https:/​/​advances.sciencemag.org/​content/​1/​9/​e1500838.

[76] A. W. Glaetzle, R. M. W. van Bijnen, P. Zoller, and W. Lechner. A coherent quantum annealer with Rydberg atoms. Nature Communications, 8: 15813, June 2017. 10.1038/​ncomms15813.

[77] Jacob Biamonte, Peter Wittek, Nicola Pancotti, Patrick Rebentrost, Nathan Wiebe, and Seth Lloyd. Quantum machine learning. Nature, 549 (7671): 195–202, September 2017. 10.1038/​nature23474.

[78] Vojtech Havlicek, Antonio D. Córcoles, Kristan Temme, Aram W. Harrow, Abhinav Kandala, Jerry M. Chow, and Jay M. Gambetta. Supervised learning with quantum-enhanced feature spaces. Nature, 567 (7747): 209–212, March 2019. 10.1038/​s41586-019-0980-2.

[79] Edward Grant, Marcello Benedetti, Shuxiang Cao, Andrew Hallam, Joshua Lockhart, Vid Stojevic, Andrew G. Green, and Simone Severini. Hierarchical quantum classifiers. npj Quantum Information, 4: 65, December 2018. 10.1038/​s41534-018-0116-9.

[80] K. Mitarai, M. Negoro, M. Kitagawa, and K. Fujii. Quantum circuit learning. Phys. Rev. A, 98 (3): 032309, September 2018. 10.1103/​PhysRevA.98.032309.

[81] James M. Auger, Silvia Bergamini, and Dan E. Browne. Blueprint for fault-tolerant quantum computation with rydberg atoms. Phys. Rev. A, 96: 052320, Nov 2017. 10.1103/​PhysRevA.96.052320. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevA.96.052320.

[82] Stephen E. Harris. Electromagnetically induced transparency. Physics Today, 50 (7): 36–42, July 1997. 10.1063/​1.881806.

[83] Michael Fleischhauer, Atac Imamoglu, and Jonathan P. Marangos. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys., 77: 633–673, Jul 2005. 10.1103/​RevModPhys.77.633. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.77.633.

[84] M. Bajcsy, A. S. Zibrov, and M. D. Lukin. Stationary pulses of light in an atomic medium. Nature, 426 (6967): 638–641, December 2003. 10.1038/​nature02176.

[85] L. M. Duan, M. D. Lukin, J. I. Cirac, and P. Zoller. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414 (6862): 413–418, November 2001. 10.1038/​35106500.

[86] Nicolas Sangouard, Christoph Simon, Hugues de Riedmatten, and Nicolas Gisin. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys., 83: 33–80, Mar 2011. 10.1103/​RevModPhys.83.33. URL https:/​/​link.aps.org/​doi/​10.1103/​RevModPhys.83.33.

[87] Nicolas Maring, Pau Farrera, Kutlu Kutluer, Margherita Mazzera, Georg Heinze, and Hugues de Riedmatten. Photonic quantum state transfer between a cold atomic gas and a crystal. Nature, 551 (7681): 485–488, November 2017. 10.1038/​nature24468.

[88] Yong Yu, Fei Ma, Xi-Yu Luo, Bo Jing, Peng-Fei Sun, Ren-Zhou Fang, Chao-Wei Yang, Hui Liu, Ming-Yang Zheng, Xiu-Ping Xie, Wei-Jun Zhang, Li-Xing You, Zhen Wang, Teng-Yun Chen, Qiang Zhang, Xiao-Hui Bao, and Jian-Wei Pan. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature, 578: 240–245, 2020. ISSN 1476-4687. 10.1038/​s41586-020-1976-7. URL https:/​/​doi.org/​10.1038/​s41586-020-1976-7.

[89] Morten Kjaergaard, Mollie E. Schwartz, Jochen Braumüller, Philip Krantz, Joel I.-J. Wang, Simon Gustavsson, and William D. Oliver. Superconducting qubits: Current state of play. Annual Review of Condensed Matter Physics, 11 (1): 369–395, 2020. 10.1146/​annurev-conmatphys-031119-050605. URL https:/​/​doi.org/​10.1146/​annurev-conmatphys-031119-050605.

[90] Thibault Peyronel, Ofer Firstenberg, Qi-Yu Liang, Sebastian Hofferberth, Alexey V. Gorshkov, Thomas Pohl, Mikhail D. Lukin, and Vladan Vuletić. Quantum nonlinear optics with single photons enabled by strongly interacting atoms. Nature, 488 (7409): 57–60, Aug 2012. ISSN 1476-4687. 10.1038/​nature11361. URL https:/​/​doi.org/​10.1038/​nature11361.

[91] Ofer Firstenberg, Thibault Peyronel, Qi-Yu Liang, Alexey V. Gorshkov, Mikhail D. Lukin, and Vladan Vuletić. Attractive photons in a quantum nonlinear medium. Nature, 502 (7469): 71–75, Oct 2013. ISSN 1476-4687. 10.1038/​nature12512. URL https:/​/​doi.org/​10.1038/​nature12512.

[92] Darrick E Chang, Vladan Vuletić, and Mikhail D Lukin. Quantum nonlinear optics — photon by photon. Nature Photonics, 8: 685–694, 2014. ISSN 1749-4893. 10.1038/​nphoton.2014.192. URL https:/​/​doi.org/​10.1038/​nphoton.2014.192.

[93] Andreas Reiserer, Norbert Kalb, Gerhard Rempe, and Stephan Ritter. A quantum gate between a flying optical photon and a single trapped atom. Nature, 508: 237–240, 2014. ISSN 1476-4687. 10.1038/​nature13177. URL https:/​/​doi.org/​10.1038/​nature13177.

[94] D Paredes-Barato and C S Adams. All-optical quantum information processing using rydberg gates. Phys. Rev. Lett., 112: 40501, 1 2014. 10.1103/​PhysRevLett.112.040501. URL https:/​/​link.aps.org/​doi/​10.1103/​PhysRevLett.112.040501.

[95] Daniel Tiarks, Steffen Schmidt, Gerhard Rempe, and Stephan Dürr. Optical $\pi$ phase shift created with a single-photon pulse. Science Advances, 2, 2016. 10.1126/​sciadv.1600036. URL http:/​/​advances.sciencemag.org/​content/​2/​4/​e1600036.

[96] O Firstenberg, C S Adams, and S Hofferberth. Nonlinear quantum optics mediated by rydberg interactions. Journal of Physics B: Atomic, Molecular and Optical Physics, 49 (15): 152003, jun 2016. 10.1088/​0953-4075/​49/​15/​152003. URL https:/​/​doi.org/​10.1088.

[97] C. S. Adams, J. D. Pritchard, and J. P. Shaffer. Rydberg atom quantum technologies. Journal of Physics B Atomic Molecular Physics, 53 (1): 012002, January 2020. 10.1088/​1361-6455/​ab52ef.

[98] Mazyar Mirrahimi, Zaki Leghtas, Victor V Albert, Steven Touzard, Robert J Schoelkopf, Liang Jiang, and Michel H Devoret. Dynamically protected cat-qubits: a new paradigm for universal quantum computation. New Journal of Physics, 16 (4): 045014, Apr 2014. ISSN 1367-2630. 10.1088/​1367-2630/​16/​4/​045014. URL http:/​/​dx.doi.org/​10.1088/​1367-2630/​16/​4/​045014.

[99] Shruti Puri, Samuel Boutin, and Alexandre Blais. Engineering the quantum states of light in a kerr-nonlinear resonator by two-photon driving. npj Quantum Information, 3 (1), Apr 2017. ISSN 2056-6387. 10.1038/​s41534-017-0019-1. URL http:/​/​dx.doi.org/​10.1038/​s41534-017-0019-1.

[100] Alexandre Blais, Arne L. Grimsmo, S. M. Girvin, and Andreas Wallraff. Circuit Quantum Electrodynamics. arXiv e-prints, art. arXiv:2005.12667, May 2020.

Cited by

[1] Craig R. Clark, Holly N. Tinkey, Brian C. Sawyer, Adam M. Meier, Karl A. Burkhardt, Christopher M. Seck, Christopher M. Shappert, Nicholas D. Guise, Curtis E. Volin, Spencer D. Fallek, Harley T. Hayden, Wade G. Rellergert, and Kenton R. Brown, "High-Fidelity Bell-State Preparation with Ca+40 Optical Qubits", Physical Review Letters 127 13, 130505 (2021).

[2] M. Morgado and S. Whitlock, "Quantum simulation and computing with Rydberg-interacting qubits", AVS Quantum Science 3 2, 023501 (2021).

[3] Oleksandr Kyriienko and Vincent E. Elfving, "Generalized quantum circuit differentiation rules", Physical Review A 104 5, 052417 (2021).

[4] Tomohiro Hashizume, Gregory S. Bentsen, Sebastian Weber, and Andrew J. Daley, "Deterministic Fast Scrambling with Neutral Atom Arrays", Physical Review Letters 126 20, 200603 (2021).

[5] Luis Fernando dos Prazeres, Leonardo da Silva Souza, and Fernando Iemini, "Boundary time crystals in collective d -level systems", Physical Review B 103 18, 184308 (2021).

[6] Michel Fabrice Serret, Bertrand Marchand, and Thomas Ayral, "Solving optimization problems with Rydberg analog quantum computers: Realistic requirements for quantum advantage using noisy simulation and classical benchmarks", Physical Review A 102 5, 052617 (2020).

[7] A. K. Fedorov and M. S. Gelfand, "Towards practical applications in quantum computational biology", Nature Computational Science 1 2, 114 (2021).

[8] A. S. Boev, A. S. Rakitko, S. R. Usmanov, A. N. Kobzeva, I. V. Popov, V. V. Ilinsky, E. O. Kiktenko, and A. K. Fedorov, "Genome assembly using quantum and quantum-inspired annealing", Scientific Reports 11 1, 13183 (2021).

[9] Chris Palmer, "Quantum Computing Quickly Scores Second Claim of Supremacy", Engineering 7 9, 1199 (2021).

[10] Donghao Li, Guoqi Bian, Jie Miao, Pengjun Wang, Zengming Meng, Liangchao Chen, Lianghui Huang, and Jing Zhang, "Rydberg excitation spectrum of K40 ultracold Fermi gases", Physical Review A 103 6, 063305 (2021).

[11] L. Masi, T. Petrucciani, G. Ferioli, G. Semeghini, G. Modugno, M. Inguscio, and M. Fattori, "Spatial Bloch Oscillations of a Quantum Gas in a “Beat-Note” Superlattice", Physical Review Letters 127 2, 020601 (2021).

[12] Tony Jin, Tristan Gautié, Alexandre Krajenbrink, Paola Ruggiero, and Takato Yoshimura, "Interplay between transport and quantum coherences in free fermionic systems", Journal of Physics A: Mathematical and Theoretical 54 40, 404001 (2021).

[13] Hailong Fu, Pengjie Wang, Zhenhai Hu, Yifan Li, and Xi Lin, "Low-temperature environments for quantum computation and quantum simulation* ", Chinese Physics B 30 2, 020702 (2021).

[14] Pascal Scholl, Michael Schuler, Hannah J. Williams, Alexander A. Eberharter, Daniel Barredo, Kai-Niklas Schymik, Vincent Lienhard, Louis-Paul Henry, Thomas C. Lang, Thierry Lahaye, Andreas M. Läuchli, and Antoine Browaeys, "Quantum simulation of 2D antiferromagnets with hundreds of Rydberg atoms", Nature 595 7866, 233 (2021).

[15] Ray LaPierre, The Materials Research Society Series 275 (2021) ISBN:978-3-030-69317-6.

[16] I. I. Beterov, "Quantum Computers Based on Cold Atoms$${}^{\mathbf{\#}}$$ ", Optoelectronics, Instrumentation and Data Processing 56 4, 317 (2020).

[17] Kai-Niklas Schymik, Sara Pancaldi, Florence Nogrette, Daniel Barredo, Julien Paris, Antoine Browaeys, and Thierry Lahaye, "Single Atoms with 6000-Second Trapping Lifetimes in Optical-Tweezer Arrays at Cryogenic Temperatures", Physical Review Applied 16 3, 034013 (2021).

[18] Constantin Dalyac, Loïc Henriet, Emmanuel Jeandel, Wolfgang Lechner, Simon Perdrix, Marc Porcheron, and Margarita Veshchezerova, "Qualifying quantum approaches for hard industrial optimization problems. A case study in the field of smart-charging of electric vehicles", EPJ Quantum Technology 8 1, 12 (2021).

[19] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche, "Decoding techniques applied to the compilation of CNOT circuits for NISQ architectures", Science of Computer Programming 214, 102726 (2022).

[20] Giovanni Cataldi, Ashkan Abedi, Giuseppe Magnifico, Simone Notarnicola, Nicola Dalla Pozza, Vittorio Giovannetti, and Simone Montangero, "Hilbert curve vs Hilbert space: exploiting fractal 2D covering to increase tensor network efficiency", Quantum 5, 556 (2021).

[21] Lindsay Bassman, Miroslav Urbanek, Mekena Metcalf, Jonathan Carter, Alexander F Kemper, and Wibe A de Jong, "Simulating quantum materials with digital quantum computers", Quantum Science and Technology 6 4, 043002 (2021).

[22] Louis-Paul Henry, Slimane Thabet, Constantin Dalyac, and Loïc Henriet, "Quantum evolution kernel: Machine learning on graphs with programmable arrays of qubits", Physical Review A 104 3, 032416 (2021).

[23] I. I. Ryabtsev, K. Yu. Mityanin, I. I. Beterov, D. B. Tretyakov, V. M. Entin, E. A. Yakshina, N. V. Al’yanova, and I. G. Neizvestnii, "Quantum Information Processing on the Basis of Single Ultracold Atoms in Optical Traps", Optoelectronics, Instrumentation and Data Processing 56 5, 510 (2020).

[24] Giulia Piccitto, Matteo Wauters, Franco Nori, and Nathan Shammah, "Symmetries and conserved quantities of boundary time crystals in generalized spin models", Physical Review B 104 1, 014307 (2021).

[25] Joseph C. Bardin, Daniel H. Slichter, and David J. Reilly, "Microwaves in Quantum Computing", IEEE Journal of Microwaves 1 1, 403 (2021).

[26] Jin-Lei Wu, Yan Wang, Jin-Xuan Han, Shi-Lei Su, Yan Xia, Yongyuan Jiang, and Jie Song, "Unselective ground-state blockade of Rydberg atoms for implementing quantum gates", Frontiers of Physics 17 2, 22501 (2022).

[27] G. Unnikrishnan, C. Beulenkamp, D. Zhang, K. P. Zamarski, M. Landini, and H.-C. Nägerl, "Long distance optical transport of ultracold atoms: A compact setup using a Moiré lens", Review of Scientific Instruments 92 6, 063205 (2021).

[28] Jonathan M. Baker, Andrew Litteken, Casey Duckering, Henry Hoffmann, Hannes Bernien, and Frederic T. Chong, 2021 ACM/IEEE 48th Annual International Symposium on Computer Architecture (ISCA) 818 (2021) ISBN:978-1-6654-3333-4.

[29] Valentin Kasper, Daniel González-Cuadra, Apoorva Hegde, Andy Xia, Alexandre Dauphin, Felix Huber, Eberhard Tiemann, Maciej Lewenstein, Fred Jendrzejewski, and Philipp Hauke, "Universal quantum computation and quantum error correction with ultracold atomic mixtures", Quantum Science and Technology 7 1, 015008 (2022).

[30] Stefania Sciara, Piotr Roztocki, Bennet Fischer, Christian Reimer, Luis Romero Cortés, William J. Munro, David J. Moss, Alfonso C. Cino, Lucia Caspani, Michael Kues, José Azaña, and Roberto Morandotti, "Scalable and effective multi-level entangled photon states: a promising tool to boost quantum technologies", Nanophotonics 10 18, 4447 (2021).

The above citations are from Crossref's cited-by service (last updated successfully 2021-12-08 01:17:06) and SAO/NASA ADS (last updated successfully 2021-12-08 01:17:07). The list may be incomplete as not all publishers provide suitable and complete citation data.