Completely Positive, Simple, and Possibly Highly Accurate Approximation of the Redfield Equation

Dragomir Davidović

Georgia Institute of Technology, Atlanta, Georgia, United States

Find this paper interesting or want to discuss? Scite or leave a comment on SciRate.


Here we present a Lindblad master equation that approximates the Redfield equation, a well known master equation derived from first principles, without significantly compromising the range of applicability of the Redfield equation. Instead of full-scale coarse-graining, this approximation only truncates terms in the Redfield equation that average out over a time-scale typical of the quantum system. The first step in this approximation is to properly renormalize the system Hamiltonian, to symmetrize the gains and losses of the state due to the environmental coupling. In the second step, we swap out an arithmetic mean of the spectral density with a geometric one, in these gains and losses, thereby restoring complete positivity. This completely positive approximation, GAME (geometric-arithmetic master equation), is adaptable between its time-independent, time-dependent, and Floquet form. In the exactly solvable, three-level, Jaynes-Cummings model, we find that the error of the approximate state is almost an order of magnitude lower than that obtained by solving the coarse-grained stochastic master equation. As a test-bed, we use a ferromagnetic Heisenberg spin-chain with long-range dipole-dipole coupling between up to 25-spins, and study the differences between various master equations. We find that GAME has the highest accuracy per computational resource.

New Lamb-shift:​
H(ω, ω' ) = ½[ S(ω) + S(ω' ) ]+$i$¼[γ(ω) − γ(ω') ]​
Quantum systems coupled to an environment are renormalized by the vacuum energy fluctuations or the Lamb-shift. Here I identify the Lamb-shift in a 63-year old perturbative Redfield equation, which enables me to find a highly accurate completely positive (CP) approximation of the equation.​

The graph shows the trace error from the Redfield solutions versus time, for various CP-master equations. In contrast to the previous approximations, the GAME error does not grow in time and remains low in perpetuity.

► BibTeX data

► References

[1] C. W.Gardiner, ``Quantum noise,'' (1991).

[2] H.-P. Breuer and F. Petruccione, ``The theory of open quantum systems,'' (2007).

[3] G. Lindblad, Comm. Math. Phys. 48, 119 (1976).

[4] V. Gorini, A. Kossakowski, and E. C. G. Sudarshan, Journal of Mathematical Physics 17, 821 (1976), https:/​/​​doi/​pdf/​10.1063/​1.522979.

[5] D. A. Lidar, Z. Bihary, and K. Whaley, Chemical Physics 268, 35 (2001).

[6] D. Kohen, C. C. Marston, and D. J. Tannor, The Journal of Chemical Physics 107, 5236 (1997), https:/​/​​10.1063/​1.474887.

[7] R. Zwanzig, The Journal of Chemical Physics 33, 1338 (1960), https:/​/​​10.1063/​1.1731409.

[8] S. Nakajima, Progress of Theoretical Physics 20, 948 (1958), https:/​/​​ptp/​article-pdf/​20/​6/​948/​5440766/​20-6-948.pdf.

[9] K. Ryogo, T. Morikazu, and H. Natsuki, ``Statistical physics ii,'' (1998).

[10] A. G. Redfield, IBM Journal of Research and Development 1, 19 (1957).

[11] A. REDFIELD, in Advances in Magnetic Resonance, Advances in Magnetic and Optical Resonance, Vol. 1, edited by J. S. Waugh (Academic Press, 1965) pp. 1 – 32.

[12] G. Vidal and R. F. Werner, Phys. Rev. A 65, 032314 (2002).

[13] W. T. Pollard, A. K. Felts, and R. A. Friesner, ``The redfield equation in condensed-phase quantum dynamics,'' in Advances in Chemical Physics (John Wiley & Sons, Ltd, 2007) pp. 77–134, https:/​/​​doi/​pdf/​10.1002/​9780470141526.ch3.

[14] I. Kondov, U. Kleinekathöfer, and M. Schreiber, The Journal of Chemical Physics 114, 1497 (2001), https:/​/​​10.1063/​1.1335656.

[15] D. Egorova, M. Thoss, W. Domcke, and H. Wang, The Journal of Chemical Physics 119, 2761 (2003), https:/​/​​10.1063/​1.1587121.

[16] M. Schröder, M. Schreiber, and U. Kleinekathöfer, Journal of Luminescence 125, 126 (2007), festschrift in Honor of Academician Alexander A. Kaplyanskii.

[17] A. Montoya-Castillo, T. C. Berkelbach, and D. R. Reichman, The Journal of Chemical Physics 143, 194108 (2015), https:/​/​​10.1063/​1.4935443.

[18] C. Timm, Phys. Rev. B 77, 195416 (2008).

[19] J. Jeske, D. J. Ing, M. B. Plenio, S. F. Huelga, and J. H. Cole, The Journal of Chemical Physics 142, 064104 (2015), https:/​/​​10.1063/​1.4907370.

[20] W. P. Bricker, J. L. Banal, M. B. Stone, and M. Bathe, The Journal of Chemical Physics 149, 024905 (2018), https:/​/​​10.1063/​1.5036656.

[21] R. S. Whitney, Journal of Physics A: Mathematical and Theoretical 41, 175304 (2008).

[22] R. Hartmann and W. T. Strunz, Phys. Rev. A 101, 012103 (2020).

[23] T. Yu, L. Diósi, N. Gisin, and W. T. Strunz, Phys. Rev. A 60, 91 (1999).

[24] I. de Vega, D. Alonso, P. Gaspard, and W. T. Strunz, The Journal of Chemical Physics 122, 124106 (2005), https:/​/​​10.1063/​1.1867377.

[25] N. Makri and D. E. Makarov, The Journal of Chemical Physics 102, 4600 (1995), https:/​/​​10.1063/​1.469508.

[26] M. Thorwart, E. Paladino, and M. Grifoni, Chemical Physics 296, 333 (2004), the Spin-Boson Problem: From Electron Transfer to Quantum Computing ... to the 60th Birthday of Professor Ulrich Weiss.

[27] P. Nalbach and M. Thorwart, Phys. Rev. B 81, 054308 (2010).

[28] Y. Tanimura and R. Kubo, Journal of the Physical Society of Japan 58, 1199 (1989), https:/​/​​10.1143/​JPSJ.58.1199.

[29] Y. Tanimura, Journal of the Physical Society of Japan 75, 082001 (2006), https:/​/​​10.1143/​JPSJ.75.082001.

[30] Y. Tanimura, The Journal of Chemical Physics 141, 044114 (2014), https:/​/​​10.1063/​1.4890441.

[31] Z. Li, N. Tong, X. Zheng, D. Hou, J. Wei, J. Hu, and Y. Yan, Phys. Rev. Lett. 109, 266403 (2012).

[32] Y. Cheng, W. Hou, Y. Wang, Z. Li, J. Wei, and Y. Yan, New Journal of Physics 17, 033009 (2015).

[33] H.-D. Meyer, U. Manthe, and L. Cederbaum, Chemical Physics Letters 165, 73 (1990).

[34] M. Beck, A. Jäckle, G. Worth, and H.-D. Meyer, Physics Reports 324, 1 (2000).

[35] H. Wang and M. Thoss, The Journal of Chemical Physics 119, 1289 (2003), https:/​/​​10.1063/​1.1580111.

[36] J. Zheng, Y. Xie, S. Jiang, and Z. Lan, The Journal of Physical Chemistry C 120, 1375 (2016), https:/​/​​10.1021/​acs.jpcc.5b09921.

[37] D. Suess, A. Eisfeld, and W. T. Strunz, Phys. Rev. Lett. 113, 150403 (2014).

[38] P.-P. Zhang and A. Eisfeld, The Journal of Physical Chemistry Letters 7, 4488 (2016), pMID: 27775345, https:/​/​​10.1021/​acs.jpclett.6b02111.

[39] R. Hartmann and W. T. Strunz, Journal of Chemical Theory and Computation 13, 5834 (2017), pMID: 29016126, https:/​/​​10.1021/​acs.jctc.7b00751.

[40] A. Strathearn, P. Kirton, D. Kilda, J. Keeling, and B. W. Lovett, Nature Communications 9, 3322 (2018).

[41] F. A. Y. N. Schröder, D. H. P. Turban, A. J. Musser, N. D. M. Hine, and A. W. Chin, Nature Communications 10, 1062 (2019).

[42] S. Jang, The Journal of Chemical Physics 131, 164101 (2009), https:/​/​​10.1063/​1.3247899.

[43] D. P. S. McCutcheon, N. S. Dattani, E. M. Gauger, B. W. Lovett, and A. Nazir, Phys. Rev. B 84, 081305 (2011).

[44] E. B. Davies, Comm. Math. Phys. 39, 91 (1974).

[45] C. Majenz, T. Albash, H.-P. Breuer, and D. A. Lidar, Phys. Rev. A 88, 012103 (2013).

[46] D. Farina and V. Giovannetti, Phys. Rev. A 100, 012107 (2019).

[47] E. Mozgunov and D. Lidar, 4, 227 (2020), 1908.01095 [Quantum].

[48] N. Vogt, J. Jeske, and J. H. Cole, Phys. Rev. B 88, 174514 (2013).

[49] T. V. Tscherbul and P. Brumer, The Journal of Chemical Physics 142, 104107 (2015), https:/​/​​10.1063/​1.4908130.

[50] G. Schaller and T. Brandes, Phys. Rev. A 78, 022106 (2008).

[51] F. Benatti, R. Floreanini, and U. Marzolino, Phys. Rev. A 81, 012105 (2010).

[52] W. J. Munro and C. W. Gardiner, Phys. Rev. A 53, 2633 (1996).

[53] J. Wilkie, Phys. Rev. E 62, 8808 (2000).

[54] B. Palmieri, D. Abramavicius, and S. Mukamel, The Journal of Chemical Physics 130, 204512 (2009), https:/​/​​10.1063/​1.3142485.

[55] G. Kiršanskas, M. Franckié, and A. Wacker, Phys. Rev. B 97, 035432 (2018).

[56] F. Nathan and M. S. Rudner, Phys. Rev. B 102, 115109 (2020).

[57] S. Kryszewski and J. Czechowska-Kryszk, ``Master equation - tutorial approach,'' (2008), arXiv:0801.1757 [quant-ph].

[58] H.-P. Breuer, Phys. Rev. A 70, 012106 (2004).

[59] D. W. Hone, R. Ketzmerick, and W. Kohn, Phys. Rev. E 79, 051129 (2009).

[60] T. Albash, S. Boixo, D. A. Lidar, and P. Zanardi, New Journal of Physics 14, 123016 (2012).

[61] A. A. Clerk, M. H. Devoret, S. M. Girvin, F. Marquardt, and R. J. Schoelkopf, Rev. Mod. Phys. 82, 1155 (2010).

[62] A. Daley, Advances in Physics 63 (2014), 10.1080/​00018732.2014.933502.

[63] F. Benatti, R. Floreanini, and U. Marzolino, EPL (Europhysics Letters) 88, 20011 (2009).

[64] A. Rivas, Phys. Rev. A 95, 042104 (2017).

[65] F. Benatti, R. Floreanini, and M. Piani, Phys. Rev. Lett. 91, 070402 (2003).

[66] R. Tana and Z. Ficek, Journal of Optics B: Quantum and Semiclassical Optics 6, S90 (2004).

[67] S. E. Clifton and W. E. P., Philosophical Transactions of the Royal Society of London 240, 599 (1948).

[68] W. F. Brown, Phys. Rev. 130, 1677 (1963).

[69] K. Gilmore, Y. U. Idzerda, and M. D. Stiles, Phys. Rev. Lett. 99, 027204 (2007).

[70] F. Haake and M. Lewenstein, Phys. Rev. A 28, 3606 (1983).

[71] P. Gaspard and M. Nagaoka, The Journal of Chemical Physics 111, 5668 (1999), https:/​/​​10.1063/​1.479867.

[72] Y. C. Cheng and R. J. Silbey, The Journal of Physical Chemistry B 109, 21399 (2005), pMID: 16853776, https:/​/​​10.1021/​jp051303o.

[73] A. Suarez, R. Silbey, and I. Oppenheim, The Journal of Chemical Physics 97, 5101 (1992), https:/​/​​10.1063/​1.463831.

[74] T. Yu, L. Diósi, N. Gisin, and W. T. Strunz, Physics Letters A 265, 331 (2000).

[75] R. Silbey and R. A. Harris, The Journal of Chemical Physics 80, 2615 (1984), https:/​/​​10.1063/​1.447055.

[76] Z.-X. Gong, M. F. Maghrebi, A. Hu, M. Foss-Feig, P. Richerme, C. Monroe, and A. V. Gorshkov, Phys. Rev. B 93, 205115 (2016).

[77] G. Evenbly and G. Vidal, Phys. Rev. Lett. 115, 180405 (2015).

[78] M. Grifoni and P. Hänggi, Physics Reports 304, 229 (1998).

[79] T. Shirai, J. Thingna, T. Mori, S. Denisov, P. Hänggi, and S. Miyashita, New Journal of Physics 18, 053008 (2016).

[80] J. Elzerman, R. Hanson, and L. W. van Beveren et al., Nature 430, 431–435 (2004).

[81] A. Morello, J. Pla, and F. Z. et al., Nature 467, 687 (2010).

Cited by

[1] Dragomir Davidović, "Geometric-arithmetic master equation in large and fast open quantum systems", Journal of Physics A: Mathematical and Theoretical 55 45, 455301 (2022).

[2] Matthew Gerry and Dvira Segal, "Full counting statistics and coherences: Fluctuation symmetry in heat transport with the unified quantum master equation", Physical Review E 107 5, 054115 (2023).

[3] Archak Purkayastha, Madhumita Saha, and Bijay Kumar Agarwalla, "Subdiffusive Phases in Open Clean Long-Range Systems", Physical Review Letters 127 24, 240601 (2021).

[4] Richard Hartmann and Walter T. Strunz, "Environmentally Induced Entanglement – Anomalous Behavior in the Adiabatic Regime", Quantum 4, 347 (2020).

[5] Bret Jackson, "An examination of phonon–inelastic molecule–metal scattering using reduced density matrix and stochastic wave packet methods", The Journal of Chemical Physics 158 2, 024701 (2023).

[6] Diego Fernández de la Pradilla, Esteban Moreno, and Johannes Feist, "Vacuum-field-induced state mixing", SciPost Physics 15 6, 252 (2023).

[7] Dariusz Chruściński, "Dynamical maps beyond Markovian regime", Physics Reports 992, 1 (2022).

[8] Antonio D'Abbruzzo, Vasco Cavina, and Vittorio Giovannetti, "A time-dependent regularization of the Redfield equation", SciPost Physics 15 3, 117 (2023).

[9] F. Benatti, D. Chruściński, and R. Floreanini, "Local Generation of Entanglement with Redfield Dynamics", Open Systems & Information Dynamics 29 01, 2250001 (2022).

[10] Orazio Scarlatella and Marco Schirò, "Self-consistent dynamical maps for open quantum systems", SciPost Physics 16 1, 026 (2024).

[11] Patrick P Potts, Alex Arash Sand Kalaee, and Andreas Wacker, "A thermodynamically consistent Markovian master equation beyond the secular approximation", New Journal of Physics 23 12, 123013 (2021).

[12] Massimo Borrelli and Hans Christian Öttinger, "Dissipation in spin chains using quantized nonequilibrium thermodynamics", Physical Review A 106 2, 022220 (2022).

[13] Devashish Tupkary, Abhishek Dhar, Manas Kulkarni, and Archak Purkayastha, "Searching for Lindbladians obeying local conservation laws and showing thermalization", Physical Review A 107 6, 062216 (2023).

[14] David Gaspard, "Quantum master equations for a fast particle in a gas", Physical Review A 106 6, 062211 (2022).

[15] Chikako Uchiyama, "Dynamics of a quantum interacting system: Extended global approach beyond the Born-Markov and secular approximations", Physical Review A 108 4, 042212 (2023).

[16] Lorenzo Campos Venuti, Domenico D’Alessandro, and Daniel A. Lidar, "Optimal Control for Quantum Optimization of Closed and Open Systems", Physical Review Applied 16 5, 054023 (2021).

[17] Sara D. Jovanovski, Anirban Mandal, and Katharine L. C. Hunt, "Nonadiabatic transition probabilities for quantum systems in electromagnetic fields: Dephasing and population relaxation due to contact with a bath", The Journal of Chemical Physics 158 16, 164107 (2023).

[18] Brecht Donvil and Paolo Muratore-Ginanneschi, "Quantum trajectory framework for general time-local master equations", Nature Communications 13 1, 4140 (2022).

[19] Jae Sung Lee and Joonhyun Yeo, "Perturbative steady states of completely positive quantum master equations ", Physical Review E 106 5, 054145 (2022).

[20] Archak Purkayastha, "Lyapunov equation in open quantum systems and non-Hermitian physics", Physical Review A 105 6, 062204 (2022).

[21] Devashish Tupkary, Abhishek Dhar, Manas Kulkarni, and Archak Purkayastha, "Fundamental limitations in Lindblad descriptions of systems weakly coupled to baths", Physical Review A 105 3, 032208 (2022).

[22] Huo Chen and Daniel A. Lidar, "Hamiltonian open quantum system toolkit", Communications Physics 5 1, 112 (2022).

[23] Benjamin Yadin, Benjamin Morris, and Kay Brandner, "Thermodynamics of permutation-invariant quantum many-body systems: A group-theoretical framework", Physical Review Research 5 3, 033018 (2023).

[24] Archak Purkayastha and Klaus Mølmer, "Nonclassical radiation from a nonlinear oscillator driven solely by classical 1/f noise", Physical Review A 108 5, 053704 (2023).

[25] Marek Winczewski, Antonio Mandarino, Michał Horodecki, and Robert Alicki, "Bypassing the Intermediate Times Dilemma for Open Quantum System", arXiv:2106.05776, (2021).

[26] Marek Winczewski and Robert Alicki, "Renormalization in the Theory of Open Quantum Systems via the Self-Consistency Condition", arXiv:2112.11962, (2021).

[27] Brenden Bowen, Nishant Agarwal, and Archana Kamal, "Open system dynamics in interacting quantum field theories", arXiv:2403.18907, (2024).

The above citations are from Crossref's cited-by service (last updated successfully 2024-04-15 04:47:47) and SAO/NASA ADS (last updated successfully 2024-04-15 04:47:48). The list may be incomplete as not all publishers provide suitable and complete citation data.